(3.236.82.241) 您好!臺灣時間:2021/04/13 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:舒紹哲
研究生(外文):Shao-Che Su
論文名稱:基於漣波電壓控制具充電電流窗口之鋰電池快速充電技術
論文名稱(外文):Fast charging technique for Li-Ion Battery with charging current window Based on Ripple-Based Control
指導教授:張振豪
指導教授(外文):Chen-Hao Chang
口試委員:林泓均陳厚銘
口試委員(外文):Hong-chin LinHou-Ming Chen
口試日期:2019-01-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:44
中文關鍵詞:快速充電
外文關鍵詞:Fast Charging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,電子隨身設備,如智能手機和平板電腦已經無所不在,由電池供電之可攜式裝備需要快速充電以方便使用,而本論文針對快速又能保護電池的情況下,進行快速充電。
考慮到充電系統的設計,通常有兩種,一種是低壓線性穩壓器結構,第二種是開關切換的穩壓器結構,前者的優點是沒有漣波電壓,精準度高,但由於電池在低電壓有很大的導通損耗,因此效率不高,相比之下後者具有較高效率,雖然會有額外的漣波電壓,但在可接受的範圍下,本論文選擇此充電方式去做設計,而調變方式選用脈波頻率調變的方式進行設計,而當中會有一些平均電流下降的缺點,因此本論文針對此缺點提出改善對策,在使用1000μF的電容,充電電流在1A的情況下,充電時間減少約4%的充電時間外,並且針對小電流模式切換大電流模式所產生的震盪做改進,而在改進過後的電路進一步去改進電感電流偵測電路讓偵測速度提升了50%,使得電流漣波縮小了42%,因此整體充電時間減少了5%。
在電池的選擇,採用鋰離子電池,因為此材質的具有較高的能量密度,且有較高的操作電壓,因此本論文會針對鋰離子電池的需求去做設計,而鋰離子電池會因化學變化在不同的溫度、電量、充電電流大小與充電循環次數改變內阻,而透過內阻偵測電路可以讓電路進行較長的大電流充電,在不過充的情形下,因此可以達到更快速的充電,本論文使用此內阻偵測器可以加快充電速度約5%,因此總共減少了約10%的充電時間,在最大充電電流0.6安培的情形下可以維持91%充電效率,在充電電流為1安培的情況下可維持89%的充電效率。
In recent years, electronic portable devices such as smartphones and tablets have become ubiquitous. Battery-powered portable equipment requires fast charging for ease of use, and this thesis presents the design of the charger for fast and battery-protected conditions.
Considering the design of the charging system, there are usually two kinds, one is the low-voltage linear regulator structure, and the second is the switching -based regulator structure. The former has the advantage of no ripple voltage and high precision, but when the battery with low-voltage level has a large conduction loss, so the efficiency is low. In contrast, switching-based regulator has higher efficiency. Although there is extra ripple voltage, in the acceptable range, this thesis chooses this charging method to design. The modulation method adopts the pulse frequency modulation for design, and there is a shortcoming of the average current drop. Therefore, this thesis proposes an improvement method against this shortcoming. When using 1000μF capacitor and 1A charging current, the charging time reduces about 4% and the oscillation caused by switching the small current mode to the large current mode is improved. The improved circuit further increases the detection speed of the inductor current detecting circuit by 50% and the current ripple is reduced by 42%. Thus, the overall charging time decreases by 5%.
In the choice of battery, lithium-ion battery is used. Because this material has high energy density and high operating voltage, this thesis designs for the demand of lithium-ion battery. The lithium-ion battery will change the internal resistance in different temperature, electric quantity, charging current and charging cycle times, and the internal resistor detecting circuit can make the circuit perform long-time high-current charging. Without over-charging, it can achieve faster charging. In this thesis, the internal resistor detector can speed up the charging speed by about 5%. Thus, the total charging time decreases about 10% and the charging efficiency can be maintained at 91% with the maximum charging current of 0.6 A. A charging efficiency of 89% can be maintained in the case of 1 A.
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 v
表目錄 vii
第 1 章 緒論 1
1.1 研究背景與動機 1
1.2 論文架構 2
第 2 章 鋰離子電池與充電器概論 3
2.1 鋰離子電池特性及充電簡介 3
2.1.1 鋰離子電池 3
2.1.2 鋰離子電池充電策略 9
2.2 快速充電器基本概念介紹 11
2.2.1 線性快速充電器 11
2.2.2 切換式快速充電器 12
第 3 章 漣波電壓控制具充電電流窗口鋰電池快速充電技術 16
3.1 Dead time Generation 16
3.2 Module Selector 17
3.3 Current Window Controller 20
3.3.1 Proposed Current Sensor 21
3.3.2 On-Off Time Generator 28
3.4 晶片量測結果 29
第 4 章 內阻偵測電路 37
第 5 章 結論與未來展望 42
參考文獻 43
[1]https://zh.wikipedia.org
[2]https://www.richtek.com/~/media/AN PDF/AN024_TW.pdf
[3]D. Andrea, Battery Management Systems for Large Lithium-Ion Battery, Packs.Boston:Artech House, ch. 1, 2010.
[4]C. Lin, C. Hsieh, and K. Chen, "A Li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 2, pp. 506-517, Feb. 2010.
[5]C. F. Lee and P. K. T. Mok, "A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique," IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
[6]J. Liu, P. Wang, and T. Kuo, "A current-mode DC–DC buck converter with efficiency-optimized frequency control and reconfigurable compensation," IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 869-880, Feb. 2012.
[7]Y. Jung et al., "A fast and highly accurate battery charger with accurate built-in resistance detection," IEEE Transactions on Power Electronics, vol. 33, no. 12, pp. 10051-10054, Dec. 2018.
[8]C. Y. Leung, P. K. T. Mok, K. N. Leung, and M. Chan, "An integrated CMOS current-sensing circuit for low-voltage current-mode buck regulator," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 7, pp. 394-397, July 2005.
[9]M. Chen and G. A. Rincon-Mora, "Accurate, compact, and power-efficient li-ion battery charger circuit," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 11, pp. 1180-1184, Nov. 2006.
[10]C.-H. Lin et al., "Fast charging technique for Li-ion battery charger," in Proc. 2008 15th IEEE International Conference on Electronics, Circuits and Systems, St. Julien''s, 2008, pp. 618-621.
[11]J. Chen, F. Yang, C. Lai, Y. Hwang, and R. Lee, "A high-efficiency multimode li–ion battery charger with variable current source and controlling previous-stage supply voltage," IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2469-2478, July 2009.
[12]M. Du and H. Lee, "A 5-MHz 91% peak-power-efficiency buck regulator with auto-selectable peak- and valley-current control," in Proc.IEEE Custom Integrated Circuits Conference 2010, San Jose, CA, 2010, pp. 1-4.
[13]R. Pagano, M. Baker, and R. E. Radke, "A 0.18-μm monolithic Li-ion battery charger for wireless devices based on partial current sensing and adaptive reference voltage," IEEE Journal of Solid-State Circuits, vol. 47, no. 6, pp. 1355-1368, June 2012.
[14]S. Lee, S. Jung, C. Park, C. Rim, and G. Cho, "Accurate dead-time control for synchronous buck converter with fast error sensing circuits," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 11, pp. 3080-3089, Nov. 2013.
[15]T. Huang, R. Peng, T. Tsai, K. Chen, and C. Wey, "Fast charging and high efficiency switching-based charger with continuous built-in resistance detection and automatic energy deliver control for portable electronics," IEEE Journal of Solid-State Circuits, vol. 49, no. 7, pp. 1580-1594, July 2014.
[16]M. Jeong, S. Kim, and C. Yoo, "Switching battery charger integrated circuit for mobile devices in a 130-nm BCDMOS process," IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7943-7952, Nov. 2016.
[17]H. Nguyen-Van, D. Nguyen, T. Nguyen, M. Nguyen, and L. Pham-Nguyen, "A Li-ion battery charger with stable charging mode controller in noise environments," in Proc. 2015 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, 2015, pp. 270-274.
[18]K. Chung, S. Hong, and O. Kwon, "A fast and compact charger for an li-ion battery using successive built-in resistance detection," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 2, pp. 161-165, Feb. 2017.
[19]C. Wu et al., "Asymmetrical dead-time control driver for buck regulator," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 12, pp. 3543-3547, Dec. 2016.
[20]J. Chen, Y. Hwang, J. Chen, Y. Ku, and C. Yu, "A new fast-response current-mode buck converter with improved i2-controlled techniques," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 5, pp. 903-911, May 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔