跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/28 08:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:紀威丞
研究生(外文):Wei-Cheng Chi
論文名稱:雙窗口層工程對HIT太陽電池之影響
論文名稱(外文):Double window layers engineering on the performance of HIT solar cells
指導教授:江雨龍江雨龍引用關係
指導教授(外文):Yeu-Long Jiang
口試委員:劉漢文蕭錫鍊黃家華
口試委員(外文):Han-Wen LiuHsi-Lien HsiaoChia-Hua Huang
口試日期:2019-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:42
中文關鍵詞:窗口層p型氫化非晶矽p型微晶矽能隙導電率結晶率異質接面含本質層太陽電池電漿輔助化學氣相沉積
外文關鍵詞:P-a-Si:HP-uc-Si:HBandgapDark conductanceCrystalline fractionHIT solar cellPECVD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用脈波調變電漿輔助化學氣相沉積技術,製作不同能隙(Eg)、活化能(Ea)與暗電導(d)的p型氫化非晶矽(a-Si:H)與p型微晶矽(c-Si:H),單與雙窗口層,探討對HIT太陽電池效能的影響。p型a-Si:H與c-Si:H薄膜以調變B2H6流量及氫稀釋比製作,薄膜光學與電學特性以橢圓偏光儀及電流-電壓(IV)儀測量。HIT太陽電池的效能由IV及量子效率(QE)儀測量。
p-a-Si:H薄膜,隨著B2H6流量,降低薄膜能隙但電導率上升,薄膜緻密度下降。p-μc-Si:H薄膜,固定摻雜氣體比例增加氫稀釋比,薄膜的電導率上升,結晶率上升,降低摻雜氣體比例固定氫稀釋比,薄膜的電導率上升,結晶率上升,薄膜的緻密度下降。
使用p-a-Si:H製作單窗口層HIT太陽電池效率可達7.26%。使用p-c-Si:H製作單P層微晶矽太陽電池效率卻不到1%,p-c-Si:H與ITO接觸,薄膜與空氣中的氧氣接觸,受到氧汙染,使開路電壓與填充因子降低。製作雙P層HIT太陽電池,在p-μc-Si:H上沉積一層p-a-Si:H做匹覆,避免p-μc-Si:H受到氧汙染,並且p-μc-Si:H具有高電導率提高內建電場。雙P層HIT太陽電池固定P層總厚度,將微晶矽厚度提高,雖然p-μc-Si:H有較高的電導率,但薄膜緻密度差缺陷多,導致載子複合,效率下降。本論文最佳HIT太陽電池轉換效率為8.38%。
Single and double window layers of p-type hydrogenated amorphous silicon (a-Si:H) films and p-type microcrystalline silicon (c-Si) with different band gaps (Eg), activity energy (Ea) and dark conductivity (d) were fabricated by modulated plasma power, pressure, hydrogen dilution, and RB2H6 (B2H6(1% in H2)/SiH4) ratio by plasma-enhanced chemical vapor deposition. The influence of different p-type a-Si:H and μc-Si:H films on the performance of HIT solar cells were investigated. The optical and electrical properties of the films were measured by Spectroscopic ellipsometer, and IV system.
For the p-a-Si:H film, the increasing B2H6 flow rate reduces the bandgap and density but increases the dark conductance. For the p-μc-Si:H film, the fixing of doping gas ratio and the increasing the hydrogen dilution ratio increases the dark conductance and crystalline fraction. The fixing of hydrogen dilution ratio and the reducing doping gas increases the dark conductance and crystalline fraction, but reduces the density.
Using p-a-Si:H to produce a single p-layer amorphous silicon HIT, the efficiency can reach to 7.26%. However, using p-uc-Si:H to produce a single p-layer microcrystalline silicon HIT, the efficiency is less than 1%. P-c -Si:H film is in contact with oxygen in the air, causing oxygen contamination of the film, resulting in lower open circuit voltage and the fill factor.
For double-P layer HIT solar cell, depositing p-a-Si:H on p-μc-Si:H to avoid oxygen contamination of p-μc-Si:H, and p-μc-Si:H with high conductance increases the built-in potential. The double-P layer HIT solar cell fixes the total thickness of the P layer and increases the thickness of the p-μc-Si:H. Although p-μc-Si:H has a high dark conductivity, the film has high defect and lower density, which results in carrier recombination and reduced efficiency. The best HIT solar cell efficiency in this thesis is 8.38%
摘要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1前言 1
1.2 HIT太陽電池 2
1.3 研究動機與目的 3
1.4 論文架構 4
第二章 文獻探討 5
第三章 研究方法 8
3.1 實驗流程 9
3.1.1實驗設備 10
3.1.2基板清洗與拋光處理方式 11
3.1.3薄膜製備 12
3.1.4量測儀器 13
3.2 實驗參數設計 18
3.2.1 p型氫化非晶矽及p型微晶矽單層膜 18
3.2.2 本質氫化非晶矽薄膜 20
3.2.3 ITO透明導電薄膜 20
3.2.5單p層非晶HIT太陽電池 20
3.2.6單P層微晶之HIT太陽電池 21
3.2.7雙P層之HIT太陽電池 22
3.2.8固定總厚度,改變厚度配比雙P層HIT太陽電池 23
第四章 結果與討論 25
4.1 p型氫化非晶矽與微晶矽單層膜 25
4.1.1 p型氫化非晶矽之光學與電學特性分析 25
4.1.2 p型微晶矽之光學與電學特性分析 27
4.1.3i層氫化非晶矽薄膜光學特性分析 29
4.2 ITO透明導電薄膜 30
4.3單面結構之HIT太陽電池 31
4.3.1單P層非晶結構對HIT太陽電池之影響 31
4.3.2單P層微晶結構對HIT太陽電池之影響 33
4.3.3雙P層結構對HIT太陽電池之影響 35
4.3.4固定總厚度,改變厚度配比之雙P層HIT太陽電池 37
第五章 結論 39
第六章 未來工作 40
參考資料 41
[1] Kunta Yoshikawa, Hayato Kawasaki, Wataru Yoshida, Toru Irie, Katsunori Konishi, Kunihiro Nakano,
Toshihiko, Daisuke Adachi, Masanori Kanematsu, Hisashi Uzu and Kenji Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%”, Nature Energy volume2, 17032 (2017)
[2] Jan Benick, Armin Richter, Ralph Müller, Hubert Hauser, Frank Feldmann, Patricia Krenckel, Stephan Riepe, Florian Schindler, Martin C. Schubert, Martin Hermle, Andreas W. Bett, and Stefan W. Glunz, “High-Efficiency n-Type HP mc Silicon Solar Cells”, IEEE J Photovoltaics. 2017;7(5):1171‐1175.
[3] Ningyu Rena, Jun Zhua, Pengfei Shia, Qi Shana, Tiantian Lia, ChangChun Wei,Ying Zhao and Xiaodan Zhang,“Controlling performance of a-Si:H solar cell with SnO2:F front electrode by introducing dual p-layers with p-a-SiOx:H/p-nc-SiOx:H nanostructure” Solar Energy, Volume 171, 1 September (2018), Pages 907-913
[4] Takahiro Mishima, Mikio Taguchi, Hitoshi Sakata and Eiji Maruyama,“Development status of high-efficiency HIT solar cells”, Solar Energy Materials & Solar Cells 95(2011)18–21.
[5] Makoto Tanaka, Mikio Taguchi, Takao Matsuyama, Toru Sawada, Shinya Tsuda, Shoichi Nakano, Hiroshi Hanafusa1 and Yukinori Kuwano, “Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)”, J. Appl. Phys. 31(1992), p. 3518.
[6] Fengyou Wang, Rongchi Du, Qianshang Ren, Changchun Wei, Ying Zhao and Xiaodan Zhang, “Band alignment and enhancement of the interface properties for heterojunction solar cells by employing amorphous-nanocrystalline hierarchical emitter layers”, Journal of Materials Chemistry C, 5(2017), pp. 1751-1757. Journal of Materials Chemistry C, 5(2017), pp. 1751-1757


[7] Jinjoo Park , Vinh Ai Dao , Chonghoon Shin , Hyeongsik Park , Minbum Kim , Junhee Jung ,
Doyoung Kim and Junsin Yi, “A buffer-layer/a-SiOx:H(p) window-layer optimization for thin film amorphous silicon based solar cells”, Thin Solid Films, 546(2013),pp. 331-336
[8] Fengyou Wang a, Xiaodan Zhang , Liguo Wang , Jia Fang , Changchun Wei ,Xinliang Chen , Guangcai Wang a, Ying Zhao,“Boron doped nanocrystalline silicon/amorphous silicon hybrid emitter layers used to improve the performance of silicon heterojunction solar cells”, Solar Energy, 108(2014), pp. 308-314.
[9]江雨龍,太陽電池:第六章 氫化非晶矽薄膜太陽電池,五南圖書出版公司,(2008)pp.242-244
[10] Ni Jian, Chen Xin-Liang, Cao Li-Ran, Zhang Jian-Jun, Xue Jun-Ming, Sun Jian, Wang Xian-Bao, Han Dong-Gang, Zhang De-Kun, Zhao Ying, Geng Xin-Hua, “A study of p/ ITO interface properties in n-i-p type amorphous silicon solar cells”, Journal of Optoelectronics. Laser 21, 01(2010)
[11] A. Fontcuberta i Morral, P. Roca i Cabarrocas, and C. Clerc., “Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements”, PHYSICAL REVIEW B,69(2004), pp. 125307
[12] H. Curtins and S. Veprek, “Incorporation of oxygen into nanocrystalline silicon”, Solid State Communications, 57(1986), pp. 215-222.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top