|
[1]W. K. Allard, Total variation regularization for image denoising, I.Geometric theory, SIAM Journal on Mathematical Analysis, Vol.39, No.4, pp.1150–1190, 2007.
[2]A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms with a new one, Multiscale Modeling & Simulation, Vol.4, No.2, pp.490–530, 2005.
[3]X. Cai, R. Chan and T. Zeng, A two-stage images segmentation method using a convex variant of the Mumford-Shah model and thresholding, SIAM Journal on Imaging Science, Vol.6, No.1, pp.368–390, 2013.
[4]D. L. Donoho, De-noising by soft-thresholding, IEEE Transaction on information Theory, Vol.40, No.3, pp.613–627, 1995.
[5]P. Getreuer, Rudin-Osher-Fatemi Total Variation Denoising using Split Bregman, it Image Processing On Line, Vol.2, pp.74–95, 2012.
[6]G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling & Simulation, Vol.7, No.3, pp.1005–1028, 2008.
[7]T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM Journal on Imaging Sciences, Vol.2, No.2, pp.323–343, 2009.
[8]M. Hintermuller and A. Langer, Subspace correction methods for a class of non-smooth and non-additive convex variational problems with mixed L^1/L^2 data-fidelity in image processing, SIAM Journal on Imaging Sciences, Vol.6, No.4, pp.2134–2173, 2013.
[9]P.-W. Hsieh, P.-C. Shao and S.-Y. Yang, A regularization model with adaptive diffusivity for variational image denoising, Signal Processing, Vol.149, pp.214–228, 2018.
[10]T. Jia, Y. Shi, Y. Zhu and L. Wang, An image restoration model combining mixed L^1/L^2 fidelity terms, Journal of Visual Communication and Image Representation Vol.38, pp. 461–473, 2016.
[11]Y. Li and Z. Huang, Efficient schemes for joint isotropic and anisotropic total variation minimization for deblurring images corrupted by impulsive noise, Computers & Graphics, Vol.38, pp.108–116, 2014.
[12]G. Liu, T.-Z. Huang and J. Liu, High-order TVL1-based images restoration and spatially adapted regularization parameter selection, Computers and Mathematics with Applications, Vol.67, No.10, pp.2015–2026, 2014.
[13]Y. Lou, X. Zhang, S. Osher and A. Bertozzi, Image Recovery via Nonlocal Operators, Journal of Scientific Computing, Vol.42, No.2, pp.185–197, 2010.
[14]L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, Vol.60, No.1-4, pp.259–268, 1992.
[15]Y. Shi and Q. Chang, Efficient Algorithm for Isotropic and Anisotropic Total Variation Deblurring and Denoising, Journal of Applied Mathematics,Vol.2013, pp.1-4, 2013.
|