|
1.Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., SOLAR CELLS. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234-7. 2.Chen, L. C.; Tseng, Z. L.; Huang, J. K., A Study of Inverted-Type Perovskite Solar Cells with Various Composition Ratios of (FAPbI(3))1-x(MAPbBr(3))x. Nanomaterials (Basel) 2016, 6 (10). 3.Chen, L. C.; Wu, J. R.; Tseng, Z. L.; Chen, C. C.; Chang, S. H.; Huang, J. K.; Lee, K. L.; Cheng, H. M., Annealing Effect on (FAPbI(3))1-x(MAPbBr(3))x Perovskite Films in Inverted-Type Perovskite Solar Cells. Materials (Basel) 2016, 9 (9). 4.Domanski, K.; Roose, B.; Matsui, T.; Saliba, M.; Turren-Cruz, S.-H.; Correa-Baena, J.-P.; Carmona, C. R.; Richardson, G.; Foster, J. M.; De Angelis, F.; Ball, J. M.; Petrozza, A.; Mine, N.; Nazeeruddin, M. K.; Tress, W.; Grätzel, M.; Steiner, U.; Hagfeldt, A.; Abate, A., Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy & Environmental Science 2017, 10 (2), 604-613. 5.Duong, T.; Mulmudi, H. K.; Shen, H.; Wu, Y.; Barugkin, C.; Mayon, Y. O.; Nguyen, H. T.; Macdonald, D.; Peng, J.; Lockrey, M.; Li, W.; Cheng, Y.-B.; White, T. P.; Weber, K.; Catchpole, K., Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano Energy 2016, 30, 330-340. 6.Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517 (7535), 476-80. 7.Jesper Jacobsson, T.; Correa-Baena, J.-P.; Pazoki, M.; Saliba, M.; Schenk, K.; Grätzel, M.; Hagfeldt, A., Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy & Environmental Science 2016, 9 (5), 1706-1724. 8.Reyna, Y.; Salado, M.; Kazim, S.; Pérez-Tomas, A.; Ahmad, S.; Lira-Cantu, M., Performance and stability of mixed FAPbI 3(0.85) MAPbBr 3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation. Nano Energy 2016, 30, 570-579. 9.Sveinbjörnsson, K.; Aitola, K.; Zhang, J.; Johansson, M. B.; Zhang, X.; Correa-Baena, J.-P.; Hagfeldt, A.; Boschloo, G.; Johansson, E. M. J., Ambient air-processed mixed-ion perovskites for high-efficiency solar cells. Journal of Materials Chemistry A 2016, 4 (42), 16536-16545. 10.Zheng, X.; Wu, C.; Jha, S. K.; Li, Z.; Zhu, K.; Priya, S., Improved Phase Stability of Formamidinium Lead Triiodide Perovskite by Strain Relaxation. ACS Energy Letters 2016, 1 (5), 1014-1020. 11.Dar, M. I.; Arora, N.; Gao, P.; Ahmad, S.; Gratzel, M.; Nazeeruddin, M. K., Investigation regarding the role of chloride in organic-inorganic halide perovskites obtained from chloride containing precursors. Nano Lett 2014, 14 (12), 6991-6. 12.Edri, E.; Kirmayer, S.; Kulbak, M.; Hodes, G.; Cahen, D., Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells. J Phys Chem Lett 2014, 5 (3), 429-33. 13.Fang, Y.; Dong, Q.; Shao, Y.; Yuan, Y.; Huang, J., Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics 2015, 9 (10), 679-686. 14.Kim, Y. Y.; Park, E. Y.; Yang, T.-Y.; Noh, J. H.; Shin, T. J.; Jeon, N. J.; Seo, J., Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. Journal of Materials Chemistry A 2018, 6 (26), 12447-12454. 15.Niemann, R. G.; Kontos, A. G.; Palles, D.; Kamitsos, E. I.; Kaltzoglou, A.; Brivio, F.; Falaras, P.; Cameron, P. J., Halogen Effects on Ordering and Bonding of CH3NH3+ in CH3NH3PbX3 (X = Cl, Br, I) Hybrid Perovskites: A Vibrational Spectroscopic Study. The Journal of Physical Chemistry C 2016, 120 (5), 2509-2519. 16.Suarez, B.; Gonzalez-Pedro, V.; Ripolles, T. S.; Sanchez, R. S.; Otero, L.; Mora-Sero, I., Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. J Phys Chem Lett 2014, 5 (10), 1628-35. 17.Wei, M.; Chung, Y.-H.; Xiao, Y.; Chen, Z., Color tunable halide perovskite CH 3 NH 3 PbBr 3−x Cl x emission via annealing. Organic Electronics 2015, 26, 260-264. 18.Zhang, M.; Yu, H.; Lyu, M.; Wang, Q.; Yun, J. H.; Wang, L., Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr(3-x)Cl(x) films. Chem Commun (Camb) 2014, 50 (79), 11727-30. 19.Zhang, T.; Yang, M.; Benson, E. E.; Li, Z.; van de Lagemaat, J.; Luther, J. M.; Yan, Y.; Zhu, K.; Zhao, Y., A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br(1-x)Cl(x))3. Chem Commun (Camb) 2015, 51 (37), 7820-3. 20.Zhao, Y.; Zhu, K., Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. J Am Chem Soc 2014, 136 (35), 12241-4. 21.Bi, D.; Moon, S.-J.; Häggman, L.; Boschloo, G.; Yang, L.; Johansson, E. M. J.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A., Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances 2013, 3 (41). 22.Lewis, A. E.; Zhang, Y.; Gao, P.; Nazeeruddin, M. K., Unveiling the Concentration-Dependent Grain Growth of Perovskite Films from One- and Two-Step Deposition Methods: Implications for Photovoltaic Application. ACS Appl Mater Interfaces 2017, 9 (30), 25063-25066. 23.Li, M.; Xie, Y.-M.; Xu, X.; Huo, Y.; Tsang, S.-W.; Yang, Q.-D.; Cheng, Y., Comparison of processing windows and electronic properties between CH3NH3PbI3 perovskite fabricated by one-step and two-step solution processes. Organic Electronics 2018, 63, 159-165. 24.Park, N. G., Nonstoichiometric Adduct Approach for High-Efficiency Perovskite Solar Cells. Inorg Chem 2017, 56 (1), 3-10. 25.Sun, H.; Deng, K.; Zhu, Y.; Liao, M.; Xiong, J.; Li, Y.; Li, L., A Novel Conductive Mesoporous Layer with a Dynamic Two-Step Deposition Strategy Boosts Efficiency of Perovskite Solar Cells to 20. Adv Mater 2018, 30 (28), e1801935. 26.Wang, M.; Feng, Y.; Bian, J.; Liu, H.; Shi, Y., A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell. Chemical Physics Letters 2018, 692, 44-49. 27.Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nature Photonics 2014, 8 (7), 506-514. 28.Wang, Z.; Shi, Z.; Li, T.; Chen, Y.; Huang, W., Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion. Angew Chem Int Ed Engl 2017, 56 (5), 1190-1212. 29.Li, M.; Yan, X.; Kang, Z.; Liao, X.; Li, Y.; Zheng, X.; Lin, P.; Meng, J.; Zhang, Y., Enhanced Efficiency and Stability of Perovskite Solar Cells via Anti-Solvent Treatment in Two-Step Deposition Method. ACS Appl Mater Interfaces 2017, 9 (8), 7224-7231. 30.Bi, D.; El-Zohry, A. M.; Hagfeldt, A.; Boschloo, G., Unraveling the Effect of PbI2 Concentration on Charge Recombination Kinetics in Perovskite Solar Cells. ACS Photonics 2015, 2 (5), 589-594. 31.Du, T.; Burgess, C. H.; Kim, J.; Zhang, J.; Durrant, J. R.; McLachlan, M. A., Formation, location and beneficial role of PbI2 in lead halide perovskite solar cells. Sustainable Energy & Fuels 2017, 1 (1), 119-126. 32.Jia, X.; Hu, Z.; Xu, J.; Huang, L.; Zhang, J.; Zhang, J.; Zhu, Y., Improved perovskite morphology and crystallinity using porous PbI2 layers for efficient planar heterojunction solar cells. Applied Physics Letters 2017, 111 (24). 33.Liu, T.; Hu, Q.; Wu, J.; Chen, K.; Zhao, L.; Liu, F.; Wang, C.; Lu, H.; Jia, S.; Russell, T.; Zhu, R.; Gong, Q., Mesoporous PbI2 Scaffold for High-Performance Planar Heterojunction Perovskite Solar Cells. Advanced Energy Materials 2016, 6 (3). 34.Xiong, H.; DeLuca, G.; Rui, Y.; Li, Y.; Reichmanis, E.; Zhang, Q.; Wang, H., Solvent vapor annealing of oriented PbI2 films for improved crystallization of perovskite films in the air. Solar Energy Materials and Solar Cells 2017, 166, 167-175. 35.Zhang, Y.; Gao, P.; Oveisi, E.; Lee, Y.; Jeangros, Q.; Grancini, G.; Paek, S.; Feng, Y.; Nazeeruddin, M. K., PbI2-HMPA Complex Pretreatment for Highly Reproducible and Efficient CH3NH3PbI3 Perovskite Solar Cells. J Am Chem Soc 2016, 138 (43), 14380-14387. 36.Zhao, Y.; Xu, X.; Zhang, H.; Shi, J.; Zhu, L.; Wu, H.; Li, D.; Luo, Y.; Meng, Q., Sequential multi-drop coating method for large crystallized α-(NH 2 ) 2 CHPbI 3 and mixed-organic-cation perovskite films for highly efficient mesoscopic perovskite solar cells. Journal of Power Sources 2017, 359, 147-156. 37.Targhi, F. F.; Jalili, Y. S.; Kanjouri, F., MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical and optical properties. Results in Physics 2018, 10, 616-627. 38.刘敏, 3.7 水热法和溶剂热法. 中国科学技术大学材料系, 2017. 39.Hong, S.-P.; Park, J.; S. M. Bhat, S.; Lee, T. H.; Lee, S. A.; Hong, K.; Choi, M.-J.; Shokouhimehr, M.; Jang, H. W., Comprehensive Study on the Morphology Control of TiO2 Nanorods on Foreign Substrates by the Hydrothermal Method. Crystal Growth & Design 2018, 18 (11), 6504-6512. 40.Huang, H.; Pan, L.; Lim, C. K.; Gong, H.; Guo, J.; Tse, M. S.; Tan, O. K., Hydrothermal Growth of TiO2 Nanorod Arrays and In Situ Conversion to Nanotube Arrays for Highly Efficient Quantum Dot-Sensitized Solar Cells. 2013, 9 (18), 3153-3160. 41.Huang, Q.; Zhou, G.; Fang, L.; Hu, L.; Wang, Z.-S., TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells. Energy & Environmental Science 2011, 4 (6). 42.Im, J. H.; Luo, J.; Franckevicius, M.; Pellet, N.; Gao, P.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Gratzel, M.; Park, N. G., Nanowire perovskite solar cell. Nano Lett 2015, 15 (3), 2120-6. 43.Jiang, Q.; Sheng, X.; Li, Y.; Feng, X.; Xu, T., Rutile TiO2 nanowire-based perovskite solar cells. Chem Commun (Camb) 2014, 50 (94), 14720-3. 44.Kim, H. S.; Lee, J. W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.; Gratzel, M.; Park, N. G., High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 2013, 13 (6), 2412-7. 45.Li, J.-F.; Zhang, Z.-L.; Gao, H.-P.; Zhang, Y.; Mao, Y.-L., Effect of solvents on the growth of TiO2 nanorods and their perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (38), 19476-19482. 46.Li, X.; Dai, S. M.; Zhu, P.; Deng, L. L.; Xie, S. Y.; Cui, Q.; Chen, H.; Wang, N.; Lin, H., Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays. ACS Appl Mater Interfaces 2016, 8 (33), 21358-65. 47.Liu, B.; Aydil, E. S., Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2009, 131 (11), 3985-3990. 48.Liu, W.; Chu, L.; Hu, R.; Zhang, R.; Ma, Y.; Pu, Y.; Zhang, J.; Yang, J.; Li, X. a.; Huang, W., Diameter engineering on TiO 2 nanorod arrays for improved hole-conductor-free perovskite solar cells. Solar Energy 2018, 166, 42-49. 49.Mali, S. S.; Shim, C. S.; Kim, H.; Betty, C. A.; Patil, P. S.; Hong, C. K., Secondary Hydrothermally Processed Engineered Titanium Dioxide Nanostructures for Efficient Perovskite Solar Cells. Energy Technology 2017, 5 (10), 1775-1787. 50.Thakur, U. K.; Askar, A. M.; Kisslinger, R.; Wiltshire, B. D.; Kar, P.; Shankar, K., Halide perovskite solar cells using monocrystalline TiO2 nanorod arrays as electron transport layers: impact of nanorod morphology. Nanotechnology 2017, 28 (27), 274001. 51.Xiao, G.; Shi, C.; Li, L.; Zhang, Z.; Ma, C.; Lv, K., A 200-nm length TiO2 nanorod array with a diameter of 13 nm and areal density of 1100 µm−2 for efficient perovskite solar cells. Ceramics International 2017, 43 (15), 12534-12539. 52.Yu, F.; Han, G. S.; Tu, Y. J.; Roh, H.-S.; Lee, J.-K., Electron extraction mechanism in low hysteresis perovskite solar cells using single crystal TiO2 nanorods. Solar Energy 2018, 167, 251-257. 53.Yue, Q.; Duan, J.; Zhu, L.; Zhang, K.; Zhang, J.; Wang, H. J. J. o. M. S., Effect of HCl etching on TiO2 nanorod-based perovskite solar cells. 2018, 53 (21), 15257-15270. 54.Zhong, D.; Cai, B.; Wang, X.; Yang, Z.; Xing, Y.; Miao, S.; Zhang, W.-H.; Li, C., Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells. Nano Energy 2015, 11, 409-418. 55.https://is.gd/btKByV. 56.汪建民, 材料分析. 中國材料科學學會,1998, 130. 57.http://nanocenter.nchu.edu.tw/lab2/instrument.php. 58.http://research.nchu.edu.tw/unit-news-detail/id/63/unit/9/mid/83#EM.
|