跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/15 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高書辰
研究生(外文):Shu-Chen Kao
論文名稱:二氧化鈦奈米柱於二次法沉積鈣鈦礦太陽能電池之研究
論文名稱(外文):The sequential deposition of MAPbI3 on TiO2 nanorod-based perovskite solar cell
指導教授:王致喨蔡政穆
指導教授(外文):Chih-Liang WangCheng-Mu Tsai
口試委員:賴志煌
口試委員(外文):Chih-Huang Lai
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:63
中文關鍵詞:二氧化鈦奈米柱金紅石相水熱法二次沉積法
外文關鍵詞:TiO2 nanorodsrutilehydrothermal methodsequential deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
混合有機-無機鈣鈦礦為近年來最熱門的太陽能電池材料,本論文以金紅石相二氧化鈦奈米柱為主軸,利用水熱法成長柱狀二氧化鈦,並經由調變水熱法參數探討不同二氧化鈦微結構下對二次法製備鈣鈦礦的影響以及元件光電轉換之差異。
本論文架構主要分為兩個部分;第一個部分主要在探討調變水熱法的反應溫度、濃度以及時間,並利用熱場掃描式電子顯微鏡以及X光繞射儀進行二氧化鈦奈米柱微結構、表面形貌和晶向之分析,並系統化了解其受水熱法製程參數影響的關係。
第二個部分主要著重於透過水熱法製備出不同長度二氧化鈦奈米柱對二次法製備鈣鈦礦的影響;實驗中透過二次沉積法將甲基氨基碘化鉛(CH3NH3PbI3)製備於一系列不同長度奈米柱狀與傳統顆粒狀(非奈米柱)之二氧化鈦上,透過微結構、結晶性、光學分析等了解製備於其上之鈣鈦礦關係並探討其與轉換效率的差異。實驗結果顯示,使用奈米柱狀二氧化鈦有助於二次沉積法中碘化鉛的轉化,加上光電轉換過程中有利於載子的收集,太陽能電池元件於AM1.5G測試條件下,轉換效率可達13%。
Hybrid organic-inorganic perovskite is the most promising solar cell material in recent years. In this thesis, the rutile phase of titanium dioxide with the nanorod structure is synthesized by the hydrothermal method. The influences of the microstructure of titanium dioxide on sequential deposited perovskites and their conversion efficiency are systemically investigated.
This thesis can be basically divided into two parts. The first part of the thesis is mainly focused on the study of the reaction temperature, the reaction concentration and the reaction time during the hydrothermal synthesis. The scanning electron microscope (SEM) and X-ray diffractometer (XRD) were used to analyze the microstructure, surface morphology and crystalline structure of the as-synthesized titanium dioxide and understand the relationship between their properties and the hydrothermal processing parameters.
The second part of the thesis is mainly focused on the effect of nanorod titanium dioxide with different lengths on the sequential deposited perovskites. In the experiment, the methylammonium lead iodide (CH3NH3PbI3) was selected and prepared by the sequential deposition on a series of nanorod titanium dioxides with different lengths and commonly used mesoporous titanium dioxide. The analyses of the microstructure, the crystallinity, the optical property of as-prepared perovskites were performed to investigate the relationship between the sequential deposited perovskites and different titanium dioxides. Our experimental result shows that the perovskite solar cell using nanorod titanium dioxide can exhibit a conversion efficiency of 13% because of the better transition of lead iodide to perovskite and the improved carrier collection.
中文摘要 i
Abstract ii
圖目錄 v
表目錄 viii
第一章 緒論 1
1. 1前言 1
1. 2研究動機 2
第二章 文獻回顧 3
2.1 太陽能電池簡介 3
2.1.1太陽能電池發展及現況 3
2.2 鈣鈦礦太陽能電池 4
2.2.1 鈣鈦礦太陽能電池介紹 4
2.2.2 鈣鈦礦太陽能電池膜層結構 5
2.2.3太陽能電池工作原理 6
2.2.4 太陽能參數特性 7
2.2.5 鈣鈦礦影響參數 9
2.3二次法沉積鈣鈦礦 10
2.3.1 二次法沉積鈣鈦礦之成長機制 10
2.3.2 碘化鉛(PbI2)對鈣鈦礦之影響 11
2.3.3 甲基碘化銨(MAI)對鈣鈦礦之影響 11
2.4 水熱法 12
2.4.1水熱法成長機制 12
2.4.2均勻溶液飽和析出 12
2.4.3溶解-結晶 13
2.4.4原位結晶 13
2.4.5水熱法影響參數 14
2.4.6水熱法製備TiO2在太陽能電池上的優勢 16
第三章 實驗方法 18
3.1 實驗材料 18
3.2 實驗環境 19
3.3 鈣鈦礦材料溶液配製 20
3.3.1碘化鉛(PbI2)溶液配製 20
3.3.2 甲基碘化銨(MAI)溶液配製 20
3.3.3 四氯化鈦(TiCl4)溶液配製 20
3.3.4 二氧化鈦(TiO2)溶液配製 20
3.3.5 緻密層(Compact-TiO2)溶液配製 20
3.3.6 介孔層(Meso-TiO2)溶液配製 20
3. 3. 7電洞傳輸層(Spiro-MeOTAD)溶液配製 21
3.4 元件製作流程 22
3.5儀器分析與量測 29
3.5.1 熱場發射掃描式電子顯微鏡(Thermal FE-SEM) 29
3.5.2 高解析X光繞射儀(X-ray Diffractometer) 31
3.5.3 紫外光/可見光光譜儀(UV/VIS/NIR Spectrometers) 33
3.5.4 太陽光模擬器(Solar Simulator) 34
3.5.5原子力顯微鏡(Atomic force microscope, AFM) 36
第四章 結果與討論 37
4.1水熱法前驅溶液對TiO2層之影響 37
4.1.1 不同反應溫度 37
4.1.2 不同前驅溶液濃度 39
4.1.3 不同反應時間 41
4.1.4 不同TiO2之差異性 43
4.2 TiO2對鈣鈦礦之影響 45
4.2.1 TiO2 NR對鈣鈦礦之影響 45
4.2.2 TiO2 NR比較TiO2 NP對PbI2層之影響 48
4.2.3 DMF溶劑與DMSO溶劑對鈣鈦礦之影響 51
第五章 結論 57
第六章 參考文獻 58
1.Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., SOLAR CELLS. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234-7.
2.Chen, L. C.; Tseng, Z. L.; Huang, J. K., A Study of Inverted-Type Perovskite Solar Cells with Various Composition Ratios of (FAPbI(3))1-x(MAPbBr(3))x. Nanomaterials (Basel) 2016, 6 (10).
3.Chen, L. C.; Wu, J. R.; Tseng, Z. L.; Chen, C. C.; Chang, S. H.; Huang, J. K.; Lee, K. L.; Cheng, H. M., Annealing Effect on (FAPbI(3))1-x(MAPbBr(3))x Perovskite Films in Inverted-Type Perovskite Solar Cells. Materials (Basel) 2016, 9 (9).
4.Domanski, K.; Roose, B.; Matsui, T.; Saliba, M.; Turren-Cruz, S.-H.; Correa-Baena, J.-P.; Carmona, C. R.; Richardson, G.; Foster, J. M.; De Angelis, F.; Ball, J. M.; Petrozza, A.; Mine, N.; Nazeeruddin, M. K.; Tress, W.; Grätzel, M.; Steiner, U.; Hagfeldt, A.; Abate, A., Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy & Environmental Science 2017, 10 (2), 604-613.
5.Duong, T.; Mulmudi, H. K.; Shen, H.; Wu, Y.; Barugkin, C.; Mayon, Y. O.; Nguyen, H. T.; Macdonald, D.; Peng, J.; Lockrey, M.; Li, W.; Cheng, Y.-B.; White, T. P.; Weber, K.; Catchpole, K., Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano Energy 2016, 30, 330-340.
6.Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517 (7535), 476-80.
7.Jesper Jacobsson, T.; Correa-Baena, J.-P.; Pazoki, M.; Saliba, M.; Schenk, K.; Grätzel, M.; Hagfeldt, A., Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy & Environmental Science 2016, 9 (5), 1706-1724.
8.Reyna, Y.; Salado, M.; Kazim, S.; Pérez-Tomas, A.; Ahmad, S.; Lira-Cantu, M., Performance and stability of mixed FAPbI 3(0.85) MAPbBr 3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation. Nano Energy 2016, 30, 570-579.
9.Sveinbjörnsson, K.; Aitola, K.; Zhang, J.; Johansson, M. B.; Zhang, X.; Correa-Baena, J.-P.; Hagfeldt, A.; Boschloo, G.; Johansson, E. M. J., Ambient air-processed mixed-ion perovskites for high-efficiency solar cells. Journal of Materials Chemistry A 2016, 4 (42), 16536-16545.
10.Zheng, X.; Wu, C.; Jha, S. K.; Li, Z.; Zhu, K.; Priya, S., Improved Phase Stability of Formamidinium Lead Triiodide Perovskite by Strain Relaxation. ACS Energy Letters 2016, 1 (5), 1014-1020.
11.Dar, M. I.; Arora, N.; Gao, P.; Ahmad, S.; Gratzel, M.; Nazeeruddin, M. K., Investigation regarding the role of chloride in organic-inorganic halide perovskites obtained from chloride containing precursors. Nano Lett 2014, 14 (12), 6991-6.
12.Edri, E.; Kirmayer, S.; Kulbak, M.; Hodes, G.; Cahen, D., Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells. J Phys Chem Lett 2014, 5 (3), 429-33.
13.Fang, Y.; Dong, Q.; Shao, Y.; Yuan, Y.; Huang, J., Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics 2015, 9 (10), 679-686.
14.Kim, Y. Y.; Park, E. Y.; Yang, T.-Y.; Noh, J. H.; Shin, T. J.; Jeon, N. J.; Seo, J., Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. Journal of Materials Chemistry A 2018, 6 (26), 12447-12454.
15.Niemann, R. G.; Kontos, A. G.; Palles, D.; Kamitsos, E. I.; Kaltzoglou, A.; Brivio, F.; Falaras, P.; Cameron, P. J., Halogen Effects on Ordering and Bonding of CH3NH3+ in CH3NH3PbX3 (X = Cl, Br, I) Hybrid Perovskites: A Vibrational Spectroscopic Study. The Journal of Physical Chemistry C 2016, 120 (5), 2509-2519.
16.Suarez, B.; Gonzalez-Pedro, V.; Ripolles, T. S.; Sanchez, R. S.; Otero, L.; Mora-Sero, I., Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. J Phys Chem Lett 2014, 5 (10), 1628-35.
17.Wei, M.; Chung, Y.-H.; Xiao, Y.; Chen, Z., Color tunable halide perovskite CH 3 NH 3 PbBr 3−x Cl x emission via annealing. Organic Electronics 2015, 26, 260-264.
18.Zhang, M.; Yu, H.; Lyu, M.; Wang, Q.; Yun, J. H.; Wang, L., Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr(3-x)Cl(x) films. Chem Commun (Camb) 2014, 50 (79), 11727-30.
19.Zhang, T.; Yang, M.; Benson, E. E.; Li, Z.; van de Lagemaat, J.; Luther, J. M.; Yan, Y.; Zhu, K.; Zhao, Y., A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br(1-x)Cl(x))3. Chem Commun (Camb) 2015, 51 (37), 7820-3.
20.Zhao, Y.; Zhu, K., Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. J Am Chem Soc 2014, 136 (35), 12241-4.
21.Bi, D.; Moon, S.-J.; Häggman, L.; Boschloo, G.; Yang, L.; Johansson, E. M. J.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A., Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances 2013, 3 (41).
22.Lewis, A. E.; Zhang, Y.; Gao, P.; Nazeeruddin, M. K., Unveiling the Concentration-Dependent Grain Growth of Perovskite Films from One- and Two-Step Deposition Methods: Implications for Photovoltaic Application. ACS Appl Mater Interfaces 2017, 9 (30), 25063-25066.
23.Li, M.; Xie, Y.-M.; Xu, X.; Huo, Y.; Tsang, S.-W.; Yang, Q.-D.; Cheng, Y., Comparison of processing windows and electronic properties between CH3NH3PbI3 perovskite fabricated by one-step and two-step solution processes. Organic Electronics 2018, 63, 159-165.
24.Park, N. G., Nonstoichiometric Adduct Approach for High-Efficiency Perovskite Solar Cells. Inorg Chem 2017, 56 (1), 3-10.
25.Sun, H.; Deng, K.; Zhu, Y.; Liao, M.; Xiong, J.; Li, Y.; Li, L., A Novel Conductive Mesoporous Layer with a Dynamic Two-Step Deposition Strategy Boosts Efficiency of Perovskite Solar Cells to 20. Adv Mater 2018, 30 (28), e1801935.
26.Wang, M.; Feng, Y.; Bian, J.; Liu, H.; Shi, Y., A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell. Chemical Physics Letters 2018, 692, 44-49.
27.Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nature Photonics 2014, 8 (7), 506-514.
28.Wang, Z.; Shi, Z.; Li, T.; Chen, Y.; Huang, W., Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion. Angew Chem Int Ed Engl 2017, 56 (5), 1190-1212.
29.Li, M.; Yan, X.; Kang, Z.; Liao, X.; Li, Y.; Zheng, X.; Lin, P.; Meng, J.; Zhang, Y., Enhanced Efficiency and Stability of Perovskite Solar Cells via Anti-Solvent Treatment in Two-Step Deposition Method. ACS Appl Mater Interfaces 2017, 9 (8), 7224-7231.
30.Bi, D.; El-Zohry, A. M.; Hagfeldt, A.; Boschloo, G., Unraveling the Effect of PbI2 Concentration on Charge Recombination Kinetics in Perovskite Solar Cells. ACS Photonics 2015, 2 (5), 589-594.
31.Du, T.; Burgess, C. H.; Kim, J.; Zhang, J.; Durrant, J. R.; McLachlan, M. A., Formation, location and beneficial role of PbI2 in lead halide perovskite solar cells. Sustainable Energy & Fuels 2017, 1 (1), 119-126.
32.Jia, X.; Hu, Z.; Xu, J.; Huang, L.; Zhang, J.; Zhang, J.; Zhu, Y., Improved perovskite morphology and crystallinity using porous PbI2 layers for efficient planar heterojunction solar cells. Applied Physics Letters 2017, 111 (24).
33.Liu, T.; Hu, Q.; Wu, J.; Chen, K.; Zhao, L.; Liu, F.; Wang, C.; Lu, H.; Jia, S.; Russell, T.; Zhu, R.; Gong, Q., Mesoporous PbI2
Scaffold for High-Performance Planar Heterojunction Perovskite Solar Cells. Advanced Energy Materials 2016, 6 (3).
34.Xiong, H.; DeLuca, G.; Rui, Y.; Li, Y.; Reichmanis, E.; Zhang, Q.; Wang, H., Solvent vapor annealing of oriented PbI2 films for improved crystallization of perovskite films in the air. Solar Energy Materials and Solar Cells 2017, 166, 167-175.
35.Zhang, Y.; Gao, P.; Oveisi, E.; Lee, Y.; Jeangros, Q.; Grancini, G.; Paek, S.; Feng, Y.; Nazeeruddin, M. K., PbI2-HMPA Complex Pretreatment for Highly Reproducible and Efficient CH3NH3PbI3 Perovskite Solar Cells. J Am Chem Soc 2016, 138 (43), 14380-14387.
36.Zhao, Y.; Xu, X.; Zhang, H.; Shi, J.; Zhu, L.; Wu, H.; Li, D.; Luo, Y.; Meng, Q., Sequential multi-drop coating method for large crystallized α-(NH 2 ) 2 CHPbI 3 and mixed-organic-cation perovskite films for highly efficient mesoscopic perovskite solar cells. Journal of Power Sources 2017, 359, 147-156.
37.Targhi, F. F.; Jalili, Y. S.; Kanjouri, F., MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical and optical properties. Results in Physics 2018, 10, 616-627.
38.刘敏, 3.7 水热法和溶剂热法. 中国科学技术大学材料系, 2017.
39.Hong, S.-P.; Park, J.; S. M. Bhat, S.; Lee, T. H.; Lee, S. A.; Hong, K.; Choi, M.-J.; Shokouhimehr, M.; Jang, H. W., Comprehensive Study on the Morphology Control of TiO2 Nanorods on Foreign Substrates by the Hydrothermal Method. Crystal Growth & Design 2018, 18 (11), 6504-6512.
40.Huang, H.; Pan, L.; Lim, C. K.; Gong, H.; Guo, J.; Tse, M. S.; Tan, O. K., Hydrothermal Growth of TiO2 Nanorod Arrays and In Situ Conversion to Nanotube Arrays for Highly Efficient Quantum Dot-Sensitized Solar Cells. 2013, 9 (18), 3153-3160.
41.Huang, Q.; Zhou, G.; Fang, L.; Hu, L.; Wang, Z.-S., TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells. Energy & Environmental Science 2011, 4 (6).
42.Im, J. H.; Luo, J.; Franckevicius, M.; Pellet, N.; Gao, P.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Gratzel, M.; Park, N. G., Nanowire perovskite solar cell. Nano Lett 2015, 15 (3), 2120-6.
43.Jiang, Q.; Sheng, X.; Li, Y.; Feng, X.; Xu, T., Rutile TiO2 nanowire-based perovskite solar cells. Chem Commun (Camb) 2014, 50 (94), 14720-3.
44.Kim, H. S.; Lee, J. W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.; Gratzel, M.; Park, N. G., High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 2013, 13 (6), 2412-7.
45.Li, J.-F.; Zhang, Z.-L.; Gao, H.-P.; Zhang, Y.; Mao, Y.-L., Effect of solvents on the growth of TiO2 nanorods and their perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (38), 19476-19482.
46.Li, X.; Dai, S. M.; Zhu, P.; Deng, L. L.; Xie, S. Y.; Cui, Q.; Chen, H.; Wang, N.; Lin, H., Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays. ACS Appl Mater Interfaces 2016, 8 (33), 21358-65.
47.Liu, B.; Aydil, E. S., Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2009, 131 (11), 3985-3990.
48.Liu, W.; Chu, L.; Hu, R.; Zhang, R.; Ma, Y.; Pu, Y.; Zhang, J.; Yang, J.; Li, X. a.; Huang, W., Diameter engineering on TiO 2 nanorod arrays for improved hole-conductor-free perovskite solar cells. Solar Energy 2018, 166, 42-49.
49.Mali, S. S.; Shim, C. S.; Kim, H.; Betty, C. A.; Patil, P. S.; Hong, C. K., Secondary Hydrothermally Processed Engineered Titanium Dioxide Nanostructures for Efficient Perovskite Solar Cells. Energy Technology 2017, 5 (10), 1775-1787.
50.Thakur, U. K.; Askar, A. M.; Kisslinger, R.; Wiltshire, B. D.; Kar, P.; Shankar, K., Halide perovskite solar cells using monocrystalline TiO2 nanorod arrays as electron transport layers: impact of nanorod morphology. Nanotechnology 2017, 28 (27), 274001.
51.Xiao, G.; Shi, C.; Li, L.; Zhang, Z.; Ma, C.; Lv, K., A 200-nm length TiO2 nanorod array with a diameter of 13 nm and areal density of 1100 µm−2 for efficient perovskite solar cells. Ceramics International 2017, 43 (15), 12534-12539.
52.Yu, F.; Han, G. S.; Tu, Y. J.; Roh, H.-S.; Lee, J.-K., Electron extraction mechanism in low hysteresis perovskite solar cells using single crystal TiO2 nanorods. Solar Energy 2018, 167, 251-257.
53.Yue, Q.; Duan, J.; Zhu, L.; Zhang, K.; Zhang, J.; Wang, H. J. J. o. M. S., Effect of HCl etching on TiO2 nanorod-based perovskite solar cells. 2018, 53 (21), 15257-15270.
54.Zhong, D.; Cai, B.; Wang, X.; Yang, Z.; Xing, Y.; Miao, S.; Zhang, W.-H.; Li, C., Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells. Nano Energy 2015, 11, 409-418.
55.https://is.gd/btKByV.
56.汪建民, 材料分析. 中國材料科學學會,1998, 130.
57.http://nanocenter.nchu.edu.tw/lab2/instrument.php.
58.http://research.nchu.edu.tw/unit-news-detail/id/63/unit/9/mid/83#EM.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊