跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/23 11:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭瑾妮
研究生(外文):CHENG, CHIN-NI
論文名稱:結合實驗與模擬進行輪胎排泥特性之探討
論文名稱(外文):Discussion on the Characteristics of Tire Sludge Discharge by Combining Experiment and Simulation
指導教授:管衍德
指導教授(外文):KUAN, YEAN-DER
口試委員:宋旻峰林志宏
口試委員(外文):SUNG, MIN-FENGLIN, CHIN-HUNG
口試日期:2019-07-17
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:冷凍空調與能源系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:96
中文關鍵詞:計算流體力學輪胎排泥實車測試流變學
外文關鍵詞:Computational Fluid DynamicsTireSoil-RemovalReal Car TestRheology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的為開發與建立輪胎排泥的分析技術,並使用模擬數值分析與實車測試方法。應用於輪胎的胎紋設計時,進行輪胎排泥特性優劣的初步評估與改良參考依據。此技術是以計算流體力學(Computational Fluid Dynamics, CFD)分析為主,實驗為輔。研究中數值模擬的結果輸出值主要是輪胎的舉升力,實車測試的結果輸出值是使用牽引力及排泥量,並建立舉升力和牽引力及排泥量之間的關聯性,進行匹配性的探討,使用此方法進行有效的評估,用以做為輪胎排泥特性優劣的評估依據。
在CFD模擬中泥漿將設為非牛頓流體,進行流變學相關的分析與探討,及泥漿的粘度特性測試,並將數值輸入到CFD模擬時的流體特性。研究中發現使用CFD模擬分析出舉升力高表示排泥性差,以及實車測試的牽引力從靜止狀態到啟動時所拉出的峰值高表示排泥性佳,和實車測試的排土量顯示排出的土量越多效果較好,由此來判別排泥特性優劣。
論文研究主要分為兩部份,第一部份的研究是針對割草機的輪胎進行探討,從研究結果發現模擬中輪胎觸地的舉升力、實車測試的牽引力與實車測試的排土量之關聯,並進行花紋改良以提升輪胎排泥性。第二部份是針對沙灘車的輪胎進行研究,並應用割草機輪胎所開發出的分析技術進行探討,研究結果也確實顯示輪胎的排泥特性相符。因此研究成果將有助於輪胎開發時的時間與成本,並提升產品品質。
The main purpose of this study is to develop and establish a method in analyzing the tire sludge removal phenomenon by comparing the simulation and empirical practice results. The analysis can be used to improve the design of tires by evaluating its thread pattern performance. The simulation is based on (computational fluid dynamics, CFD) analysis, supplemented with experiments. The output of the simulation in the study mainly is the lift force of the tire. The result of the experiments is the traction force and the dirt discharge weight, from these result the correlation between the lift force, traction force, and mud discharge amount is investigated. This method is quite effective as a basis evaluation technique for analyzing the tire mud or dirt discharge performance.
In the CFD simulation, the mud will be set as a non-Newtonian fluid, the viscosity characteristics of the mud will be entered to the CFD fluid properties and its rheology will be analyzed and discussed. In this study, it was indicated that high lift force indicates poor mud discharge, and the high value of traction force of the vehicle from its static state to the moving state indicates a good mud discharge performance, the mud discharge amount of the simulation is further verified by the empirical results. For the mud itself the bigger the amount of the soil concentration in the mud must be kept balanced for the most realistic result.
The research result is divided into two parts, the first part of the study is discussing the performance of the lawn mower tires performance. From the research results, the relation of the lift force, traction force, and the mud discharge amount of the small sized vehicle is found. From the result the thread pattern improvement is suggested. The second part of the study is to evaluate the performance of ATV tires by using the same method as the lawn mower tires analysis. The results show that the mud discharge characteristic of the tires are consistent regardless the size. Therefore, the research results will reduce the time and cost of tire development to increase its qualities.
摘 要 i
ABSTRACT iii
致 謝 v
目 錄 viii
表 目 錄 x
圖 目 錄 xi
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
第二章 背景與文獻探討 3
第三章 實驗架設與測試方法 14
3.1實車測試方法架設 18
3.1.1使用車種及測試輪胎介紹 20
3.1.2實驗儀器設備介紹 22
第四章 數值模擬方法 26
4.1模擬軟體應用 27
4.2輪胎排泥之建模 28
4.3量測剪切黏度 32
4.3.1應用Power Law公式將數據進行回歸 35
4.4含水量 39
第五章 結果與討論 41
5.1割草機輪胎模擬之流場探討 41
5.2割草機輪胎網格獨立性 47
5.3割草機輪胎舉升力實驗量測結果 50
5.4割草機輪胎牽引力實驗量測結果 53
5.5割草機輪胎排土量實驗量測結果 57
5.6割草機輪胎改善方案結果預測 59
5.7割草機輪胎排土量實驗-改善後 62
5.8割草機輪胎牽引力實驗-改善後 65
5.9 沙灘車輪胎模擬之流場探討 68
5.10沙灘車輪胎網格獨立性 74
5.11沙灘車輪胎舉升力實驗量測結果 77
5.12沙灘車輪胎牽引力實驗量測結果 80
5.13沙灘車輪胎排土量實驗量測結果 84
5.14沙灘車輪胎改善方案結果預測 86
第六章 結論與未來展望 90
參考文獻 92
[1]張德明,“汽車輪胎花紋的組成和功用”,科技風,7卷,2015,頁109。
[2]A. Weyssenhoff, M. Opala, S. Koziak, R. Melnik , “Characteristics and investigation of selected manufacturing defects of passenger car tires, ” Transportation Research Procedia, Vol.40,2019,pp.119–126.
[3]V. Ivanov , B. Shyrokau , K. Augsburg , V. Algin , “Fuzzy evaluation of tyre–surface interaction parameters,” Journal of Terramechanics, Vol.47,2010,pp.113-130.
[4]M. I. Lyasko , “How to calculate the effect of soil conditions on tractive performance,” Journal of Terramechanics, Vol.47,2010,pp.423-445.
[5]M. Behroozi, O.A. Olatunbosun, W. Ding , “Finite element analysis of aircraft tyre Effect of model complexity on tyre performance characteristics,”Materials and Design, Vol.35, 2012, pp.810-819.
[6]O. G. Cueto, C. E. Iglesias Coronel , C. A. Recarey Morfa , G. Urriolagoitia Sosa , L. H. Hernández Gómez , G. Urriolagoitia Calderón , M. Herrera Suárez , “Three dimensional finite element model of soil compaction caused by agricultural tire traffic,” Computers and Electronics in Agriculture Vol.99,2013, pp. 146–152.
[7]M. Reiter, J. Wagner , “Automated Automotive Tire Inflation System – Effect of Tire Pressure on Vehicle Handling,” 6th IFAC Symposium Advances in Automotive Control , Vol.43, 2010, pp. 638-643.
[8]A.K. Bhoopalam, C. Sandu , “Review of the state of the art in experimental studies and mathematical modeling of tire performance on ice,” Journal of Terramechanics Vol.53,2014, pp. 19–35.
[9]A. K. Bhoopalam, C. Sandu, S. Taheri , “A tire–ice model (TIM) for traction estimation,” Journal of Terramechanics, Vol.66 ,2016 , pp. 1–12.
[10]M. Matilainen, A. Tuononen , “Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer,” Mechanical Systems and Signal Processing, Vol.52-53, 2015, pp.548-558.
[11]X. X. Guo, C. Zhang, B. X. Cui, D. Wang, J. Tsai ,“Analysis of Impact of Transverse Slope on Hydroplaning Risk Level,” Procedia- Social and Behavioral Sciences, Vol.96, 2013, pp.2310-2319.
[12]田波,牛開民,“水泥混凝土路面輪胎噪音與降噪途徑的研究”,公路交通科技,25卷,9期,9月,2008,頁172-176。
[13]危銀濤,馮希金,鄭小剛,馮啟章,王昊,陳亞龍,“乘用車子午線輪胎泵浦噪聲機理的實驗-數值混合分析方法” ,振動與沖擊, 34卷,11,期,2015,頁166-172。
[14]T. Fujikawa , H. Koike , Y. Oshino , H. Tachibana , “Definition of road roughness parameters for tire vibration noise control,” Applied Acoustics, Vol.66 ,2015, pp.501–512.
[15]K. Xia “Finite element modeling of tire/terrain interaction: Application to predicting soil compaction and tire mobility,” Journal of Terramechanics, Vol.48, 2011, pp.113–123.
[16]O. G. Cueto , C. E. Iglesias Coronel, C. A. Recarey Morfa , G. U. Sosa , L. H. Hernandez Gomez , G. U. Calderon , M. H. Suarez ,“ Three dimensional finite element model of soil compaction caused by agricultural tire traffic ,” Computers and Electronics in Agriculture Vol.99 ,2013, pp.146–152.
[17]F. Liu, M.P.F. Sutcliffe , W.R. Graham , “ Prediction of tread block forces for a free- rolling tyre in contact with a Smooth road ,” Wear Vol.269,2010, pp.672-683.
[18]P. Schjønning , M. Stettler , T. Keller , P. Lassen , M. Lamandé , “Predicted tyre–soil interface area and vertical stress distribution based on loading characteristics,” Soil & Tillage Research 152 ,2015, pp. 52–66.
[19]Z. El-Sayegh , M. El-Gindy , I. Johansson, F. Öijer,“Improved tire-soil interaction model using FEA-SPH simulation,” Journal of Terramechanics Vol.78 ,2018, pp.53–62.
[20]K. Cui, P. De´fossez, G. Richard, “A new approach for modelling vertical stress distribution at the soil/tyre interface to predict the compaction of cultivated soils by using the PLAXIS code,”Soil &Tillage Research, Vol.95, 2007, pp.277–287.
[21]M. Lamande, P. Schjønning,“The ability of agricultural tyres to distribute the wheel load at the soil–tyre interface,” Journal of Terramechanics, Vol.45, 2008, pp.109-120.
[22]L. A.P. Barbosa, P. S.G. Magalhaes, “Tire tread pattern design trigger on the stress distribution over rigid surfaces and soil compaction,” Journal of Terramechanics, Vol.58, 2015, pp.27–38.
[23]P. A. Misiewicz, T. E. Richards, K. Blackburn, R. J. Godwin, “Comparison of methods for estimating the carcass stiffness of agricultural tyres on hard surfaces,” Biosystems engineering, Vol.147, 2016,pp.183-192.
[24]S. D. Naranjo, C. Sandu, S. Taheri, S. Taheri, “Experimental testing of an off-road instrumented tire on soft soil,” Journal of Terramechanics, Vol.56, 2014, pp.119-137.
[25]A. A. Aksenov, A. V. Gudzovsky , “The software FlowVision for study of air flows, heat and mass transfer by numericalmodelling methods,” Third Forum of Association of Engineers for Heating, Ventilation, Air-Conditioning, Heat Supply and Building Thermal Physics, Vol.31-35, 1993, pp.22-25.
[26]A. A. Aksenov, S. A. Kharchenko, V. N. Konshin, V. I. Pokhilko, “Flow Vision software : Numerical simulation of industrial CFD applications on parallel computer systems”, Parallel Computational Fluid Dynamics 2003, Pages 401–408, 2004.
[27]A. A. Aksenov, A. V. Gudzovsky, “The software FlowVision for study of air flows, heat and mass transfer by numericalmodelling methods,” Third Forum of Association of Engineers for Heating,Ventilation, Air-Conditioning, Heat Supply and Building Thermal Physics, Vol.31-35, 1993, pp.22-25.
[28]A. A. Aksenov, A. A. Dyadkin, A. V. Gudzovsky, ”Numerical Simulation of Car Tire Aquaplaning,”Computational Fluid Dynamics, 1996, pp. 815-820.
[29]CAPVIDIA FlowVision HPC version 3.09.04, 2016 user manual.
[30]張學禮,胡振琪,初士立,“土壤含水量測定方法研究進展”,土壤通報,36卷,1期,2月,2005,頁118-123。
電子全文 電子全文(網際網路公開日期:20240826)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top