1.李宏杰 (2018)。運用文字探勘分析市場消息中關鍵詞彙與臺灣股市之關聯性-以科技股, 食品股為例。臺灣大學國際企業學研究所學位論文。
2.許溪南(2011)。台灣股票市長成分波動性之分解、趨勢與影響因素。中華管理評論國際學報第14卷第2期,頁1-頁27。
3.黃于甄(2012)。運用 TAR 模型檢測隨機漫步理論:以台灣股票市場為例。朝陽科技大學保險金融管理系學位論文。
4.黃雅鈴、洪藯珉、黃嘉敏、陳昕(2015)。文字探勘應用於選舉民意調查之研究。國立勤益科技大學。資訊管理系專題報告
5.黃筑均(2017)。使用文字探勘結合多元有順序類別支持向量機預測股價漲跌趨勢之應用。淡江大學統計學系碩士班學位論文。6.蘇珍琦(2013)。應用情感分析技術於臺灣股票加權指數預測之研究。元智大學資訊管理學系碩士論文7.Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert Systems with Applications, 42(20), 7046-7056.
8.Fung, G. P. C., Yu, J. X., & Lam, W. (2002, May). News sensitive stock trend prediction. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 481-493). Springer, Berlin, Heidelberg.
9.Huang J.Y. . Web mining for the mayoral election prediction in Taiwan, Aslib Journal of Information Management. Vol.69, No.6, pp.688-701, 2017.
10.Huang J.Y. , Liu J.H. . Using Social Media Mining Technology to Improve Stock Price Forecast Accuracy. Journal of Forecasting, accepted, 2019.
11.Katz, M. L., & Shapiro, C. (1985). Network externalities, competition, and compatibility. American economic review, 75(3), 424-440.
12.Kietzmann, J. H., Hermkens, K., McCarthy, I. P., & Silvestre, B. S. (2011). Social media? Get serious! Understanding the functional building blocks of social media. Business horizons, 54(3), 241-251.
13.Li, Z., & Tam, V. (2017, November). A comparative study of a recurrent neural network and support vector machine for predicting price movements of stocks of different volatilites.
14.Mittermayer, M. A. (2004, January). Forecasting intraday stock price trends with text mining techniques. In system sciences, 2004. Proceedings of the 37th annual Hawaii international conference on.
15.Micu, A., Mast, L., Milea, V., Frasincar, F., & Kaymak, U. (2009). Financial news analysis using a semantic web approach. In Semantic knowledge management: an ontology-based framework (pp. 311-328). IGI Global.
16.Pagolu, V. S., Reddy, K. N., Panda, G., & Majhi, B. (2016, October). Sentiment analysis of twitter data for predicting stock market movements. In 2016 international conference on signal processing, communication, power and embedded system (SCOPES) (pp. 1345-1350). IEEE.
17.Sullivan, D. (2001). Document warehousing and text mining: techniques for improving business operations, marketing, and sales. John Wiley & Sons, Inc.
18.Turney, P. D. (2002). Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In Proceedings of the 40th annual meeting on association for computational linguistics (417-424). Association for Computational Linguistics.
19.Wuthrich, B., Cho, V., Leung, S., Permunetilleke, D., Sankaran, K., & Zhang, J. (1998, October). Daily stock market forecast from textual web data. In SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218) (Vol. 3, pp. 2720-2725). IEEE.
20.Xu, W., Li, T., Jiang, B., & Cheng, C. (2012). Web Mining For Financial Market Prediction Based On Online Sentiments. In PACIS (p. 43).
21.Yu, H., Chen, R., & Zhang, G. (2014). A SVM stock selection model within PCA. Procedia computer science, 31, 406-412.
22.Zhuang, L., Jing, F., & Zhu, X. Y. (2006, November). Movie review mining and summarization. In Proceedings of the 15th ACM international conference on Information and knowledge management (pp. 43-50). ACM.
23.機器學習的世界(2017)。https://kknews.cc/zh-tw/health/68vrb6p.html (March 03, 2019)。
24.David (2015). https://www.largitdata.com/course/15/ (Jan 15, 2019)
25.IeVirve. (2018). https://github.com/leVirve/CrawlerTutorial (Jan 15, 2019)
26.jwlin. (2018). https://github.com/jwlin/ptt-web-crawler (Jan 15, 2019)
27.Mr. Opengate. (2015). https://mropengate.blogspot.com/2015/03/support-vector-machines-svm.html(March 03, 2019)
28.O’Reilly, T. . (2005). https://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html(March 03, 2019)
29.skydome20 (2017). https://rpubs.com/skydome20/R-Note14-SVM-SVR