Amini, F. and Qi, G.Z., “Liquefaction testing of stratified silty sands, Journal of Geotechnical and Geoenviromental Engineering, ASCE, Vol. 126, No. 3, pp.208-217, 2000.
Blake, T. F., Personal communication from Youd, T. L., 1996.
Casagrande, A. “Characteristics of cohesionless soils affecting the stability of slopes and earth fills, Journal of the Boston Society of Civil Engineering, reprinted in Contribution to Soil Mechanics, Boston Society of Civil Engineers, 1940, pp.257-276, 1936.
Chang, N.Y., Yeh, S.T. and Kaufman, L. P., “Liquefaction potential of clean and silty sands, Proceedings of the Third International Earthquake Microzonation Conference, Vol. 2, pp.1017-1032, 1982.
Chang, N. Y., “Influence of fines content and plasticity on earthquake-induced soil liquefaction, Contract report to US Army Engineer Waterways Experiment Station, Vicksburg, MS, Contract No. DACW3988-C-0078, 1990.
Chen, Chun-Chi, Lee, Wei F., Chen, Jing-Wen and Ishihara Kenji, “Liquefaction potential of non-plastic silty sand, Journal of Marine Science and Technology, Vol.22, No.2, pp.137-145, 2014.
Chien, L. K., Oh, Y. N. and Chang, C. H., Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil, Canadian Geotechnical Journal, Vol. 39, pp.254-265, 2002.
Chung, K. Y. C. and Wong, I. H., “Liquefaction potential of soils with plastic fines, Soil Dynamics and Earthquake Engineering Conference, Southampton, pp.887-897, 1982.
Committee on Soil Dynamics of the Geotechnical Engineering Division, “Definition of terms related to liquefaction, Journal of Geotechnical Engineering, Vol. 104, GT9, pp.1197-1200, 1978.
Cubrinovski, M. and Ishihara, K., “Maximum and minimum void ratio characteristics of sands, Soils and Foundations, Vol. 42, No. 6, pp.65-78, 2002.
Cubrinovski, M., Rees, S. and Bowman, E., “Effects of non-plastic fines on liquefaction resistance of sandy soils, In M. Garevski and A. Ansal (Eds.), Earthquake Engineering in Europe. Geotechnical, Geological and Earthquake Engineering 1, pp.125-144, 2010.
Davis, R. O. and Berrill, J. B., “Energy dissipation and seismic liquefaction in sands, Earthquake Engineering and Structure Dynamics, Vol. 10, pp.59-68, 1982.
Dezfulian, H., “Effects of silt content on dynamic properties of sandy soils, Proc., 8th World Conf. on Earthquake Engrg., pp.63-70, 1982.
Dobry, R., Ladd, R.S., Yokel, F.Y., Chung, R.M. and Powell, D., “Prediction of pore water pressure buildup and liquefaction of sands during earthquake by the cyclic strain method, NBS Building Science Seriess138, US Department of Commerce, pp.152, 1982.
Finn, W. D. L., Ledbetter, R. H. and Wu, G., “Liquefaction in silty soils: Design and analysis, Ground failures under seismic conditions, Geotech. Spec. Publ. No. 44, ASCE, New York, pp.51-76, 1994.
Glaser, S., “Estimating in situ liquefaction potential and permanent ground displacements due to liquefaction for the siting of lifeline, National Institute of Standards and Technology, NISTIR5150, 1993.
Guo, T. and Prakash, S., “Liquefaction of silts and silt-clay mixtures, Journal of the Geotechnical Engineering, Vol. 125, No. 8, pp.706-710, 1999.
Guo, T. and Prakash, S., “Liquefaction silt-clay mixtures, Proc. 11 World Conf. On Earthquake Engg Auckland NZ, CD Rom, 2000.
Gutenberg, B. and Richter, C.F., “Magnitude and energy of earthquakes, Ann. Geofis., Vol. 9, pp.1-15, 1956.
Hanzawa, H., “Undrained strength and stability analysis for a quick sand, Soils and Foundations, Tokyo, Vol. 20, No. 2, pp.17-29, 1980.
Hazen, A., “Hydraulic fill dams, ASCE, Vol. 83, pp.1713-1745, 1920.
Hwang, J. H. and Yang, C. W., “Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data, Soil Dynamics and Earthquake Engineering, Vol. 21, pp. 237-257, 2001.
Ishibashi, I., Sherlif, M. A. and Cheng, W. L., “The effects of soil parameters on pore pressure rise and liquefaction prediction, Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp.37-48, 1982.
Ishihara, K., Sodekawa, M. and Tanaka, Y., “Effect of over consolidation on liquefaction characteristic of sand containing fine, Dynamic Geotechnical Test, American Society for Testing and Materials, pp.246-264, 1978.
Ishihara, K., Trancoso, J., Kawase, Y. and Takahashi, Y., “Cyclic strength characteristics of tailings materials, Soils and Foundations, Vol. 20, No.4, pp.127-142, 1980.
Ishihara, K., “Stability of natural deposits during earthquakes, Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp.321-376, 1985.
Ishihara, K. and Yoshimine, M., “Evaluation of settlement in sand deposits following shear loading, Soils and Foundations, Vol. 32, No. 1, pp.173-188, 1992.
Ishihara, K., “Liquefaction and flow failure during earthquakes, Geotechnique, Vol.43, No.3, pp. 351-415, 1993.
Ishihara, K., Araki, K. and Bradley, B., “Liquefaction in Tokyo Bay area in the 2011 Great East Japan Earthquake, International Conference on Earthquake Geotechnical Engineering from Case History to Practice, Aswan, Egypt, 2012.
Ishihara, K., Harada, K., Lee, W. F., Chan, C. C. and A. M. M., Safiullah, “Post-liquefaction settlement analyses based on the volume change characteristics of undisturbed and reconstituted samples, Soils and Foundations, Vol. 56, No. 3, pp.533-546, 2016.
Iwasaki, T. and Tatsuoka, F., “Effects of grain size and grading on dynamic shear moduli of sands, Soils and Foundations, JSSMFE, Vol. 17, No. 3, pp.19-35, 1977.
Iwasaki, T., Tatsuoka, F. and Yasuda, S., “A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan, Proceedings, Second International Conference Microzonation Safer Construction Research Application, Vol.2, pp.885- 896, 1978.
Iwasaki, T., Arakawa, T. and Tokida, K., “Simplified procedures for assessing soil liquefaction during earthquakes, Soil Dynamics and Earthquake Engineering Conference, Southampton, pp. 925-939, 1982.
Iwasaki, T., “Soil liquefaction study in Japan: state-of-the-art, Soil Dynamics and Earthquake Engineering, Vol. 5, No. 1, 1986.
Karmer, S. L., Geotechnical Earthquakes Engineering, Prentice-Hall International Series in Civil Engineering and Engineering Mechanics, New Jersey, 1996.
Kishida, H., “Characteristics of liquefied sands during Mino-owari, Tohnankai and Kikui earthquake, Soils and Foundations, JSMFE, Vol. 9, No. 1, 1969.
Koester, J. P., “The influence of fine type and content on cyclic resistance, Ground failures under seismic conditions, Geotech. Spec. Publ. No. 44, ASCE, New York, pp.17-33, 1994.
Kuerbis, R., Negussey, D. and Vaid, Y. P., “Effect of gradation and fines content on the undrained response of sand, Hydraulic fill structures, Geotech. Spec. Publ. No. 21, D. J. A. Van Zy1 and S. G. Vick, eds., ASCE, New York, pp.330-345, 1988.
Lade, P. V. and Yamamuro, J. A., “Effects of nonplastic fines on static liquefaction of sands, Can. Geotech. J., Ottawa, Vol. 34, No. 6, pp.918-928, 1997.
Lade, P. V., Liggio, C. and Yamamuro, J. A., “The effect of fines on the maximum and minimum void ratio of sand, Geotech. Testing J., ASTM, Vol. 21, No. 4, pp.336-347, 1998.
Law, K. T. and Ling, Y. H., “Liquefaction of granular soils with noncohesive and cohesive fines, Proc., 10th World Conf. on Earthquake Engrg., pp.1491-1496, 1992.
Lee, K. L. and Fitton, J. A., “Faction affecting the cyclic loading strength of soil. Vibration Effects of Earthquake on Soils the Foundations, ASTM, STP 450, pp.71-96, 1969.
Lee, K. and Albraisa, A., “Earthquake-induced settlements in saturated sands, Journal of Geotechnical Engineering Division, ASCE, Vol.100, GT4, pp.387-405, 1974.
Lee, W. F., Chu, B. L., Lin, C. C. and Chen, C. H., “Liquefaction induced ground failures at WuFeng caused by strong ground motion during 1999 Chi-Chi earthquake, Earthquake Geotechnical Case Histories for Performance-Based Design, pp.388-412, 2009.
Lee, W. F., Chen, C. C., Chang, M. H. and Ge, L. Y. N., “A case study on silty sand liquefaction—2010 Hsin Hwa liquefaction in Taiwan. In Perspectives on Earthquake Geotechnical Engineering, Springer International Publishing, Vol. 37, pp. 391-414, 2015.
Liang, R. W., Bai, X. H. and Wang, J. C., “Effect of clay particle content on liquefaction of soil, Proceedings, 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 2000.
Liao, S. C. and Whitman, R. V., “Overburden correction factors for SPT in sand, Journal of Geotechnical Engineering, ASCE, Vol. 112, No. GT3, pp.373 -377, 1986.
Mulilis, J. P., Chan, C. K. and Seed, H. B., “The effects of method of sample preparation on the cyclic stress strain behavior of sands, EERC Report 75-18, 1975.
Nagase, H. and Ishihara, K., “Liquefaction-induced compaction and settlement of sand during earthquakes, Soils and Foundations, Vol. 28, No. 1, pp.65-76, 1988.
Nemat-Nasser, S. and Shokooh, A., “A unified approach densification and liquefaction of cohesionless sand in cyclic shearing, Canadian Geotech. J. 16, pp.659-678, 1979.
Papadopoulou A. and Tika T., “The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands, Soils and Foundations, Vol. 48, No. 5, pp.713-725, 2008.
Peacock, W. H. and Seed, H. B., “Sand liquefaction under cyclic loading simple shear conditions, Journal of Soil Mechanics and Foundations Division, ASCE, Vol.94, No. SM3, May, pp.689-708, 1968.
Pitman, T. D., Robertson, P. K. and Sego, D. C., “Influence of fines on the collapse of loose sands, Can. Geotech. J., Vol. 31, pp.728-739, 1994.
Polito, C.P. and Martin, J.R., “Effects of nonplastic fines on the liquefaction resistance of sands, Journal of the Geotechnical Engineering, Vol. 127, No. 5, pp.408-415, 2001.
Robertson, P. K. and Wride, C. E., “Cyclic liquefaction and its evaluation based on the SPT and CPT, Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Edited by T. L. Youd and I. M. ldriss, NCEER-97-0022, pp.41-88, 1997.
Ross, G.A., Seed, H.B. and Migliaccio, R. R., Bridge foundation behavior in Alaska earthquake, Journal of The Soil Mechanics and Foundation Division, ASCE, Vol. 95, No. SM4, pp.1007-1036, 1969.
Seed, H. B. and Lee, K. L., “Liquefaction of saturated sands during cyclic loading, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp.105-134, 1966.
Seed, H. B. and Idriss, I. M., “Simplified procedure for evaluating soil liquefaction potential, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No.SM9, pp.1249-1273, 1971.
Seed, H. B., “Evaluation of soil liquefaction effects on level ground during earthquakes, Liquefaction Problems in Geotechnical Engineering, pp.1-104, 1976.
Seed, H. B. and Idriss, I. M., “Analysis of soil liquefaction: Niigata earthquake, Journal of the Soil Mechanics and Foundations Division. ASCE, Vol.93, No.SM3, Proc. Paper 4233, May, 1976.
Seed, H. B., “Soil liquefaction and cyclic mobility evaluation for level ground during earthquake, Journal of the Geotechnical Engineering Division, ASCE, Vol.105, No.GT2, pp.201-255, 1979.
Seed, H. B. and Idriss, I. M.,“Ground motion and soil liquefaction during earthquakes, Earthquake Engineering Research Institute Monograph, 1982.
Seed, H. B., Tokimatsu, K., Harder, L. F. and Chung, R. M., “Influence of SPT procedures in soil liquefaction resistance evaluations, Journal of Geotechnical Engineering, 4SCE, Vol.111, No.12, pp.1425-1445, 1985.
Seed, H. B. and De Alba, P., “Use of SPT and CPT tests for evaluating the liquefaction resistance of sands, Proceedings of the ASCE Specialty Conference In-Situ’86: Use of In-Situ Tests in Geotechnical Engineering, Blacksburg, pp.281-302, 1986.
Seed, H.B. and Harder, L.F., “SPT-Based analysis of cyclic pore pressure generation and undrained residual strength, Proceedings, H. Bolton Seed Memorial Symposium, University of California, Berkeley, California, Vol. 2, pp.351-376, 1990.
Seed, H. B. and Lee, K. L., “Liquefaction of saturated sands during cyclic loading, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM6, pp.105-134, 1996.
Shen, C. K., Vrymoed, J. L. and Uyeno, C. K., “The effect of fines on liquefaction of sands, Proceeding of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Vol. 2, pp.381-385, 1977.
Sherif, M. A., Ishibashi, I. and Tsuchiga, C., “Saturated effects on initial soil liquefaction, Journal of the Geotechnical Engineering Division, Vol.103, No. 8, pp.914-917, 1977.
Silver, M. L. and Seed, H. B., “Volume changes in sands during cyclic loading, Proc. ASCE, Vol. 97, SM9, pp.1171-1192, 1971.
Sight, S., “Liquefaction characteristics of silts, Geotechnical and Geological Engineering, Vol.14, pp.1-19, 1996.
Sladen, J. A., D’Hollander, R. D. and Krahn, J., “ Back analysis of the Nerlerk berm liquefaction slides, Can. Geotech. J., Ottawa, Vol. 22, No. 4, pp.579-588, 1985.
Tatsuoka, F., T. Sasaki and S. Yamada, “Settlement in saturated sand induced by cyclic undrained simple shear, Eighth World Conference on Earthquake Engineering, Vol. 3, pp.95-102, 1984.
Terzaghi, K., “Erdbaumechnic auf bodenphysikalisher groundage, Franz Deuticke, Vienna, 1925.
Terzhagi, K., “Varieties of submarine slope failures, Proc., 8th Texas Conf. on Soil Mech. And Found. Engrg., University of Texas at Austin Bureau of Engineering Special Research Publication No. 29, pp.41, 1956.
Thevanayagam, S., “Effects of fines and confining stress on undrained shear strength of silty sands, J. Geotech. And Geoenvironmental Engrg., ASCE, Vol. 124, No. 6, pp.479-491, 1998.
Tokimatsu, K. and Yoshimi, Y., “Empirical correlation of soil liquefaction based on SPT N-value and fines content, Soils and Foundations, JSSMFE, Vol. 23, No. 4, pp.56-74, 1983.
Tokimatsu, K. and Seed, H. B., “Evaluation of settlement in sands due to earthquake shaking, Journal of Geotechnical Engineering Division, ASCE, Vol. 113, GT8, pp.861-878,1987.
Troncoso, J. H. and Verdugo, R., “Silt content and dynamic behavior of tailing sands, Proc., 11th Int. Conf. on Soil Mech. And Found. Engrg., Balkema, Rotterdam, The Netherlands, pp.1311-1314, 1985.
Tsukamoto, Y., Ishihara, K. and Sawada, S., “Settlement of silty sand deposits following liquefaction during earthquakes, Soils and Foundations, Vol. 44, No. 5, pp.135-148, 2004.
Ueng, T. S., Sun, C. W. and Chen, C. W., “Definition of fines and liquefaction resistance of Mulou River soil, Soil Dynamics and Earthquake Engineering, Vol. 24, pp.745-750, 2004.
Vaid, V. P., “Liquefaction of silty soils, Ground failures under seismic conditions, Geotech. Spec. Publ. No. 44, ASCE, New York, pp.1-16, 1994.
Vanmarcke, E. H., “Probabilistic modeling of soil profiles, J. of Geotechnical Engineering Division, Proc. of ASCE, Vol.103, No.GT11, pp.1227-1246, 1977.
Verdugo, R. and Ishihara, k., “The steady state of sandy soils, Soils and Foundations, Tokyo, Vol. 36, No. 2, pp.81-91, 1996.
Wong, R. T., Seed, H. B. and Chan, C. K., “Cyclic loading liquefaction of gravelly soils, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.101, No.GT6, pp.571-583, 1975.
Xenaki, V. C. and Athanasopoulos, G. A., “Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effects of fines, Soil Dynamics and Earthquake Engineering, Vol. 23, pp.183-194, 2003.
Xia H. and Hu T., “Effects of saturation and back pressure on sand liquefaction, Journal of Geotechnical Engineering, ASCE, Vol.117, 1991.
Yamamuro, J. A. and Lade, P. V., “Static liquefaction of very loose sands, Can. Geotech. J., Ottawa, Vol. 34, No. 6, pp.905-917, 1997.
Yamamuro, J. A. and Lade, P. V., “Steady-state concepts and static liquefaction of silty sands, J. Geotech. And Geoenvironmental Engrg., ASCE, Vol. 124, No. 9, pp.868-877, 1998.
Youd, T. L. and Idriss, I. M., “Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soil, Technical Report NCEER-97-0022, Zlatovic, 1997.
Youd, T. L. and Idriss, I. M., “Liquefaction resistance of soils: summary report from the 1996 NCCER and 1998 NCCER/NSF workshops on evaluation of liquefaction resistance of soils, Journal of Geotechnical and Geoenviromental Engineering, Vol. 127, No. 4, pp.297-313, 1998.
Zlatovic, S. and Ishihara, K., “Normalized behacour of very loose monplastic soil: Effects of fabric, Soils and Foundations, Tokyo, Vol. 37, No. 4, pp.47-56, 1997.
日本道路橋協會,「道路示方書,同解說,Ⅴ耐震設計編」,1996。
國家地震工程研究中心,「九二一大地震霧峰地區土壤液化潛能評估」,2000。
台灣營建研究院,「高雄捷運工程橘線CO1區段標LUO04潛盾隧道事故範圍內地盤穩定鑑定報告」,2004。
台灣營建研究院,「高雄捷運工程橘線CO2區段標LUO09潛盾隧道坍陷原因鑑定」,2006。
吳偉特,「台灣地區砂性土壤液化潛能之初步研究」,土木水利,第六卷,第二期,第39-70 頁,1979。
吳偉特、楊騰芳,「細粒料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74頁,1987。
沈瑞欽,「土壤液化潛能評估」,碩士論文,國立台灣大學土木工程研究所,台北,2000。林金成、陳錦清,「水平砂質地盤震後沉陷量之研究」,第五屆大地工程學術研究討論會論文集,第1冊,第77~84頁,福隆,1993。
林國忠,「反復荷重作用下砂性土壤之變形行為研究」,碩士論文,國立成功大學土木工程研究所,台南,1997。林靜怡,「細粒料對粉土細砂小應變勁度之影響」,碩士論文,國立交通大學土木工程研究所,新竹市,2003。林志慶,「霧峰地區土壤液化引致地表沉陷量之研究」,碩士論文,國立中興大學土木工程研究所,台中市,2006。柯子昭,「麥寮砂之液化阻抗與體積應變特性之研究」,碩士論文,國立成功大學土木工程研究所,台南,2004。紀雲曜、歐麗婷、陳怡睿,「土壤液化造成地層下陷量之評估」,地層下陷管理與對策研討會論文集,第6-1~24頁,工研院能資所,新竹,2002。
紀雲曜,「高雄縣永安沿海地區沖積層下陷及其潛能評估方法之研究」,國立成功大學土木工程學研究所博士論文,1997。施政杰,「能量式液化評估模式之研究」,國立成功大學土木工程研究所碩士論文,2003。施繼揚,「遲滯圈能量原理應用於液化潛勢評估模式之建置」,碩士論文,國立成功大學土木工程研究所,2009。范恩碩,「以九二一集集地震案例探討細料對液化潛能評估之影響」,博士論文,國立成功大學土木工程研究所,2004。洪士凱,「以鄉城地區液化潛能分區之研究」,碩士論文,國立成功大學土木工程研究所,2004。夏啟明,「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,碩士論文,國立台灣大學土木工程研究所,1992。
翁贊鈞,「員林地區傾斜地盤二維有效應力分析」,碩士論文,國立台灣大學土木工程研究所,台北,2003。梁恒瑜,「模糊理論與基因演算法運用於液化潛勢微分區之研究」,碩士論文,長榮大學土地管理與開發學系,2005。陳俶季,「土壤液化潛能之風險評估」,地工技術雜誌,第38期,第5~16頁,1992。
陳百騏,「三軸應力與單剪應力下台北盆地砂性土壤之剪力模數與阻尼比」,碩士論文,國立台灣大學土木工程研究所,台北市,1996。陳昱憲,「頻率比對台北盆地含細料砂土動態性質與地盤反應分析初步研究」,碩士論文,國立台灣大學土木工程研究所,台北市,1999。陳俊吉,「低塑性粉土工程性質之研究」,國立成功大學土木工程研究所博士論文,2013。張益騰,「類神經網路結合非線性能量消散原理應用於土壤液化潛勢評估之研究」,碩士論文,國立成功大學土木工程研究所,2010。黃俊鴻、陳正興,「土壤液化評估規範之回顧與前瞻」,地工技術雜誌,第70期,第23~44頁,1998。
黃凱達,「砂性土層液化潛能之模糊集合評估研究」,碩士論文,國立台灣大學土木工程研究所,台北,2001。黃俊鴻、張吉佐、周功台、余明山、簡文郁,「由集集地震液化案例探討液化評估方法本土適用性之研究」,交通部台灣區國道新建工程局,2002。
黃筱卿,「員林地區土壤液化之地盤反應分析」,碩士論文,國立台灣大學土木工程研究所,台北,2002。黃信祥,「以現地冰凍土壤求得之剪力模數評估土壤之液化阻抗」,碩士論文,國立台灣科技大學營建工程技術學系,台北市,2003。黃耀道,「台灣中西部粉土質砂土液化行為分析」,博士論文,國立交通大學土木工程研究所,新竹市,2007。黃敬元,「最佳數值搜尋原理應用於土壤液化評估」,碩士論文,國立成功大學土木工程研究所,2012。游家豪,「低塑性細料對粉質砂土動態性質之影響」,碩士論文,國立成功大學土木工程系研究所,台南,2007。廖廷勛,「過壓密對砂土動態性質及穩定狀態之影響」,碩士論文,國立台灣科技大學營建工程技術學系,台北市,1998。
賴聖耀、林炳森、李豐博、謝明志,「荷式錐貫入試驗與液化可靠度之相關研究」,土木水利,第十六卷,第二期,第43-60頁,1989。
賴志昇「非液化覆土層與凝聚土壤對液化潛能評估之影響研究」,碩士論文,國立臺灣科技大學營建工程系,台南,2009。