跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:古美慧
研究生(外文):Somayeh BagherinejadZarandi
論文名稱:複合材料系統之非彈性分析
論文名稱(外文):Inelastic analysis of composite material systems
指導教授:王雲哲
指導教授(外文):Yun-Che Wang
學位類別:博士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:159
中文關鍵詞:非彈性分析彈塑性質黏彈性複合材料系統材料溫度相依性質高阻尼高勁度有限元素法
外文關鍵詞:Inelastic analysisplasticityviscoelasticitythermal loadingcomposite systemenergy dissipationcircular discviscoelastic damper
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討複合材料系統之彈塑力學和黏彈力學的反應,應用有限元素數值方法,計算兩種複合材料系統在不同狀態下的力學性質,一種是含孔洞或第二相內含物環形盤 之熱彈塑力學行為。另一種是由高分子和金屬形成的高阻尼和高勁度(HDHS)複合系統之等效黏彈性質。複合環形盤假設具有溫度相依的材料性質,並比較完美彈塑性 與硬化彈塑性模型。在溫度加載下,計算複合盤的彈性不可逆溫度(EIT)和塑性崩壞溫度(PCT),並分析溫度加載卸載後的殘餘應力。當材料具有溫度相依的特性時, 導致EIT和PCT比沒有溫度相依的狀態顯著減少,且預測的殘餘應力較小。此外,本文亦探討希爾正交異性塑性模型,對殘餘應力的影響,異向性塑行可以顯著改變殘餘應力的分佈狀態。至於高阻尼和高勁度複合材料系統,本文研究含有不同體積百分比的聚胺內含物在鋼鐵材料中的有效黏彈性質。以實驗數據反算廣義Maxwell模型的參數, 並用於後續的有限元素計算中,評估複合系統的等效黏彈性質,此種複合材料系統的設計,可以大幅提高整體勁度和阻尼。
The elastoplastic and viscoelastic responses of composite material systems are studied via the finite element numerical method. Specifically, two systems are analyzed in this work. One is the annular disc containing a hole or a second phase inclusion under thermal loading. The other is a type of high damping and high stiffness (HDHS) composite system that is formed by polymer and metal. As for the annular disc problem, it is assumed that the material properties are temperature dependent, and elastoplastic models with or without hardening are considered. Upon temperature increasing, the elastic irreversible temperature (EIT) and plastic collapse temperature (PCT) of the composite disc are determined. Residual stresses under thermal loading and unloading have been analyzed. Considerations of material properties being temperature dependent may lead to significant reduction of the EIT’s and PCT’s. Furthermore, the magnitudes of residual stresses may be smaller when temperature dependent material properties are considered. In addition, effects of Hill’s orthotropic plasticity in the development of residual stresses are analyzed. It is found that anisotropy in plasticity may significantly change the distribution of residual stresses. As for the HDHS composite system, I study the effective viscoelastic properties of a steel cube containing polyamide inclusion with various volume fraction. By using experimental data, the parameters of the generalized Maxwell model are determined for estimating the effective properties of the composite system in the finite element calculations. It is found the overall stiffness and damping can be largely increased vis such design of composite material system.
CHINESE ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
1.1 Goals and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Inelastic process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Plane disc under thermal loading . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Energy dissipation and HDHS system . . . . . . . . . . . . . . . . . . 5
1.2.4 Damping calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Theory of plasticity (Rate independent responce) . . . . . . . . . . . . . . . . . 11
2.1 Elastic domain and yield condition . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Hardening rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Perfect plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Linear isotropic hardening . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Kinematic hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Plastic flow rule (Loading/Unloading conditions) . . . . . . . . . . . . . . . . 16
2.4 The yield criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 General quadratic model . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Plane strain, classical J2 (isotropic/kinematic hardening) . . . . . . . . 21
3 Theory of linear viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1 One - Dimensional rheological model . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1 Generalized Maxwell Model (GMM) . . . . . . . . . . . . . . . . . . 26
3.2 Three - Dimensional Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Thermodynamic Theory . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 Considerations of computational inelasticity . . . . . . . . . . . . . . . . . . . . 30
4.1 Finite element methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Return-Mapping algorithms with plastic hardening . . . . . . . . . . . . . . . 31
4.2.1 Algorithmic form from the loading/unloading conditions (Trail state) . 33
4.2.2 The closet point project . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 General Return Mapping algorithm for linear Isotropic/Kinematic Hardening
plasticity model . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.4 Return mapping for J2 Plasticity (Nonlinear Isotropic/Kinematic Hardening)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Finite-Element Implementation and discrete Variational Formulation . . . . . . 40
5 Theory of elasticity and plasticity for circular disc . . . . . . . . . . . . . . . . . 43
5.1 Orthotropic disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.1 Elastic solution for the orthotropic disc . . . . . . . . . . . . . . . . . 43
5.1.2 Plastic solution for the orthotropic disc . . . . . . . . . . . . . . . . . 46
5.2 Isotropic disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.1 Elastic solution for isotropic disc . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Plastic solution for isotropic disc . . . . . . . . . . . . . . . . . . . . . 51
6 Composite system 1: Plastic behavior of circular disc under thermal loading . . 55
6.1 Isotropic composite disc under uniform thermal loading [78] . . . . . . . . . . 55
6.1.1 Theoretical and numerical aspects . . . . . . . . . . . . . . . . . . . . 56
6.1.2 Temperature-dependent material properties . . . . . . . . . . . . . . . 59
6.1.3 Two-dimensional analysis – plane strain . . . . . . . . . . . . . . . . . 60
6.1.4 Two-dimensional analysis – plane stress . . . . . . . . . . . . . . . . . 61
6.1.5 Three-dimensional analysis – long cylinder . . . . . . . . . . . . . . . 62
6.1.6 Three-dimensional analysis – thin disc . . . . . . . . . . . . . . . . . . 63
6.2 Isotropic composite disc under thermal loading and unloading [79] . . . . . . . 68
6.2.1 Theoretical and numerical aspects . . . . . . . . . . . . . . . . . . . . 68

6.2.2 Temperature loading/unloading profile and temperature-dependent ma-
terial properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Plastic strain after unloading . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.4 Effects of hardening rules . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.5 Discussions on other stress components . . . . . . . . . . . . . . . . . 79
6.2.6 Verification by the analytical solution . . . . . . . . . . . . . . . . . . 81
6.3 Orthotropic composite cylinder under thermal loading and unloading [80] . . . 85
6.3.1 Theoretical and Numerical Considerations . . . . . . . . . . . . . . . . 86
6.3.2 Effects of selective TD material properties on residual stress . . . . . . 91
6.3.3 Residual stress analysis with linear hardening . . . . . . . . . . . . . . 92
6.4 Summary of composite system 1 . . . . . . . . . . . . . . . . . . . . . . . . . 94
7 Composite system 2: Viscoelastic behavior of novel viscoelastic dampers under dynamic loading.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1 Modeling behavior of viscoelastic materials . . . . . . . . . . . . . . . . . . . 100
7.1.1 Calculation of damping and stiffness . . . . . . . . . . . . . . . . . . . 100
7.1.2 Mathematical model of viscoelastic materials . . . . . . . . . . . . . . 102
7.2 Experimental and numerical material properties characterization . . . . . . . . 105
7.2.1 Viscoelastic properties of the polyamide . . . . . . . . . . . . . . . . . 105
7.2.2 VSP damper samples preparation . . . . . . . . . . . . . . . . . . . . 106
7.2.3 Viscoelastic properties of the VSP dampers . . . . . . . . . . . . . . . 107
7.2.4 Finite element analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3.1 Polyamide Shear modulus and relaxation time characterization . . . . . 109
7.3.2 Polyamide damping and Young’s modulus calculation . . . . . . . . . 111
7.3.3 Viscoelastic parameter of VSP dampers . . . . . . . . . . . . . . . . . 114
7.3.4 VSP as a HSHD damper . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.4 Summary of composite system 2 . . . . . . . . . . . . . . . . . . . . . . . . . 117
8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
APPENDICES
Appendix A: Viscoplastic analysis of steel polymer (VSP) damper . . . . . . . . . 130
Appendix B: Checking thermal warping in composite disc . . . . . . . . . . . . . 134
Appendix C: Presentation slide . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
[1] R.C. Barros, D. Pires, R. A.M. Silveira, ´I. J.M. Lemes . “Advanced inelastic analysis of steel structures at elevated temperatures by SCM/RPHM coupling . Journal of Con- structional Steel Research, 145 :368–385,2018.
[2] M.A. Uddin, A.H. Sheikh, D. Brown, T. Bennett and B. Uy. “Geometrically non- linear inelastic analysis of steel–concrete composite beams with partial interaction using a higher-order beam theory. International Journal of Non-Linear Mechanics, 100:34–47,2018.
[3] X. Liu, M.A. Bradford, R. E. Erkmen. “Non-linear inelastic analysis of steel–concrete composite beams curved in-plan. Engineering Structures, 57 :484-492,2013.
[4] S. Marfia and E.Sacco. “Multiscale technique for nonlinear analysis of elastoplastic and viscoplastic composites . Composites Part B, 136:241-253,2018.
[5] H.Argeso and A.N. Eraslan. “On the use of temperature-dependent physical properties in thermomechanical calculations for solid and hollow cylinders. Int. J. Thermal Sci., 47:136-146, 2008.
[6] S. Alexandrov, Y.C. Wang and S. Aizikovich. “Effect of temperature-dependent mechanical properties on plastic collapse of thin discs, J. Mech. Eng. Sci. Part C, 228(14):2483- 2487, 2014.
[7] S. Alexandrov, Y.C. Wang and Y.R. Jeng. “Elastic-plastic stresses and strains in thin discs with temperature-dependent properties subject to thermal loading . J. Therm. Stresses, 37:488-505, 2014.
[8] S. Alexandrov, K. Chung and W. Jeong. “Stress and strain fields in rotating elastic/plastic annular disks of pressure-dependent material. Mechanics Based Design of Structures and Machines, in press, 2017. (DOI: 10.12989/sem.2016.58.4.661)
[9] S.E. Alexandrov, N.D. Kien, D.V. Manh and F.V. Grechnikov. “ Plane strain bending of a bimetallic sheet at large strains. Structural Engineering and Mechanics, 58:641-659, 2016.
[10] S.E. Alexandrov, A.R. Pirumov and Y.R. Jeng. “Description of reversed yielding in thin hollow discs subject to external pressure. Structural Engineering and Mechanic- s, 58:661-676, 2016.
[11] J.Lubliner. “Plasticity Theory. Macmillan Publishing Company, New York, 1990.
[12] S. Alexandrov and N. Alexandrova. “Thermal effects on the development of plastic zones in thin axisymmetric plates. J. Strain Anal. Eng. Des., 36:169-175, 2001.
[13] S. Alexandrov, and N. Chikanova. “Elastic-plastic stress-strain state of a plate with a pressed-in inclusion in thermal field . Mech. Solids, 35:125-132, 2000.
[14] S.E. Alexandrov, E.V. Lomakin and Y.R. Jeng. Solution of the thermoelasticplastic problem for
a thin disk of plastically compressible material subject to thermal loading. Dokl. Phys., 57:136-139, 2012.
[15] N. Noda. “Thermal stresses in materials with temperature-dependent properties. Appl. Mech. Rev., 44: 383-397, 1991.
[16] Y.C. Wang, S. Alexandrov and Y.R. Jeng. “Effects of thickness variations on the thermal elastoplastic behavior of annular discs . Struct. Eng. Mech., 47(6): 839-856, 2013.
[17] U. Guven. “The fully plastic rotating disk with rigid inclusion. ZAMM, 77(9): 714-716, 1997.
[18] U. Guven and O. Altay. “Linear hardening solid disk with rigid casing subjected to a uniform heat source. Mech. Res. Comm., 25:679-684, 1998.
[19] C. Parmaksizoglu and U. Guven. “Plastic stress distribution in a rotating disk with rigid inclusion under a radial temperature gradient. Mech. Struct. Mach., 26:9-20, 1998.
[20] A.N. Eraslan and T. Akis. “On the elastic-plastic deformation of a rotating disk subjected to radial temperature gradient. Mech. Based Des. Struct. Mach., 31:529-561, 2003.
[21] G. Altan, M. Topcu, N.B. Bektas and B.D. Altan. “Elastic-plastic thermal stress analysis of an aluminum composite disc under parabolic thermal load distribution . J. Mech. Sci. Technol., 22:2318-2327, 2008.
[22] M.Topcu, G. Altan, H. Callioglu and B.D. Altan. “Thermal elastic-plastic analysis of an aluminium composite disc under linearly decreasing thermal loading. Adv. Comp. Lett., 17:87-96, 2008.
[23] M. Bengeri, and W. Mack, “The influence of the temperature dependence of the yield stress on the stress distribution in a thermally assembled elastic-plastic shrink fit. Acta Mech., 103: 243-257,1994.
[24] W. Mack, and M. Bengeri, M. “Thermal assembly of an elastic-plastic shrink fit with solid inclusion. Int. J. Mech. Sci., 36:699-705, 1994.
[25] W. Mack, and M. Plochl.“Transient heating of a rotating elastic-plastic shrink fit. Int. J. Eng. Sci. 38:921-938,2000.
[26] D.L.Ball. “Elastic-plastic stress analysis of cold expanded fastener holes. Fat. Fract. Eng. Mater. Struct., 18:47-63,1995.
[27] L.I. Krenev, S.M. Aizikovich, Y.V. Tokovyy and Y.C Wang. “Axisymmetric problem on the indentation of a hot circular punch into an arbitrarily nonhomogeneous half-space. Int. J. Solids Struct., 59:18-28, 2015.
[28] P. Kwon,C.K.H. Dharan and M.Ferrari, M. “Macroscopic analysis of axisymmetric functionally gradient materials under thermal loading. ASME J. Energy Res. Tech., 116:115-120,1994.
[29] M.P.Lutz and R.W. Zimmerman. “Thermal stresses and effective thermal expansion co- efficient of a functionally gradient sphere . J. Therm. Stresses, 19:39-54,1996.
[30] J.N.Reddy and C.D. Chin. “Thermomechanical analysis of functionally graded cylinders and plates . J. Therm. Stresses, 21:593-626,1998.
[31] M.Seif, J. Main, J. Weigand, F. Sadek, L. Choe, C. Zhang, J. Gross, W. Luecke and D. McColskey. “Temperature-Dependent Material Modeling for Struc- tural Steels: Formulation and Application. NIST Technical Note 1907, 2016 (http://dx.doi.org/10.6028/NIST.TN.1907)
[32] S. Alexandrov, Y.C. Wang and L. “Lang. A theory of elastic/plastic plane strain pure bending of FGM sheets at large strain. Materials, 12:456, 2019. doi:10.3390/ma12030456.
[33] R.A. “Hill theory of the yielding and plastic flow of anisotropic metals. Soc Lond Ser A, 193:281-297, 1948.
[34] R. Hill. “The Mathematical Theory of Plasticity. Oxford University Press Inc., New York, U.S.A,1950.
[35] Hill, R. Constitutive modelling of orthotropic plasticity in sheet metals. J. Mech. Phys. Solids 1990 38(3), 405–417. doi: 10.1016/0022-5096(90)90006-P.
[36] R.A. Hill, “User-friendly theory of orthotropic plasticity in sheet metals. Int. J. Mech. Sci, 35(1):19–25, 1993.
[37] J.H. Yoon, O. Cazacu, J.W. Yoon and R.E. Dick. “ Earing predictions for strong- ly textured aluminum sheets. Intl. J. Mech. Sci, 52(12): 563–1578, 2010. doi: 10.1016/j.ijmecsci.2010.07.005.
[38] S. Zhang, L. Leotoing, D. Guines, S. Thuillier and S.L. “Zang. Calibration of anisotropic yield criterion with conventional tests or biaxial test. Intl. J. Mech. Sci, 85(C):142–151, 2014. doi: 10.1016/j.ijmecsci.2014.05.020.
[39] H. Callioglu, M. Topcu and A.R. Tarakcilar. “ Elastic–plastic stress analysis of an orthotropic rotating disc. Intl. J. Mech. Sci, 48:985-990, 2006.
doi:10.1016/j.ijmecsci.2006.03.008.
[40] Y.C. Wang and C.C. Ko, C.C. “Energy dissipation of steel-polymer composite beam- column connector. Steel and Composite Structures, 18(5):1161-1176, 2015.
[41] P. Mahmoodi. “Structural dampers. ASCE J.Struct. DIV 95(8):1661-1672,1996.
[42] W.Q. Li and C.S. Tsai. “Seismic mitigation of structures by using viscoelastic dampers. Nucl. Engng. Des, 147(3):263-274,1994.
[43] K.C. Chang, T.T. Soong and M.L. Lai. “Seismic behavior of steel frame with added viscoelastic
dampers. Struct.Engng, 121(10):1418-1426, 1995.
[44] A.P. Uwin, P.J. Hine and I.M. Ward. “Escaping the Ashby limit for mechanical damping/stiffness trade-off using a constrained high internal friction interfacial layer. Sci Rep,8:2454, 2018, doi:10.1038/s41598-018-20670-0.
[45] L. Dong and R.A. Lake. “ Advanced damper with high stiffness and high hysteresis damping. Int J Solids Struct, 50:2416-2423, 2013. doi:10.1016/j.ijsolstr.2013.03.018.
[46] N. Ni,n, D. Wen and X. He,X. “High damping and high stiffness CFRP composites with aramid . Compos Sci Technol,117:92-992015. doi:10.1016/j.compscitech.2015.06.002.
[47] R.S.Lake, T. Lee and A. Bresie. “Extreme damping in composite materials with negative-stiffness inclusions. Nature, 410:565-567, 2001. doi:10.1038/35069035.
[48] T. Sain, J. Meaud,and G. Hulbert. “Simultaneously high stiffness and damping in a class of wavy layered composites. COMPOS STRUCT,101:104-110,2013. doi:10.1016/j.compstruct.2013.01.024.
[49] E.J. Graesser and R.C. Wong. “The Relationship of Traditional Damping Measures for Materials with High Damping Capacity. DTRC-SME, 91(05):50,1991.
[50] H.Abramovich,D. Govichand A. Grunwald. “Damping measurements of laminated composite materials and aluminum using the hysteresis loop method . PROG AEROSP SCI, 78: 8-18,2015.
[51] H. Mevada and D. Patel. “Experimental determination of structural damping of different materials. Procedia Chem,144:110-115,2016. doi:10.1016/j.proeng.2016.05.013.
[52] X. Yang and Z. You.“ High temperature performance evaluation of bio-oil mod-ified as palt binders using the DSR and MSCR tests. CONSTR BUILD MATER, 76:3807,2015.
doi:10.1016/j.conbuildmat.2014.11.063.
[53] K. Gillbert, O. Gernot and P. Gerald. “Method to characterize the damping behavior of thin passively constrained layer laminates using dynamic mechanical analysis (DMA) in shear mode. Polym Test, 42:215-224,2015. doi:10.1016/j.polymertesting.2015.01.011.
[54] N. Nannan, W. Yuefeng,W, H. Delong, etc. “Synchronous improvement of loss factors and storage
modulus of structural damping composite with functionalized polyamide nonwoven fabrics. Mater Des,
94:377-383, 2016. doi:10.1016/j.matdes.2015.12.159.
[55] Y.C.Wang, C.C. Ko, H.K. Wu, etc.“ Pendulum-type Viscoelasic Spectroscopy for Damping Measurement of Solid. j.JSEM, 13:137-142,2013.
[56] T. Lee, R.Lake and A. Lai. “Resonant ultrasound spectroscopy for measurement of mechanical damping, Comparison with broadband viscoelastic spectroscopy. Rev Sci In- strum,71: 2855-61, 2000. doi: 10.1063/1.1150703.
[57] T. Jaglinski and Y.C.Wang. “On the use of hollow tube geometries for resonant ultrasound spectroscopy. J. Acoust. Soc. Am, 129(4):2011. 1890-8, doi:10.1121/1.3562175.
[58] B.Simon, G. Quentin and L. Pascal. “ Resonant ultrasound spectroscopy for viscoelastic characterization of anisotropic attenuative solid materials. J. Acoust. Soc. Am, 135(5): 2601-2613, 2014.
[59] D.M. Taborda, D.M. Pottos and L. Zdravkovi. “On the assessment of energy dissipated through hysteresis in finite element analysis. COMPUT GEOTECH, 71:180-194,2016. doi:10.1016/j.compgeo.2015.09.001.
[60] R. Lewandowski and B. Chora. “ Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput Struct 88: 1-17,2010 doi:10.1016/j.compstruc.2009.09.001.
[61] A. Banisheikholeslami, F. Behnamfar and M. Ghandi. “ A beam-to-column connection with viscoelastic and hysteretic dampers for seismic damage control. J CONSTR S- TEEL RES, 117:185-195,2016. doi:10.1016/j.jcsr.2015.10.016.
[62] S.W. Park. “Analytical modeling of viscoelastic dampers for structural and vibration control.
Int J Solids Struct, 38: 8065-8092,2001. doi: 10.1016/S0020-7683(01)00026- 9.
[63] R.A. Schapery. simple collocation method for fiting viscoelastic models to exprimental data. Report GALCIT 119, 1961.
[64] T. Ludwing, M. Doreille, S. Merazzi, etc. “Dynamic finite element simulations of composite stiffened panels with a transverse-isotropic viscoelastic energy dissipation mod- el. PROG AEROSP 78: 30-38,2015. doi10.1016/j.paerosci.2015.06.001
[65] J.C. Simo. Numerical analysis and simulation of plasticity. Handbook of Numerical Analysis VI, Ciarlet, P. G., Lions, J. L., Eds.; Elsevier Science: Amsterdam, The Nether- lands, 1998; pp.183-499, ISBN 0-444-82569-X.
[66] J.C. Simo and T.J.R. Hughes. Computational Inelasticity. Springer: New York, USA, 1998; ISBN
0-387-97520-9.
[67] ANSYS website (2019). www.ansys.com
[68] R.F. Gipson. Principle of composite material mechanics. McGraw-Hic,Inc: New York, USA, 1994;
ISBN 0-07-023451-5.
[69] L.H Callıog, M.Topcu and A.Tarakcılar. Elastic–plastic stress analysis of an orthotropic rotating disc. IJMS, 48:985–990,2006. doi:10.1016/j.ijmecsci.2006.03.008.
[70] J.C. Simo and T.J. Hughes. Computational Inelasticity. Springer: New York, USA, 1998; ISBN
0-387-97520-9.
[71] P.Jetteur. “Implicit integration algorithm for elastoplasticity in plane strain analysis. Eng. Comp., 3:251-253,1986.
[72] M. Kleiber and P. Kowalczyk. “Sensitivity analysis in plane stress elasto-plasticity and elasto viscoplasticity. Comp. Meth. Appl. Mech. Eng., 137, 395-409,1996.
[73] R.W. Clough and J. Penzien. “Dynamic of Structures. 3rd ed.; Computer & Struc- tures,Inc : University Ave,Brekeley, USA, 1995.
[74] R. Lake. “Viscoelastic Materials. CAMBRIDGE UNIVERSITY press: New York, US- A, 2009; ISBN
978-0-521-88568-3.
[75] A. Treviso, B. Genechten, B. Mundo, etc.“ Damping in composite material- s:Properties and models. COMPOS PART B-ENG., 78:144-152, 2015. doi:
10.1016/j.compositesb.2015.03.081.
[76] COMSOL website (2019). www.comsol.com.
[77] W.B.Young. “ Residual Stress in Design, Process and Materials Selections. ASM Intl., USA,
1989; ISBN 978-0871703040.
[78] Zarandi S.B, Y.C. Wang and O.V. Novozhilova. “Plastic behavior of circular discs with temperature-dependent properties containing an elastic inclusion. Structural Engineering and Mechanics., 58(4):731-743,2016. DOI: 10.12989/sem.2016.58.4.731.
[79] Zarandi S.B, H.W. Lai , Y.C. Wang and S. Aizikovich . “Residual Stress Analysis of an Orthotropic Composite Cylinder under Thermal Loading and Unloading, Symme- try,11(3):320,2019. DOI: 10.3390/sym11030320.
[80] Zarandi S.B, H.W. Lai, Y.C. Wang and S. Aizikovich. “Residual stress in an elasto- plastic annular disc interacting with an elastic inclusion. Coupled Systems Mechanics ,8(3):273-287,2019. DOI: https://doi.org/10.12989/csm.2019.8.3.273.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊