|
[1] R.C. Barros, D. Pires, R. A.M. Silveira, ´I. J.M. Lemes . “Advanced inelastic analysis of steel structures at elevated temperatures by SCM/RPHM coupling . Journal of Con- structional Steel Research, 145 :368–385,2018. [2] M.A. Uddin, A.H. Sheikh, D. Brown, T. Bennett and B. Uy. “Geometrically non- linear inelastic analysis of steel–concrete composite beams with partial interaction using a higher-order beam theory. International Journal of Non-Linear Mechanics, 100:34–47,2018. [3] X. Liu, M.A. Bradford, R. E. Erkmen. “Non-linear inelastic analysis of steel–concrete composite beams curved in-plan. Engineering Structures, 57 :484-492,2013. [4] S. Marfia and E.Sacco. “Multiscale technique for nonlinear analysis of elastoplastic and viscoplastic composites . Composites Part B, 136:241-253,2018. [5] H.Argeso and A.N. Eraslan. “On the use of temperature-dependent physical properties in thermomechanical calculations for solid and hollow cylinders. Int. J. Thermal Sci., 47:136-146, 2008. [6] S. Alexandrov, Y.C. Wang and S. Aizikovich. “Effect of temperature-dependent mechanical properties on plastic collapse of thin discs, J. Mech. Eng. Sci. Part C, 228(14):2483- 2487, 2014. [7] S. Alexandrov, Y.C. Wang and Y.R. Jeng. “Elastic-plastic stresses and strains in thin discs with temperature-dependent properties subject to thermal loading . J. Therm. Stresses, 37:488-505, 2014. [8] S. Alexandrov, K. Chung and W. Jeong. “Stress and strain fields in rotating elastic/plastic annular disks of pressure-dependent material. Mechanics Based Design of Structures and Machines, in press, 2017. (DOI: 10.12989/sem.2016.58.4.661) [9] S.E. Alexandrov, N.D. Kien, D.V. Manh and F.V. Grechnikov. “ Plane strain bending of a bimetallic sheet at large strains. Structural Engineering and Mechanics, 58:641-659, 2016. [10] S.E. Alexandrov, A.R. Pirumov and Y.R. Jeng. “Description of reversed yielding in thin hollow discs subject to external pressure. Structural Engineering and Mechanic- s, 58:661-676, 2016. [11] J.Lubliner. “Plasticity Theory. Macmillan Publishing Company, New York, 1990. [12] S. Alexandrov and N. Alexandrova. “Thermal effects on the development of plastic zones in thin axisymmetric plates. J. Strain Anal. Eng. Des., 36:169-175, 2001. [13] S. Alexandrov, and N. Chikanova. “Elastic-plastic stress-strain state of a plate with a pressed-in inclusion in thermal field . Mech. Solids, 35:125-132, 2000. [14] S.E. Alexandrov, E.V. Lomakin and Y.R. Jeng. Solution of the thermoelasticplastic problem for a thin disk of plastically compressible material subject to thermal loading. Dokl. Phys., 57:136-139, 2012. [15] N. Noda. “Thermal stresses in materials with temperature-dependent properties. Appl. Mech. Rev., 44: 383-397, 1991. [16] Y.C. Wang, S. Alexandrov and Y.R. Jeng. “Effects of thickness variations on the thermal elastoplastic behavior of annular discs . Struct. Eng. Mech., 47(6): 839-856, 2013. [17] U. Guven. “The fully plastic rotating disk with rigid inclusion. ZAMM, 77(9): 714-716, 1997. [18] U. Guven and O. Altay. “Linear hardening solid disk with rigid casing subjected to a uniform heat source. Mech. Res. Comm., 25:679-684, 1998. [19] C. Parmaksizoglu and U. Guven. “Plastic stress distribution in a rotating disk with rigid inclusion under a radial temperature gradient. Mech. Struct. Mach., 26:9-20, 1998. [20] A.N. Eraslan and T. Akis. “On the elastic-plastic deformation of a rotating disk subjected to radial temperature gradient. Mech. Based Des. Struct. Mach., 31:529-561, 2003. [21] G. Altan, M. Topcu, N.B. Bektas and B.D. Altan. “Elastic-plastic thermal stress analysis of an aluminum composite disc under parabolic thermal load distribution . J. Mech. Sci. Technol., 22:2318-2327, 2008. [22] M.Topcu, G. Altan, H. Callioglu and B.D. Altan. “Thermal elastic-plastic analysis of an aluminium composite disc under linearly decreasing thermal loading. Adv. Comp. Lett., 17:87-96, 2008. [23] M. Bengeri, and W. Mack, “The influence of the temperature dependence of the yield stress on the stress distribution in a thermally assembled elastic-plastic shrink fit. Acta Mech., 103: 243-257,1994. [24] W. Mack, and M. Bengeri, M. “Thermal assembly of an elastic-plastic shrink fit with solid inclusion. Int. J. Mech. Sci., 36:699-705, 1994. [25] W. Mack, and M. Plochl.“Transient heating of a rotating elastic-plastic shrink fit. Int. J. Eng. Sci. 38:921-938,2000. [26] D.L.Ball. “Elastic-plastic stress analysis of cold expanded fastener holes. Fat. Fract. Eng. Mater. Struct., 18:47-63,1995. [27] L.I. Krenev, S.M. Aizikovich, Y.V. Tokovyy and Y.C Wang. “Axisymmetric problem on the indentation of a hot circular punch into an arbitrarily nonhomogeneous half-space. Int. J. Solids Struct., 59:18-28, 2015. [28] P. Kwon,C.K.H. Dharan and M.Ferrari, M. “Macroscopic analysis of axisymmetric functionally gradient materials under thermal loading. ASME J. Energy Res. Tech., 116:115-120,1994. [29] M.P.Lutz and R.W. Zimmerman. “Thermal stresses and effective thermal expansion co- efficient of a functionally gradient sphere . J. Therm. Stresses, 19:39-54,1996. [30] J.N.Reddy and C.D. Chin. “Thermomechanical analysis of functionally graded cylinders and plates . J. Therm. Stresses, 21:593-626,1998. [31] M.Seif, J. Main, J. Weigand, F. Sadek, L. Choe, C. Zhang, J. Gross, W. Luecke and D. McColskey. “Temperature-Dependent Material Modeling for Struc- tural Steels: Formulation and Application. NIST Technical Note 1907, 2016 (http://dx.doi.org/10.6028/NIST.TN.1907) [32] S. Alexandrov, Y.C. Wang and L. “Lang. A theory of elastic/plastic plane strain pure bending of FGM sheets at large strain. Materials, 12:456, 2019. doi:10.3390/ma12030456. [33] R.A. “Hill theory of the yielding and plastic flow of anisotropic metals. Soc Lond Ser A, 193:281-297, 1948. [34] R. Hill. “The Mathematical Theory of Plasticity. Oxford University Press Inc., New York, U.S.A,1950. [35] Hill, R. Constitutive modelling of orthotropic plasticity in sheet metals. J. Mech. Phys. Solids 1990 38(3), 405–417. doi: 10.1016/0022-5096(90)90006-P. [36] R.A. Hill, “User-friendly theory of orthotropic plasticity in sheet metals. Int. J. Mech. Sci, 35(1):19–25, 1993. [37] J.H. Yoon, O. Cazacu, J.W. Yoon and R.E. Dick. “ Earing predictions for strong- ly textured aluminum sheets. Intl. J. Mech. Sci, 52(12): 563–1578, 2010. doi: 10.1016/j.ijmecsci.2010.07.005. [38] S. Zhang, L. Leotoing, D. Guines, S. Thuillier and S.L. “Zang. Calibration of anisotropic yield criterion with conventional tests or biaxial test. Intl. J. Mech. Sci, 85(C):142–151, 2014. doi: 10.1016/j.ijmecsci.2014.05.020. [39] H. Callioglu, M. Topcu and A.R. Tarakcilar. “ Elastic–plastic stress analysis of an orthotropic rotating disc. Intl. J. Mech. Sci, 48:985-990, 2006. doi:10.1016/j.ijmecsci.2006.03.008. [40] Y.C. Wang and C.C. Ko, C.C. “Energy dissipation of steel-polymer composite beam- column connector. Steel and Composite Structures, 18(5):1161-1176, 2015. [41] P. Mahmoodi. “Structural dampers. ASCE J.Struct. DIV 95(8):1661-1672,1996. [42] W.Q. Li and C.S. Tsai. “Seismic mitigation of structures by using viscoelastic dampers. Nucl. Engng. Des, 147(3):263-274,1994. [43] K.C. Chang, T.T. Soong and M.L. Lai. “Seismic behavior of steel frame with added viscoelastic dampers. Struct.Engng, 121(10):1418-1426, 1995. [44] A.P. Uwin, P.J. Hine and I.M. Ward. “Escaping the Ashby limit for mechanical damping/stiffness trade-off using a constrained high internal friction interfacial layer. Sci Rep,8:2454, 2018, doi:10.1038/s41598-018-20670-0. [45] L. Dong and R.A. Lake. “ Advanced damper with high stiffness and high hysteresis damping. Int J Solids Struct, 50:2416-2423, 2013. doi:10.1016/j.ijsolstr.2013.03.018. [46] N. Ni,n, D. Wen and X. He,X. “High damping and high stiffness CFRP composites with aramid . Compos Sci Technol,117:92-992015. doi:10.1016/j.compscitech.2015.06.002. [47] R.S.Lake, T. Lee and A. Bresie. “Extreme damping in composite materials with negative-stiffness inclusions. Nature, 410:565-567, 2001. doi:10.1038/35069035. [48] T. Sain, J. Meaud,and G. Hulbert. “Simultaneously high stiffness and damping in a class of wavy layered composites. COMPOS STRUCT,101:104-110,2013. doi:10.1016/j.compstruct.2013.01.024. [49] E.J. Graesser and R.C. Wong. “The Relationship of Traditional Damping Measures for Materials with High Damping Capacity. DTRC-SME, 91(05):50,1991. [50] H.Abramovich,D. Govichand A. Grunwald. “Damping measurements of laminated composite materials and aluminum using the hysteresis loop method . PROG AEROSP SCI, 78: 8-18,2015. [51] H. Mevada and D. Patel. “Experimental determination of structural damping of different materials. Procedia Chem,144:110-115,2016. doi:10.1016/j.proeng.2016.05.013. [52] X. Yang and Z. You.“ High temperature performance evaluation of bio-oil mod-ified as palt binders using the DSR and MSCR tests. CONSTR BUILD MATER, 76:3807,2015. doi:10.1016/j.conbuildmat.2014.11.063. [53] K. Gillbert, O. Gernot and P. Gerald. “Method to characterize the damping behavior of thin passively constrained layer laminates using dynamic mechanical analysis (DMA) in shear mode. Polym Test, 42:215-224,2015. doi:10.1016/j.polymertesting.2015.01.011. [54] N. Nannan, W. Yuefeng,W, H. Delong, etc. “Synchronous improvement of loss factors and storage modulus of structural damping composite with functionalized polyamide nonwoven fabrics. Mater Des, 94:377-383, 2016. doi:10.1016/j.matdes.2015.12.159. [55] Y.C.Wang, C.C. Ko, H.K. Wu, etc.“ Pendulum-type Viscoelasic Spectroscopy for Damping Measurement of Solid. j.JSEM, 13:137-142,2013. [56] T. Lee, R.Lake and A. Lai. “Resonant ultrasound spectroscopy for measurement of mechanical damping, Comparison with broadband viscoelastic spectroscopy. Rev Sci In- strum,71: 2855-61, 2000. doi: 10.1063/1.1150703. [57] T. Jaglinski and Y.C.Wang. “On the use of hollow tube geometries for resonant ultrasound spectroscopy. J. Acoust. Soc. Am, 129(4):2011. 1890-8, doi:10.1121/1.3562175. [58] B.Simon, G. Quentin and L. Pascal. “ Resonant ultrasound spectroscopy for viscoelastic characterization of anisotropic attenuative solid materials. J. Acoust. Soc. Am, 135(5): 2601-2613, 2014. [59] D.M. Taborda, D.M. Pottos and L. Zdravkovi. “On the assessment of energy dissipated through hysteresis in finite element analysis. COMPUT GEOTECH, 71:180-194,2016. doi:10.1016/j.compgeo.2015.09.001. [60] R. Lewandowski and B. Chora. “ Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput Struct 88: 1-17,2010 doi:10.1016/j.compstruc.2009.09.001. [61] A. Banisheikholeslami, F. Behnamfar and M. Ghandi. “ A beam-to-column connection with viscoelastic and hysteretic dampers for seismic damage control. J CONSTR S- TEEL RES, 117:185-195,2016. doi:10.1016/j.jcsr.2015.10.016. [62] S.W. Park. “Analytical modeling of viscoelastic dampers for structural and vibration control. Int J Solids Struct, 38: 8065-8092,2001. doi: 10.1016/S0020-7683(01)00026- 9. [63] R.A. Schapery. simple collocation method for fiting viscoelastic models to exprimental data. Report GALCIT 119, 1961. [64] T. Ludwing, M. Doreille, S. Merazzi, etc. “Dynamic finite element simulations of composite stiffened panels with a transverse-isotropic viscoelastic energy dissipation mod- el. PROG AEROSP 78: 30-38,2015. doi10.1016/j.paerosci.2015.06.001 [65] J.C. Simo. Numerical analysis and simulation of plasticity. Handbook of Numerical Analysis VI, Ciarlet, P. G., Lions, J. L., Eds.; Elsevier Science: Amsterdam, The Nether- lands, 1998; pp.183-499, ISBN 0-444-82569-X. [66] J.C. Simo and T.J.R. Hughes. Computational Inelasticity. Springer: New York, USA, 1998; ISBN 0-387-97520-9. [67] ANSYS website (2019). www.ansys.com [68] R.F. Gipson. Principle of composite material mechanics. McGraw-Hic,Inc: New York, USA, 1994; ISBN 0-07-023451-5. [69] L.H Callıog, M.Topcu and A.Tarakcılar. Elastic–plastic stress analysis of an orthotropic rotating disc. IJMS, 48:985–990,2006. doi:10.1016/j.ijmecsci.2006.03.008. [70] J.C. Simo and T.J. Hughes. Computational Inelasticity. Springer: New York, USA, 1998; ISBN 0-387-97520-9. [71] P.Jetteur. “Implicit integration algorithm for elastoplasticity in plane strain analysis. Eng. Comp., 3:251-253,1986. [72] M. Kleiber and P. Kowalczyk. “Sensitivity analysis in plane stress elasto-plasticity and elasto viscoplasticity. Comp. Meth. Appl. Mech. Eng., 137, 395-409,1996. [73] R.W. Clough and J. Penzien. “Dynamic of Structures. 3rd ed.; Computer & Struc- tures,Inc : University Ave,Brekeley, USA, 1995. [74] R. Lake. “Viscoelastic Materials. CAMBRIDGE UNIVERSITY press: New York, US- A, 2009; ISBN 978-0-521-88568-3. [75] A. Treviso, B. Genechten, B. Mundo, etc.“ Damping in composite material- s:Properties and models. COMPOS PART B-ENG., 78:144-152, 2015. doi: 10.1016/j.compositesb.2015.03.081. [76] COMSOL website (2019). www.comsol.com. [77] W.B.Young. “ Residual Stress in Design, Process and Materials Selections. ASM Intl., USA, 1989; ISBN 978-0871703040. [78] Zarandi S.B, Y.C. Wang and O.V. Novozhilova. “Plastic behavior of circular discs with temperature-dependent properties containing an elastic inclusion. Structural Engineering and Mechanics., 58(4):731-743,2016. DOI: 10.12989/sem.2016.58.4.731. [79] Zarandi S.B, H.W. Lai , Y.C. Wang and S. Aizikovich . “Residual Stress Analysis of an Orthotropic Composite Cylinder under Thermal Loading and Unloading, Symme- try,11(3):320,2019. DOI: 10.3390/sym11030320. [80] Zarandi S.B, H.W. Lai, Y.C. Wang and S. Aizikovich. “Residual stress in an elasto- plastic annular disc interacting with an elastic inclusion. Coupled Systems Mechanics ,8(3):273-287,2019. DOI: https://doi.org/10.12989/csm.2019.8.3.273.
|