跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 18:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡振城
研究生(外文):Raden Bagus FauzanIrshadibima
論文名稱:自相似正則化全色態銳化方法對地球特殊景觀”之”參數設置研究
論文名稱(外文):Parameter Setting for Distinctive Earth Landscapes in Self-Similarity Regularization Pansharpening (SimiRegPS) Method
指導教授:洪 瀞
指導教授(外文):Ching Hung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:44
外文關鍵詞:Satellite imageryPansharpeningImage processing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
It is difficult to obtain an accurate satellite imagery of the target landscapes. In recent years, a technique called Pansharpening method has demonstrated its potential to help obtain enhancing the quality of spatial and spectral satellite imagery. The SimiRegPS is one of the finest candidates to perform pansharpening method. Notice that the parameter selections, namely the regularizer parameter (λ) and penalty parameter (µ), are critical to acquire an ideal result for such a method, this thesis aims to determine the parameter setting for SimiRegPS method considering various target landscapes.
In developing the parameter setting, this thesis will use satellite image with four different characteristic landscapes (urban, mountain, crop and coastal land type), to find its specific parameter setting. The parameter setting is defined using trial and error methods, with a specific range of wider parameter range and ultimately discovering a narrower and defined range for each respective land types. The performance of the defined parameter setting is assessed using a quality index (visually and quantitatively) and compared with other pansharpening methods. The result shows that the defined parameter setting can lead to better results when compared to its default setting, and generally gives advantageous results against other pansharpening methods. It can be concluded that the parameter setting defined in this thesis can be applied to enhance the performance of the SimiRegPS method, and it is also revealed that for each land type, the ideal parameter range value would be different.
ABSTRACT I
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS V
LIST OF TABLES VII
LIST OF FIGURES VIII
1. INTRODUCTION 1
1.1 Research Background. 1
2. LITERATURE REVIEW 4
2.1 Satellite imagery 4
2.2 Pansharpening method 6
2.2.1 Component Substitution 6
2.2.2 Multiresolution Analysis 8
2.3 Self-Similarity Regularization Pansharpening Method 11
2.4 Quality Index 14
2.4.1 Spectral Angle Mapper 15
2.4.2 Root Mean Square Error 16
2.4.3 Peak Signal to Noise Ratio 17
3. RESEARCH DESIGN AND METHODOLOGY 18
3.1 Satellite Imagery Dataset 18
3.2 SimiRegPS Parameter Selection 20
3.3 Parameter Setting Quality Index 22
4. RESEARCH RESULTS 25
4.1 Parameter Setting Selection 26
4.2 Quality Index 28
4.2.1 Urban land type 29
4.2.2 Mountain land type 31
4.2.3 Crop land type 33
4.2.4 Coastal land type 35
5. CONCLUSION 38
REFERENCES 40
(2019, June 14). Retrieved from Apollomapping: https://apollomapping.com/
(2019, June 15). Retrieved from Digitalglobe: https://www.digitalglobe.com/
Afonso, M. V., Bioucas-Dias, J. M., & Figueiredo, M. A. (2011). An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Processing, Vol. 20, no. 3, 681-695.
Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A., & Selva, M. (2006). MTF-tailored Multiscale Fusion of High-resolution MS and Pan Imagery. Photogrammetric Engineering & Remote Sensing Vol. 72, No. 5, 591-596.
Aiazzi, B., Alparone, L., Baronti, S., Garzello, A., & Selva, M. (2012). 25 years of pansharpening: a critical review and new developments. In C. H. Chen, Signal and Image Processing for Remote Sensing, 2nd Edition (pp. 533-548). Florida: CRC Press, Taylor and Francis Books.
Aiazzi, B., Baronti, S., & Selva, M. (2007). Improving Component Substitution Pansharpening through multivariate regression of MS+Pan data. IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 10, 3230-3239.
Aiazzi, B., Baronti, S., Alparone, L., Garzelli, A., & Selva, M. (2012). Advantages of Laplacian pyramids over ‘’à trous’’ wavelet transforms for pansharpening of multispectral images. Image and Signal Processing for Remote Sensing XVIII, 853704. Edinburgh: SPIE.
Alparone, L., Baronti, S., Aiazzi, B., & Garzelli, A. (2016). Spatial Methods for Multispectral Pansharpening: Multiresolution Analysis Demystified. IEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO.5, 2563-2576.
Alparone, L., Wald, L., Chanussot, J., Thomas, C., Gamba, P., & Bruce, L. (2007). Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest. IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no.10, 3012-3021.
Baronti, S., Casini, A., Lotti, F., & Alparone, L. (1994). Context-driven differential encoding of an enhanced image pyramid. Signal Processing Image Communication, vol. 6, 463-469.
Burt, P., & Adelson, E. (1983). The Laplacian Pyramid as compact image code. IEEE Transactions on Communications, vol. 31, no. 4, 534-540.
C., R., Gonzalez, & Woods., R. E. (1992). Digital Image Processing. New York: Addison-Wesley.
Chi, C.-Y., Li, W.-C., & Lin, C.-H. (2017). Convex Optimization for Signal Processing and Communcations: From Fundamentals to Applications. Florida: CRC Press.
Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space. 2007 IEEE International Conference on Image Processing (pp. 313-316). San Antonio: IEEE.
Daniel, T., Nasir, M., & Bouman, C. A. (2005). Multispectral Image Coding. In A. Bovik, In Communications, Networking and Multimedia, Handbook of Image and Video Processing (2nd edition) (pp. 747-760). Texas: Elsevier.
Dou, W., Chen, Y., X.Li, & Sui, D. Z. (2007). A general framework for component substitution image fusion: An implementation using the fast image fusion method. Computational Geoscience, vol. 33 no.2, 219-228.
Earthexplorer. (2019, June 15). Retrieved from USGS: https://earthexplorer.usgs.gov/
Garzelli, A., Aiazzi, B., Alparone, L., Lolli, S., & Vivone, G. (2018). Multispectral pansharpening with radiative transfer-based detail-injection modeling for preserving changes in vegetation cover. Remote Sensing.
Garzelli, A., Capobianco, L., Alparone, L., Aiazzi, B., Baronti, S., & Selva, M. (2010). Hyperspectral pansharpening based on modulation of pixel spectra. 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (pp. 1-4). Reykjavik: IEEE.
Kahraman, S., & Ertürk, A. (2018). Review and Performance Comparison of Pansharpening Algorithms for RASAT images. Electrica, vol. 18, no.1, 109-120.
Laben, C. A., & Brower, B. V. (2000). United States Patent No. 6,011,875.
Lin, C.-H., & Bioucas-Dias, J. M. (2019). An explicit and scene-adapted definition of self-similarity prior with application to Sentinel-2 super-resolution. IEEE Transactions on Geoscience and Remote Sensing.
Lin, C.-H., Ma, F., Chi, C.-Y., & Hsieh, C.-H. (2018). A Convex Optimization-Based Coupled Nonnegative Matrix Factorization Algorithm for Hyperspectral and Multispectral Data Fusion. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 3, 1652-1667.
Nocedal, J., & Wright, S. J. (2006). Numerical Optimization Second Edition. Springer.
Nunez, J., Otazu, X., Fors, O., Prades, A., Pala, V., & Arbiol, R. (1999). Multiresolution-Based Image Fusion with Additive Wavelet Decomposition. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 3, 1204-1211.
P, J., & Hegde, A. V. (2015). A Review of Quality Metrics for Fused Image. INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE 2015) (pp. 133-142). Elsevier.
Palsson, F. (2017). Image Fusion in remote sensing and quality evaluation of fused images. Reykjavik: University of Iceland.
Richards, J. A., & Jia, X. (1996). Remote Sensing Digital Image Analysis - An Introduction. In Springer, Third Edition. Berlin: Springer.
S, R., Addamani, S., Venkat, & S, R. (2014). Spectral Angle Mapper Algorithm for Remote Sensing Image Classification. International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 4, 201-205.
Spacenet Challenge. (2019, June 15). Retrieved from Spacenet: https://spacenetchallenge.github.io/AOI_Lists/AOI_HomePage.html
Thomas, C., Ranchin, T., Wald, L., & Chanussot, J. (2008). Synthesis of Multispectral Images to High Spatial Resolution: A Critical Review of Fusion Methods Based on Remote Sensing Physics. IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 5, 1301-1312.
Tomas, R., Romero, R., Mulas, J., Marturia, J., Mallorqui, J., Lopes-Sanchez, J., . . . Gutierrez, F. (2014). Radar Interferometry Techniques For The Study of Ground Subsidence Phenomena: a Review of Practical Issues Through Cases in Spain. Environmental Earth Sciences, 163-181.
USGS. (2019, July 7). Retrieved from USGS website: http://edcimswww.cr.usgs.gov/pub/imswelcome/
Vivone, G., Alparone, L., Chanussot, J., Mura, M. D., Garzelli, A., Licciardi, L. G., . . . Wald, L. (2015). A critical comparison among pansharpening algorithms. IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no.5, 2565-2586.
Wald, L., Ranchin, T., & Mangolini, M. (1997). Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens., vol. 63, no. 6, 691-699.
Wang, C.-H., Lin, C.-H., Bioucas-Dias, J., Zheng, W.-C., & Tseng, K.-H. (2019). Panchromatic sharpening of multispectral satellite imagery via an explicitly defined convex self-similarity regularization. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Japan: IEEE.
Zhang, Y. (2004). Understanding Image Fusion. Photogramm. Eng. Remote Sens. , 657-661.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top