跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/05 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何瑞堂
研究生(外文):Ruei-TangHe
論文名稱:具雷利波頻散效應之地震超材料於橫斷面等向性介質之設計與模擬
論文名稱(外文):Design and numerical simulation of seismic metamaterials with Rayleigh waves dispersion effect in a transversely isotropic medium
指導教授:陳東陽陳東陽引用關係
指導教授(外文):Tungyang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:107
中文關鍵詞:雷利波超材料橫斷面等向性材料帶隙
外文關鍵詞:Rayleigh wavemetamaterialtransversely isotropic materialbandgap
相關次數:
  • 被引用被引用:1
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
地震超材料透過自然界不存在之現象達到抗震之效果,其現象為帶隙,然而帶隙頻率範圍之上下邊界所表現之波傳現象有所不同,因此本文探討上述兩邊界所產生不同波傳現象之物理意義,並利用此一機制設計超材料,接著利用超材料衰減地震波中最具有威脅性,「雷利波」。由於在眾多文獻中,皆將土壤視為等向性,因此為了更貼近現實,將基材延伸至橫斷面等向性,其自然界中沉積岩即為橫斷面等向性材料。本文透過理論推導雷利波與超材料耦合後之頻散關係,再藉由有限元素軟體對單元結構進行掃頻並驗證理論解,接著利用其結果分析比對雷利波於等向性及橫斷面等向性材料之差別,其中發現橫面等向性中的彈性模數C13、C33及C44皆會影響帶隙寬度,且C13及C44所影響之趨勢與C33相反,其帶隙寬度主要是由帶隙上邊界控制,而帶隙下邊界之共振頻率則不會有所影響,因此利用超材料於任意土壤,只須注意上邊界之變化。最後建立半無限域模型模擬,其雷利波於等向性及橫斷面等向性材料之波傳行為,皆如理論所預測。
Seismic metamaterials can have earthquake resistance effects by utilizing the concept of band gaps. The behavior of wave propagation at a frequency within the bandgap can be substantially different. This thesis investigates Rayleigh wave phenomena and exploits the bandgap mechanism to design metamaterials. The half-space is taken to be transversely isotropic, in a simulation of a type of surface wave in the seismic ground motion of the Earth. Firstly, we derive the dispersion relation based on the classical theory of waves, which is verified by carrying out numerical simulations based on finite element calculations (COMSOL Multiphysics). The objective of this work is to explore the differences between Rayleigh waves propagating in a medium with isotropy and transverse isotropy. It is found that different values of elastic moduli C13, C33, and C44 in transversely isotropic solids affect the upper boundary of the bandgap, thus the width of the bandgap and the effect of C13 is similar to that of C44, while that of C33 will exhibit opposite behavior ; meanwhile, the lower boundary of the bandgap remains unchanged. Lastly, we perform 2D finite element simulations to demonstrate the performance of effects on the propagation of Rayleigh waves in a transversely isotropic domain, and the results are in good agreements with theoretical predictions.
中文摘要 i
Abstract iii
誌謝 xv
目錄 xvi
表目錄 xviii
圖目錄 xix
第一章 緒論 1
1.1 文獻回顧與相關研究 1
1.2 研究動機 4
1.3 論文簡介 4
第二章 局部共振與波傳理論 7
2.1 局部共振 7
2.2 彈性波傳理論 8
2.2.1 地震波簡介 8
2.2.2 波傳於等向性材料之理論與推導 10
2.2.3 雷利波於等向性材料之簡介與推導 14
2.2.4 雷利波於橫斷面等向性材料之簡介與推導 21
第三章 混合雷利波於等向性材料分析與模擬 26
3.1 混合雷利波於等向性材料之頻散關係推導 29
3.2 離散模型分析 37
3.3 連體模型模擬與分析 44
3.3.1 單元結構介紹 44
3.3.2 頻散圖之分析 46
3.3.3 數值模擬 51
第四章 混合雷利波於橫斷面等向性材料分析與模擬 61
4.1 混合雷利波於橫斷面等向性材料之頻散關係推導 61
4.2 連體模型模擬與分析 69
4.2.1 頻散圖之分析 69
4.2.2 數值模擬 76
第五章 結論與未來展望 89
5.1 結論 89
5.2 未來展望 91
參考文獻 93
附錄A : 波傳於橫斷面等向性材料之理論與推導 99
附錄B : 布洛赫定理(Bloch’s theorem) 103
附錄C: 布里淵區(Brillouin zone) 104
Achaoui, Y., Antonakakis, T., Brule, S., Craster, R., Enoch, S. and Guenneau, S., Clamped seismic metamaterials: ultra-low frequency stop bands, New Journal of Physics 19(6): 063022, 2017.
Achaoui, Y., Ungureanu, B., Enoch, S., Brûlé, S. and Guenneau, S., Seismic waves damping with arrays of inertial resonators, Extreme Mechanics Letters 8: 30-37, 2016.
Achenbach, J., Wave Propagation in Elastic Solids, North Holland Publishing Company, 1973.
Achenbach, J. D., Explicit solutions for carrier waves supporting surface waves and plate waves, Wave Motion 28(1): 89-97, 1998.
Ahmad, F. and Rahman, A., Acoustic scattering by transversely isotropic cylinders, International Journal of Engineering Science 38(3): 325-335, 2000.
Auld, B. A., Acoustic Fields and Waves in Solids, Рипол Классик, 1973.
Bloch, F., Über die quantenmechanik der elektronen in kristallgittern, Zeitschrift Für Physik 52(7-8): 555-600, 1929.
Boechler, N., Eliason, J., Kumar, A., Maznev, A., Nelson, K. and Fang, N., Interaction of a contact resonance of microspheres with surface acoustic waves, Physical Review Letters 111(3): 036103, 2013.
Boechler, N., Eliason, J. K., Kumar, A., Maznev, A. A., Nelson, K. A. and Fang, N., Interaction of a contact resonance of microspheres with surface acoustic waves, Physical Review Letters 111(3): 036103, 2013.
Brûlé, S., Javelaud, E., Enoch, S. and Guenneau, S., Experiments on seismic metamaterials: molding surface waves, Physical Review Letters 112(13): 133901, 2014.

Bradley, C. and Cracknell, A., The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups, Oxford University Press, 1972.
Brillouin, L., Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, Courier Corporation, 2003.
Buchwald, V. T., Rayleigh waves in transversely isotropic media, The Quarterly Journal of Mechanics and Applied Mathematics 14(3): 293-318, 1961.
Colombi, A., Ageeva, V., Smith, R. J., Clare, A., Patel, R., Clark, M., Colquitt, D., Roux, P., Guenneau, S. and Craster, R. V., Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces, Scientific Reports 7(1): 6750, 2017.
Colombi, A., Colquitt, D., Roux, P., Guenneau, S. and Craster, R. V., A seismic metamaterial: The resonant metawedge, Scientific Reports 6: 27717, 2016a.
Colombi, A., Roux, P., Guenneau, S., Gueguen, P. and Craster, R. V., Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances, Scientific Reports 6: 19238, 2016b.
Colquitt, D., Colombi, A., Craster, R., Roux, P. and Guenneau, S., Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction, Journal of the Mechanics and Physics of Solids 99: 379-393, 2017.
Daley, P. F. and Hron, F., Reflection and transmission coefficients for transversely isotropic media, Bulletin of the Seismological Society of America 67(3): 661-675, 1977.
Du, Q., Zeng, Y., Huang, G. and Yang, H., Elastic metamaterial-based seismic shield for both Lamb and surface waves, AIP Advances 7(7): 075015, 2017.
Graff, K. F., Wave Motion in Elastic Solids, Oxford University Press, 1975.
Hill, R., Elastic properties of reinforced solids: some theoretical principles, Journal of the Mechanics and Physics of Solids 11(5): 357-372, 1963.
Huang, G. L. and Sun, C. T., Band gaps in a multiresonator acoustic metamaterial, Journal of Vibration and Acoustics 132(3): 031003, 2010.
Huang, H. and Sun, C., Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density, New Journal of Physics 11(1): 013003, 2009.
Huang, H. H. and Sun, C. T., Locally resonant acoustic metamaterials with 2D anisotropic effective mass density, Philosophical Magazine 91(6): 981-996, 2011.
Huang, H. H., Sun, C. T. and Huang, G. L., On the negative effective mass density in acoustic metamaterials, International Journal of Engineering Science 47(4): 610-617, 2009.
Huang, J. and Shi, Z., Attenuation zones of periodic pile barriers and its application in vibration reduction for plane waves, Journal of Sound and Vibration 332(19): 4423-4439, 2013.
Kittel, C., McEuen, P. and McEuen, P., Introduction to Solid State Physics, Wiley New York, 1996.
Krödel, S., Thomé, N. and Daraio, C., Wide band-gap seismic metastructures, Extreme Mechanics Letters 4: 111-117, 2015.
Lawson, A. C. and Reid, H. F., The California Earthquake of April 18, 1906: Report of the State Earthquake Investigation Commission, Carnegie institution of Washington, 1908.
Liu, Z., Zhang, X., Mao, Y., Zhu, Y., Yang, Z., Chan, C. T. and Sheng, P., Locally resonant sonic materials, Science 289(5485): 1734-1736, 2000.
Manger, G. E., Porosity and Bulk Density of Sedimentary Rocks, United States Geologoical Survey, 1963.
Maurel, A., Marigo, J.-J., Pham, K. and Guenneau, S., Conversion of Love waves in a forest of trees, Physical Review B 98(13): 134311, 2018.

Maznev, A. and Gusev, V., Waveguiding by a locally resonant metasurface, Physical Review B 92(11): 115422, 2015.
Miniaci, M., Krushynska, A., Bosia, F. and Pugno, N. M., Large scale mechanical metamaterials as seismic shields, New Journal of Physics 18(8): 083041, 2016.
Palermo, A., Krödel, S., Marzani, A. and Daraio, C., Engineered metabarrier as shield from seismic surface waves, Scientific Reports 6: 39356, 2016.
Palermo, A. and Marzani, A., Control of Love waves by resonant metasurfaces, Scientific reports 8(1): 7234, 2018.
Palermo, A., Vitali, M. and Marzani, A., Metabarriers with multi-mass locally resonating units for broad band Rayleigh waves attenuation, Soil Dynamics and Earthquake Engineering 113: 265-277, 2018.
Pendry, J. B., Negative refraction makes a perfect lens, Physical Review Letters 85(18): 3966, 2000.
Pendry, J. B., Holden, A., Stewart, W. and Youngs, I., Extremely low frequency plasmons in metallic mesostructures, Physical Review Letters 76(25): 4773, 1996.
Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques 47(11): 2075-2084, 1999.
Pennec, Y., Djafari‐Rouhani, B., Larabi, H., Vasseur, J. and Hladky‐Hennion, A. C., Phononic crystals and manipulation of sound, Physica Status Solidi C 6(9): 2080-2085, 2009.
Rahman, M. and Barber, J., Exact expressions for the roots of the secular equation for Rayleigh waves, Journal of Applied Mechanics 62(1): 250-252, 1995.
Rayleigh, L., On waves propagated along the plane surface of an elastic solid, Proceedings of the London Mathematical Society 1(1): 4-11, 1885.

Rehman, A., Khan, A. and Ali, A., Rayleigh waves speed in transversely isotropic material, Engineering Transactions 54(4): 323–-328, 2006.
Royer, D. and Dieulesaint, E., Elastic Waves in Solids I: Free and Guided Propagation, Springer Science & Business Media, 1999.
Sakoda, K., Optical Properties of Photonic Crystals, Springer Science & Business Media, 2004.
Singh, B., Rayleigh wave in an initially stressed transversely isotropic dissipative half-space, Journal of Solid Mechanics 5(3): 270-277, 2013.
Stein, S. and Wysession, M., An Introduction to Seismology, Earthquakes, and Earth Structure, John Wiley & Sons, 2003.
Thomsen, L., Weak elastic anisotropy, Geophysics 51(10): 1954-1966, 1986.
Tsvankin, I., Seismic Signatures and Analysis of Reflection Data in Anisotropic Media, Society of Exploration Geophysicists, 2012.
Veselago, V. G., The electrodynamics of substances with simultaneously negative values of ε and μ, Soviet Physics Uspekhi 10(4): 509-514, 1968.
Watson, L. and Wijk, K., Resonant ultrasound spectroscopy of horizontal transversely isotropic samples, Journal of Geophysical Research: Solid Earth 120(7): 4887-4897, 2015.
Wu, Y. and Zhang, Z.-Q., Dispersion relations and their symmetry properties of electromagnetic and elastic metamaterials in two dimensions, Physical Review B 79(19): 195111, 2009.
Yao, S., Zhou, X. and Hu, G., Experimental study on negative effective mass in a 1D mass–spring system, New Journal of Physics 10(4): 043020, 2008.

簡廷宇、黃瑜琛、吳逸軒、李冠慧、翁崇寧、陳東陽,新型態外部隔減震技術¬¬-地震超材料之設計與分析,中國土木水利工程學刊,接受發表,2019。


寧彥傑,具負等效質量慣性矩之微極彈性模型設計,成功大學土木工程學系碩士論文,2016。

吳逸軒,寬頻帶地震超材料設計與模擬,成功大學土木工程學系碩士論文,2018。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top