跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 21:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃元農
研究生(外文):Yuan-NungHuang
論文名稱:河川淤泥所製成泡沫與無機聚合膠結材之配比與製程研究
論文名稱(外文):Mixture Design and Manufacturing Process of Foams and Inorganic Polymeric Binders Made from River Sludge
指導教授:黃忠信黃忠信引用關係
指導教授(外文):Jong-Shin Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:105
中文關鍵詞:鹼激發無機聚合物河川淤泥膠結材預成形泡沫
外文關鍵詞:alkali-activatedinorganic polymerriver sludgebinderpreformed air bubble
相關次數:
  • 被引用被引用:1
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣因地形陡峭且地質條件不良,面臨颱風與極端氣候強降雨之肆虐沖刷,導致各地河川淤泥堆積問題日趨嚴重,對環境生態與生命安全造成極大衝擊,因此,每年河川淤泥之疏濬工程費用皆相當可觀,為使河川淤泥具有再利用經濟價值,本研究探討河川淤泥不同煅燒溫度,鹼活化劑適當之鹼模數、鹼當量及水膠比等配比設計,以製成具高抗壓強度之無機聚合膠結材,發現煅燒溫度700℃之75%河川淤泥與細度4000cm2/g之25%高爐石粉混合,選用鹼活化劑之水膠比0.35、鹼模數1及鹼當量為6%之配比設計所製成無機聚合膠結材具有最佳之抗壓強度。
由於無機聚合膠結材之鹼活化劑原料價格非常昂貴,限制其於土木營建工程上之應用,為克服價格昂貴且增加其附加價值,本研究於最佳配比設計與製作流程條件下,於鹼激發河川淤泥膠結材中添加不同比例預成形泡沫,製成不同相對密度泡沫無機聚合膠結材,經一系列相關試驗量測後,發現其力學與物理性質皆與試體空氣含量有關。至於添加高分子聚合物方面,添加SBR乳膠於鹼激發河川淤泥膠結材中進行改質處理,如此,除可提升試體之防水效果外,當添加體積百分比5%時,改質無機聚合膠結材能獲得較佳早期強度發展。最後,同時添加預成形泡沫與SBR乳膠於鹼激發河川淤泥膠結材,可製作泡沫改質無機聚合膠結材,然而,製作過程中發現,因為SBR乳膠之防水特性,不易與預成形泡沫彼此完整混合,導致試體之空氣含量較原先設計者為低,卻具有輕質、隔音與隔熱等特性,為一具市場競爭性之新型營建材料。
The rapid accumulation of river sludge, especially under the erosion of typhoon and extreme weather, could cause a serious impact on surrounding environment and human beings due to the steep terrain and poor geological conditions in Taiwan. The annular cost for dredging of river sludge is high and the reutilization for large amount of river sludge becomes urgent and important. Here, the reuse of river sludge as a raw material in the production of alkali-activated binder is exploited. When the total cost is taken into account, the appropriate alkali-equivalent content AE%, silicate modulus Ms and water-binder ratio W/B in the alkaline activator for various calcination temperatures are investigated experimentally. It is found that the optimal proportion and dosage are 75% fraction of river sludge under the calcination temperature of 700℃, 25% fraction of blast-furnace slag powders with a fineness of 4000cm2/g, and the alkaline activator of W/B=0.35, Ms=1 and AE%=6%, giving a maximum compressive strength of the resulting inorganic polymeric binder.

The alkaline activator used in the production of inorganic binders is very expensive, thus limiting their application in construction engineering. To reduce the total cost and to provide other special functions, alkali-activated river-sludge inorganic binders made by employing the optimal proportion and dosage were mixed with different amounts of preformed air bubbles to produce inorganic polymeric foams with various relative densities. By conducting a series of measurements, it is found that the physical and mechanical properties of inorganic polymeric foams depend on the air content within them.


The macromolecule polymer, SBR latex, was added to enhance the waterproof of alkali-activated river-sludge inorganic binders. When the volume fraction of SBR latex was 5%, the early compressive strength and waterproofing of the resulting organo-modified inorganic binders were enhanced significantly. Finally, organo-modified inorganic polymeric foams with various relative densities were made by mixing different amounts of preformed air bubbles with SBR latex and alkali-activated river-sludge inorganic binders. During the production process, however, it was found that the complete mixture of hydrophobic SBR latex with preformed air bubbles was difficult, leading to a lower air content of foams as expected. But, the organo-modified river-sludge inorganic polymeric foams are lightweight, good thermal insulation and sound protection and thus can be employed as a novel construction material.
摘要 I
誌謝 XV
目錄 XVI
表目錄 XIX
圖目錄 XX
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 本文組織與內容 4
第二章 相關理論與文獻回顧 7
2.1 河川淤泥 7
2.1.1 青山漁港淤泥 8
2.1.2 河川淤泥煅燒溫度 8
2.2 無機聚合膠結材 9
2.2.1 無機聚合膠結材之發展 9
2.2.2 無機聚合物之組成 10
2.2.2.1 鋁矽酸鹽礦物 10
2.2.2.2 鹼活化劑 12
2.2.3 無機聚合膠結材優點 13
2.2.4 無機聚合膠結材之問題 14
2.3 泡沫混凝土 14
2.3.1 泡沫製作 15
2.3.2 消泡因素 16
2.3.3 泡沫無機聚合膠結材 18
2.4 高分子聚合物改質混凝土 18
2.4.1 高分子改質混凝土種類 19
2.4.2 應用於改質之高分子聚合物 20
2.4.3 SBR乳膠 21
2.4.4 高分子改質混凝土特點 21
2.4.5 聚合物改質混凝土之研究 22
第三章 試驗材料與方法 27
3.1 試驗規劃 27
3.2 試驗材料與儀器設備 28
3.2.1 試驗材料 28
3.2.2 試驗儀器與設備 29
3.3 試體製作 31
3.3.1 無機聚合膠結材 31
3.3.1.1 無機聚合膠結材配比 31
3.3.1.2 無機聚合膠結材製作流程 32
3.3.2 泡沫無機聚合膠結材 34
3.3.2.1 泡沫無機聚合膠結材配比 34
3.3.2.2 泡沫無機聚合膠結材製作流程 35
3.3.3 改質無機聚合膠結材 37
3.3.3.1 改質無機聚合膠結材配比 37
3.3.3.2 改質無機聚合膠結材製作流程 38
3.3.4 泡沫改質無機聚合膠結材 39
3.3.4.1 泡沫改質無機聚合膠結材配比 39
3.3.4.2 泡沫改質無機聚合膠製作流程 40
3.4 試驗方法 42
3.4.1 抗壓強度試驗 42
3.4.2 抗彎強度試驗 42
3.4.3 吸水率試驗 43
第四章 試驗結果與討論 59
4.1 無機聚合膠結材 59
4.1.1 試驗參數影響 59
4.1.2 抗壓強度 61
4.2 泡沫無機聚合膠結材 62
4.2.1 試驗參數影響 63
4.2.2 抗壓強度 63
4.2.3 抗彎強度 65
4.2.4 吸水率 65
4.3 改質無機聚合膠結材 66
4.3.1 抗壓強度 66
4.3.2 抗彎強度 67
4.3.3 吸水率 67
4.4 泡沫改質無機聚合膠結材 68
4.4.1 抗壓強度 68
4.4.2 吸水率 69
第五章 結論與建議 96
5.1 結論 96
5.2 建議 98
參考文獻 99
[1]經濟部水利署,https://www.wra.gov.tw/。
[2]潘彥仰,「河川淤泥於營建材料再利用之研究」,國立成功大學土木工程研究所,碩士論文,2017。
[3]Davidovits, J., “X-Ray Analysis and X-Ray Diffraction of Casing Stones from the Pryramids of Egypt, and the Limestone of the Associated Quarries, Science In Egyptology Symposta, pp. 511-520, 1984.
[4]Xu, H., Van Deventer, J. S. J., The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, 59, 247-266, 2000.
[5]張瑜文,「水庫淤泥應用於無機聚合物膠結材」,國立成功大學土木工程研究所,碩士論文,2008。
[6]王怡雯,「泡沫無機聚合物之物理性質」,國立成功大學土木工程研究所,碩士論文,2009。
[7]Davidovits, J., “Chemistry of geopolymeric systems terminology,proceeding of Geopolymer 99 Second International Conference,Editors: Davidovits, J., R. and James, C., France,pp. 9-37,1999.
[8]Xu, H. and Van Deventer, J. S. J and Lukey, G. C., “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures, International Engineering Chemical Research, Vol. 40, pp.3749-3756, 2001.
[9]Davidovits, J., “Early high-strength mineral polymer, United States Patent 4,509,985, 1985.
[10]Davidovits, J., “Method for obtaining a geopolymeric binder allowing to stabilize, solidify and consolidate toxic or waste materials, United States patent 5,349,118, 1994.
[11]Yip, C. K., Lukey, G. C. and van Deventer* J. S. J., “The coexistence of eopolymeric gel and calcium silicate hydrateat the early stage of alkaline activation, Cement and Concrete Research, Vol. 35, pp.1688-1697, 2005.
[12]王秋閔,「營建剩餘土應用於無機聚合膠結材」,國立成功大學土木工程研究所,碩士論文,2009。
[13]Palomo, A., M.W.Grutzeck., M.T.Blanco.“Alkali-activated fly ashes: Acement for the future.Cement and Concrete Research, vol.29, no.8,pp1323-1329, 1999.
[14]古道,「河川淤泥應用於泡沫與改質無機聚合物之研究」,國立成功大學土木工程研究所,碩士論文,2018。
[15]Krizan, D., & B.Zivanovic. “Effect of Dosage and Modulus of Water Glass on Early Hydration of Alkali-Slag Cements.Cement and Concrete Research, 32(8), pp.1181-1188, 2002.
[16]Purdon, A.O.“The action of alkalis on blast furnace slag. Journal of the Society of Chemical Industry, vol.59, no.9, pp191-202, 1940.
[17]Phair J.W. and Van Deventer J.S.J., “Effect of Silicate Activator PH on Leaching of Waste Based inorganic polymer, Mineral Engineering,Vol.14 ,No.3 , pp.289-304 , 2001.
[18]Shi, C.& R.L. Day. “A calorimetric study of early hydration of alkali-slag cements. Cement and Concrete Research, pp.1333-1346,1995.
[19]Shi,C.& R.L. Day. “Some factors affecting early hydration of alkali-slag cements. Cement and Concrete Research, 26, pp.439-447, 1996.
[20]中國土木水利工程學會,《混凝土工程施工頇知》,科技圖書,PP231-244,18版,1992。
[21]閆振甲、何豔君,「泡沫混凝土實用生產技術」,化學工業出版社,2006。
[22]Bell, J. and Kriven, w., “Preparation of Ceramic Foams from Metakaolin‐Based Geopolymer Gels, Developments in Strategic Materials : Ceramic Engineering and Science Proceedings, Volume 29, PP96-111,2009.
[23]Schmidt, G., Randel P., Engels, H.-W. and Geick, B., “Furnace with in situ foamed insulation and process for its manufacture, USA Patent 5485986,1996.
[24]曾美玲、張天益,「無機聚合物金屬發泡不同操作條件之探討」,中國鑛冶工程學會會刊,55卷2期,pp.77-82,2011。
[25]王奕惟,「發泡無機聚合物之開發及耐熱性能研究」,國立台北科技大學土木與防災研究所,碩士論文,2009。
[26]ACI Committee 548, “Applications of Polymer Concrete, ACI SP-69,1981.
[27]Fowler, D.W., “Polymers in concrete:a vision for the 21st century,cement and concrete composites, Vol. 21, NO. 5-6, pp. 440-592,1999.
[28]Chandra, S., and Ohama, Y., “Polymer in concrete, CRC Press Inc,1994.
[29]Young, J.F., “Concrete, Second Edition, Pearson Education, Inc,2003.
[30]Ohama, Y., “Recent progress in concrete-polymer composites, Adv.Cem. Based Mater, 1997.
[31]Bentur, A., Diad, H. L., and Ben-Dor, L., “Effect of in situ polymerization on the chloride diffusion and microstructure of polymer portland cement pastes and mortars, Advances in Cement Research. Vol. 3, No. 9, pp. 1-7, 1990.
[32]鄭偉宏,「高分子混凝土強度特性及耐久性之研究」,國立臺灣海洋大學,碩士論文,1983。
[33]陳振欣,「高分子應用於水泥質材料性質影響之研究」,國立海洋大學材料工程研究所,博士論文,2005。
[34]曾進宏,「聚合物改質水泥基複合材料性質之研究」,國立臺灣海洋大學河海工程研究所,碩士論文,2006。
[35]Muhammad, B., Ismailu, M., “Performance of natural rubber latex modified concrete in acidic and sulfated environments, Construction and Building Materials 31, pp. 129-134, 2012.
[36]陳瀟,「一種聚合物改性高爐礦渣粉材料」,中華人民共和國國家智慧知識產業局專利號CN105800969A,2016。
[37]CNS 1010,「水硬性水泥墁料抗壓強度檢驗法」,1993。
[38]CNS 1230,「試驗室混凝土製作及養護法」,1995。
[39]CNS 1234,「混凝土抗彎強度試驗法」,1984。
[40]ASTM C642-13, “Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, 2013.
[41]顏聰,「土木材料」,中華輕質骨材協會,參版,2011。
[42]戴詩潔,「高領石鋁矽酸鹽聚合材料之研究」,碩士論文,國立台北科技大學材料及資源工程系,2005。
[43]黃兆龍、宋明山、劉博仁、林仁益、王和元,「添加MBR/SBR聚合乳液對水泥砂漿性質影響之研究」,技術學刊,第三卷,第四期,1988。
[44]行政院公共工程委員會,「公共工程高爐石混凝土使用手冊」,2001。
[45]景明化工股份有限公司,「Sodium silicate 矽酸鈉安全資料表」,2017。
[46]景明化工股份有限公司,「Sodium hydroxide 氫氧化鈉安全資料表」,2017。
[47]文加綸,「聚合物改質混凝土工程與耐磨性質之研究」,國立台灣科技大學營建工程系,碩士論文,2012。
[48]Gibson L.J., Ashby M.F., “The mechanics of three-dimensional celluar materials, Pro. Roy. Soc. Lond. A382, 43-59, 1982.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊