[1]Chang, Mark. (2015),類神經網路 – Backward Propagation 詳細推導過程。「http://cpmarkchang.logdown.com/」
[2]三木拓人, 清野純史, 奥村与志弘, 土肥裕史, 呉建宏, & 李徳河. (2017). 2016 年台湾高雄美濃地震と台南市の地盤震動特性. 地域安全学会論文集, 31, 319-327.
[3]內政部(2017),「建築物耐震設計規範與解說」,詹氏書局,台北,台灣
[4]台灣世曦工程顧問股份有限公司(2018),「台南市中級土壤液化潛勢地圖第一期建置暨地質改善委託技術服務」,台南市政府工務局,台南,台灣
[5]李德河、許琦(1988)。台南都會區地質概況。地工技術雜誌,第22期,第40~55頁。
[6]李德河、鍾廣吉、古志生、黃健政、劉憲德、林文哲、曾俊傑、廖志中、胡賢能、莊長賢、林炳森、蔡百祥、張振成(2005),都會區地下地質與工程環境調查研究第二期-新竹、苗栗與台南都會區地下地質與與工程環境調查研究(台南都會區),經濟部中央地質調查所委託研究計畫報告,新北,台灣
[7]沈哲平、林主潔、黃謝恭、林沛暘與王冠又(2010)。類神經網路應用於強震即時警報系統之建物受震反應分析。第十屆中華民國結構工程研討會,台灣。
[8]周小文、付暉(2005),「Kriging法在大區域場地砂土液化範圍判别中的應用研究」,長江科學院院報,第22卷,第4期,第48-51頁
[9]林朝棨(1971),「台南地方的第四紀地質」,經濟部聯合礦業研究所,新竹,台灣。
[10]洪勝利,利用類神經網路建立微震量測法評估土壤液化潛勢之研究,國立成功大學土木工程研究所碩士論文,2018。[11]夏啟明(1992),「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文
[12]國家災害防救科技中心(2016),0206地震災情彙整與實地調查報告,「https://www.ncdr.nat.gov.tw/」。
[13]國家地震工程研究中心(2013),「https://www.ncree.org/DesignSpectra.aspx」
[14]國家地震工程研究中心(2017),「https://www.ncree.org/HBF.aspx」
[15]陳嘉裕(1999),「細粒料含量對砂土液化潛能之影響研究」,國立成功大學土木工程研究所,碩士論文[16]黃于庭,台南地區土壤液化評估方法適用性之研究。國立成功大學土木工程學系碩士論文,台南市,2018。[17]黃有志,蘭陽平原場址效應及淺層S 波速度構造,國立中央大學地球物理所碩士論文,2003。[18]黃俊鴻、楊志文、陳正興,2005,「本土化液化評估方法之建議-雙曲線液化強度曲線」,地工技術,第103期,第53-64頁。
[19]黃俊鴻、 陳正興、莊長賢,2012,「本土 HBF土壤液化評估法之不確定性」, 地工技術雜誌,第 133期,第 77-86頁
[20]黃雋彥,利用微地動量測探討台灣地區之場址效應,國立中央大學地球物理所碩士論文,2009。[21]葉怡成(2001),類神經網路,台北 : 儒林圖書有限公司。
[22]廖元憶(2005),「台灣西南沿海高細粒料含量砂土的探討」,國立成功大學土木工程研究所,碩士論文[23]鄭文隆、吳偉康(1985),「土壤液化之災害型態與現地研判」,地工技術雜誌,第90期,第90-103頁
[24]盧志杰、許尚逸、黃郁惟、黃俊鴻(2016),「美濃地震液化災損調查及簡易評估」,中華民國第十三屆結構工程研討會暨第三屆地震工程研討會,桃園。
[25]Almendros, J., Luzón, F., & Posadas, A. (2004). Microtremor analyses at Teide Volcano (Canary Islands, Spain): assessment of natural frequencies of vibration using time-dependent horizontal-to-vertical spectral ratios. pure and applied geophysics, 161(7), 1579-1596.
[26]Beroya, et al.(2009)/ Beroya, M. A. A., Aydin, A., Tiglao, R., & Lasala, M. (2009). Use of microtremor in liquefaction hazard mapping. Engineering Geology, 107(3-4), 140-153.
[27]Bolton Seed, H., Tokimatsu, K., Harder, L. F., & Chung, R. M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, 111(12), 1425-1445.
[28]Borcherdt, R. D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1), 29-61.
[29]Chang, S. K., Lee, D. H., Wu, J. H., & Juang, C. H. (2011). Rainfall-based criteria for assessing slump rate of mountainous highway slopes: a case study of slopes along Highway 18 in Alishan, Taiwan. Engineering geology, 118(3-4), 63-74.
[30]Chien, L. K., Oh, Y. N., & Chang, C. H. (2002). Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil. Canadian Geotechnical Journal, 39(1), 254-265.
[31]Dongare, A. D., Kharde, R. R., & Kachare, A. D. (2012). Introduction to artificial neural network. International Journal of Engineering and Innovative Technology (IJEIT), 2(1), 189-194.
[32]Goh, A. T. C. (1994). Seismic liquefaction potential assessed by neural network, Journal of Geotechnical & Geoenvironmental Engineering, ASCE, 120(9), page 1467-1480.
[33]Hazen, A. (1920). Hydraulic-fill dams. Transactions of the American Society of Civil Engineers, 83(1), 1713-1745.
[34]Holzer, T. L., Bennett, M. J., Noce, T. E., Padovani, A. C., & Tinsley III, J. C. (2006). Liquefaction hazard mapping with LPI in the greater Oakland, California, area. Earthquake Spectra, 22(3), 693-708.
[35]Huang, H. C. (2002). Characteristics of earthquake ground motions and the H/V of microtremors in the southwestern part of Taiwan. Earthquake engineering & structural dynamics, 31(10), 1815-1829.
[36]Huang, H. C., & Teng, T. L. (1999). An evaluation on H/V ratio vs. spectral ratio for site-response estimation using the 1994 Northridge earthquake sequences. pure and applied geophysics, 156(4), 631-649.
[37]Huang, H-C., and Tseng, Y-S., 2002, Characteristics of Soil Liquefaction using H/V of Microtremors in Yuan-Lin area, Taiwan, Terrestrial, Atmospheric and Oceanic (TAO), Vol. 13, No.3, September 2002, page 325 - 338
[38]Idriss, I.M., and R.W. Boulanger, 2008, Soil Liquefaction during Earthquakes, Earthquake Engineering Research Institute MNO-12, Oakland, California.
[39]Ishihara, K. (1985). Stability of natural deposits during earthquakes. Proc. of 11th ICSMFE, 1985, 1, 321-376.
[40]Iwasaki, T., Arakawa, T., & Tokida, K. I. (1984). Simplified procedures for assessing soil liquefaction during earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, 3(1), 49-58.
[41]Juang, C. H., & Chen, C. J. (1999). Cpt‐based liquefaction evaluation using artificial neural networks. Computer‐Aided Civil and Infrastructure Engineering, 14(3), 221-229.
[42]Kanai, K. (1954). TANAKA, T. andOSADA, K MeasurementoftheMicrotremor. 1. Bull. Earthq. Res. Inst, 32, 199-209.
[43]Kanai, K., Tanaka, T., & Osada, K. (1962). Measurement of the microtremor VII. Bull. Earth. Res. Inst, 35, 191-200.
[44]Khaze, S. R., Masdari, M., & Hojjatkhah, S. (2013). Application of Artificial Neural Networks in estimating participation in elections. arXiv preprint arXiv:1309.2183.
[45]Kiyono, J., Ono, Y., Sato, A., Noguchi, T., & Putra, R. R. (2011). Estimation of subsurface structure based on microtremor observations at Padang, Indonesia. ASEAN Engineering Journal, Part C, 1(3), 66-81.
[46]Kyaw, Z. L., Pramumijoyo, S., Husein, S., Fathani, T. F., & Kiyono, J. (2014). Investigation to the local site effects during earthquake induced ground deformation using microtremor observation in Yogyakarta, Central Java-Indonesia. In Landslide Science for a Safer Geoenvironment (pp. 241-249). Springer, Cham.
[47]Lee, K.L. and Seed, H.B., 1967, Cyclic Stress Conditions causing Liquefaction of Sand: Am. Soc. Civil Engineers Proc. Jour. Soil Mechanics and Found. Div. Vol.93, no SM1, page 47 – 70
[48]Lermo, J., & Chávez-García, F. J. (1994). Are microtremors useful in site response evaluation?. Bulletin of the seismological society of America, 84(5), 1350-1364.
[49]Lermo, J., & Chávez-García, F. J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the seismological society of America, 83(5), 1574-1594.
[50]MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT [New Zealand] (2012), “http://www.dbh.govt.nz/guidance-on-repairs-after-earthquake.
[51]Mucciarelli, M., Gallipoli, M. R., Di Giacomo, D., Di Nota, F., & Nino, E. (2005). The influence of wind on measurements of seismic noise. Geophysical Journal International, 161(2), 303-308.
[52]Nakamura,Y., 1989, A Method for Dynamic Characteristics Estimation of Surface Layers using Microtremor on the Surface, Quarterly Report of RTRI Vol. 30 No.1, page 18–27
[53]Nakamura, Y. (1996). Real-time information systems for seismic hazards mitigation UrEDAS, HERAS and PIC. QUARTERLY REPORT-RTRI, 37(3), 112-127.
[54]Nakamura, Y. (2008, October). ON THE H/V SPRECTRUM. The 14th World Conference on Earthquake Engineering, Beijing, China.
[55]Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by back-propagating errors. Cognitive modeling, 5(3), 1.
[56]Seed, H. B. (1976). Evaluation of soil liquefaction effects on level ground during earthquakes. Liquefaction problems in geotechnical engineering, 2752, 1-104.
[57]Seed, H.B. and Idriss I.M. (1971). Simplified Procedure for Evaluating Soil Liquefaction Potential, Am. Soc. Civil Engineers Proc. Jour. Soil Mechanics and Found. Div. Vol. 92, No. SM6, page 105 - 134
[58]Shahin, M. A., Jaksa, M. B., & Maier, H. R. (2001). Artificial neural network applications in geotechnical engineering. Australian geomechanics, 36(1), 49-62.
[59]Sharma, V., S. Rai, A. Dev, 2012, A comprehensive Study of Artificial Neural Networks, International Journal of Advanced Research in Computer Science and Software Engineering (IJARCSSE) Vol. 2, Issue 10, October 2012, page 278 – 284
[60]Terzaghi, Karl, and Peck, R.B. (1948). Soil Mechanics in Engineering Practice, New York: John Wiley and Sons, 566 p.
[61]Tokeshi, J.K., Sugimura, Y., and Sasaki, T. (1996). Assessment of Natural Frequency from Microtremor Measurement using Phase Spectrum, 11th World Conference on Earthquake Engineering, paper no.309
[62]Tokimatsu, K., & Yoshimi, Y. (1983). Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils and Foundations, 23(4), 56-74.
[63]Youd, T. L., & Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, 127(4), 297-313.
[64]Zhang, H., Jeng, D. S., Cha, D., & Blumenstein, M. (2007). Parametric study on the prediction of wave-induced liquefaction using an artificial neural network model. Journal of Coastal Research, 374-378.