跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/16 11:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林政弘
研究生(外文):Cheng-HungLin
論文名稱:居家健檢系統開發應用於糞便潛血量測之研究
論文名稱(外文):Development of Home Health Checkup System for Detecting Fecal Occult Blood
指導教授:林裕城林裕城引用關係
指導教授(外文):Yu-Cheng Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:115
中文關鍵詞:糞便潛血影像處理行動醫療應用軟體統一計算架構HSV色彩空間
外文關鍵詞:home health checkupfecal occult bloodimage processingmobile medical applicationCUDAHSV
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究成功開發出具有線性度、穩定度之可於開放環境中使用的居家健檢系統,利用免疫反應呈色作為檢測標的並以本系統量化其結果。本研究中使用所開發之應用程式與伺服器連接、拍攝免疫反應呈色結果與本研究所開發的比色板並上傳至伺服器以達到雲端運算的功能,並接收運算結果存入應用程式中的資料庫記錄日期與濃度,以供使用者未來瀏覽使用。為確認本研究所開發的居家健檢系統能於不同偏光環境、對焦距離、光強度、不同手機下有相似的線性度,本研究同時開發一可量化環境的模擬環境系統作為輔助系統以供測試居家健檢系統時使用。
本研究中的居家健檢系統其應用程式使用於Android作業系統以Android Studio IDE使用Java程式語言開發,使用的網頁伺服器為XAMPP,並以PHP做資料傳輸與管理。伺服器中的影像處理程式以Visual Studio IDE做為開發環境,整合HSV色彩空間之概念、OpenCV開源程式庫與Nvidia所開發的CUDA架構以C/C++撰寫。
在模擬環境系統中的測試,本研究所開發的居家健檢系統其影像處理程式於開放環境下仍可正確的抑制陰影、環境光與人為操作上的誤差並且正確的得到T線特徵位置。並於偏光、對焦高度與光強度等不同環境變數下其灰階靈敏度測試的曲線決定係數可介於0.978至0.999之間,而於實際糞便潛血檢測劑量量測下其曲線決定係數可達0.956,且可良好的分辨0 ng/mL與50 ng/mL。
This thesis presents a health care system with fast, portability, stability, and low cost for fecal occult blood tests (FOB) to replace the traditional health checkup. The inspection is based on immunochromatographic assay which is widely applied to many fields of clinical diagnosis. In combination with immunochromatographic strip and home health checkup System, the patient is able to detect and calculate the concentration of the sample. Furthermore, the patient can browse the diagnostic records, view the trend and have a health checkup in any place by the application. The system software integrate HSV image processing, cloud computing, Compute Unified Device Architecture (CUDA) acceleration, Android application and server management. Compare with traditional health checkup, to operate the home health checkup system, the only additional hardware is a stage with color palette made by cardboard and the user’s mobile device. To confirm the system with confirmation experiments, we also build a support system which is use to simulate the difference environment. After the test, we found that the home health checkup system is strong enough to operate correctly in most of the condition in daily routine and it is able to present an agile, high sensitive and steady performance with low economical cost.
摘要 I
Extended Abstract III
誌謝 IX
目錄 X
圖目錄 XV
表目錄 XX
縮寫表 XXIII
第一章 緒論 1
1-1 研究背景 1
1-2 大腸癌的檢測方式簡介 3
1-3 免疫分析法 5
1-3-1 免疫分析基本理論 5
1-3-2 抗原與抗體定義 5
1-3-3 抗原與抗體結合力 7
1-4側流層析免疫反應試紙 8
1-5 文獻回顧 11
1-5-1 影像判讀簡介 11
1-5-2 膠體金奈米粒子灰階判讀 12
1-5-3 動態陰影偵測 14
1-6 研究動機與目的 17
1-7 章節架構 18
第二章 系統設計與製作 20
2-1 系統流程 20
2-2 主系統硬體 22
2-2-1 硬體設計之理念 22
2-2-2 比色板設計與製作 22
2-2-3 載台設計與製作 23
2-3 應用程式與伺服器 25
2-3-1 應用程式與伺服器架構圖 25
2-3-2 應用程式 25
2-3-3 伺服器架設 26
2-4 影像處理程式 27
2-4-1 影像處理前言 27
2-4-2 座標校正 29
2-4-3 定義校正色塊邊界 32
2-4-4 色彩空間距離差 38
2-4-5 C線位置抓取 42
2-4-6 T線位置抓取 43
2-4-7 T線實際灰階 45
2-4-8 零濃度獨立判讀 47
2-4-9 GPU運算加速 49
2-4-10 影像處理結論 50
2-5 模擬環境系統 52
2-5-1 模擬環境系統架構 52
2-5-2 黑箱設計 53
2-5-3 人機介面與溝通 55
2-5-4 LED與電路設計 56
2-5-5 BH1750光照模塊 58
2-5-6 模擬環境系統程式撰寫 59
2-6 色階線性度測試卡匣 61
第三章 儀器與設備 62
3-1 智慧手機 62
3-2 伺服器儀器 62
3-2-1 伺服器軟體 62
3-2-2 伺服器電腦配備 62
3-3 雷射雕刻機 64
3-4 模擬環境系統之儀器與設備 65
3-4-1 微處理器 65
3-4-2 光照度感測器 66
3-4-3 LED光源 66
3-4-4 觸碰螢幕 67
3-5 實驗藥品 68
第四章 線性度實驗方法與結果 69
4-1 對焦高度測試實驗與結果 69
4-2 光強度測試實驗與結果 76
4-3 偏光實驗與結果 83
4-3-1 偏光測試實驗簡介 83
4-3-2 上偏光測試實驗與結果 84
4-3-3 側偏光測試實驗 91
4-3-4 下偏光測試實驗 98
4-4 色階線性測試總結 105
4-5 FOB試劑測試與結果 107
第五章 結論與建議 109
5-1 結論 109
5-1 建議 111
參考文獻 112
[1]R. B. Carlsen, O. P. Bahl and N. Swawinathan, “Human Chorionic Gonadotropin Linear Amino Acid Sequence of The β Subunit, Journal of Biological Chemistry, 248, pp. 6810-6827, 1973.
[2]R. B. Carlsen, O. P. Bahl and N. Swawinathan, “Human Chorionic Gonadotropin Linear Amino Acid Sequence of The β Subunit, Journal of Biological Chemistry, 248, pp. 6810-6827, 1973.
[3]R. H. Garrett and C. M. Grisham, Biochemistry, Saunders College Publishing, 1995.
[4]E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme -labeled anti-immunoglobulin in antigen-coated tubes, Journal of Immunology, 109, pp. 129-135, 1972.
[5]T. Watanabe, Y. Ohkuno, H. Matsuoka, H. Kimura, Y. Sakai, Y. Ohkaru, T. Tanaka, and Y. Kitaura, “Development of a simple whole blood panel test for detection of human heart –type fatty acid-binding protein, Clinical Biochemistry, 34, pp. 257-263, 2001.
[6]M. Hedenfalk, P. Adlercreutz, and B. Mattiasson, “Modulation of the measuring range of a radioimmunoassay using an organic water two phase system, Analytica Chimica Acta, 341, pp. 269-274, 1997.
[7]F. Hardy, L. Djavadi-Ohaniance and M. E. Goldberg, “Measurement of antibody/antigen association rate constants in solution by a method based on the enzyme-linked immunosorbent assay, Journal of immunological methods, 200, pp. 155-159, 1997.
[8]P. Onnerfjord, S. Eremin, J. Emneus and G. Marko-Varga, “Fluorescence polarisation for immunoreagent characterization, Journal of immunological methods, 213, pp. 31-39, 1998.
[9]J. A. Schmid and A. Billich, “Simple method for high sensitivity chemiluminescence ELISA using conventional laboratory equipment, BioTechniques, 22, pp. 278, 1997.
[10]C. A. Janeway, P. Travers, M. Walport, and M. J. Shlomchik, Immunobiology, 5th edition, Garland Science, 2001.
[11]徐敘瑢,陳憲偉,光電材料與顯示技術,五南文化事業出版,2007.
[12]A.M. Shabut, M.H. Tania, K.T. Lwin, B.A. Evans, N.A. Yusof, K.J. Abu-Hassan, M. Hossain, “An intelligent mobile-enabled expert system for tuberculosis disease diagnosis in real time, Expert Systems with Applications, 114, pp. 65-77, 2018.
[13]J.Y. Huang, H.T. Lin, T.H. Chen, C.A. Chen, H.T. Chang, C.F. ChenSignal, “amplified gold nanoparticles for cancer diagnosis on paper-based analytical devices, 98, ACS Sensors, pp. 174-182; 2018.
[14]G. Chen, W. Chen, Y. Yen, C. Wang, H. Chang, C. Chen “Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices, 86, ACS Publication, pp. 6843-6849, 2014.
[15]Y. Lu, Weiwei Shi, Jianhua Qin, Bingcheng Lin, “Low cost, portable detection of gold nanoparticle‐labeled microfluidic immunoassay with camera cell phone, Journal of Electrophoresis, 30(4) ,pp. 579 -582, 2009.
[16]R. Cucchiara, C. Grana, M. Piccardi, A. Prati, and S. Sirotti, “Improving shadow suppression in moving object detection with hsv color information, Intelligent Transportation Systems (August 2001), pp. 334-339.
[17]N. Herodotou, K.N. Plataniotis, A.N. Venetsanopoulos, “A color segmentation scheme for object-based video coding, Proceedings of the IEEE Symposium on Advances in Digital Filtering and Signal Processing, pp. 25-29, 1998.
[18]H. K, Yuen and Princen, J. and Illingworth, J. and Kittler, J., “Comparative study of Hough transform methods for circle finding. Image Vision Comput, 81, pp 71–77, 1990 .
[19]J. Canny, “A Computational Approach to Edge Detection, IEEE Trans. on Pattern Analysis and Machine Intelligence, 8(6), pp. 679-698, 1986.
[20]N. Otsu, “A threshold selection method from gray-level histograms, IEEE Trans. On Systems, Man, and Cybernetics, SMC-9, pp. 62-66, 1979.
[21]CUDA parallel computing, http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊