臺灣博碩士論文加值系統

(35.172.136.29) 您好！臺灣時間：2021/07/29 07:04

:::

詳目顯示

:

• 被引用:0
• 點閱:19
• 評分:
• 下載:0
• 書目收藏:0
 本文研究目的為探討一塊壓電三明治Mindlin Plate的動態響應，此三明治板結構的上下層為鋁合金板，中間為壓電材料(PZT-5H)。　　本文經由Mindlin Plate理論，計算出結構的應力、應變，再藉由應力、應變推算出動能及應變能方程式。通過邊界條件以及形狀函數計算出運動方程式，再以Hamilton’s Principle 理論計算出壓電三明治之統馭方程式，應用解析法於求出壓電複合板之模態頻率。　　施加一個集中型移動負載於結構上，獲得其位移與電壓，並探討改變移動負載的速度對於位移與電壓的影響。
 The purpose of this paper is to investigate the dynamic response of a piezoelectric sandwich Mindlin Plate. The upper and lower layers of the sandwich plate structure are aluminum alloy plates with piezoelectric material (PZT-5H) in the middle. The stresses and strains of the structure in this paper are calculated via the Mindlin plate theory. The kinetic energy and strain energy are derived by stress and strain. The governing equations of the piezoelectric sandwich plate are derived by Performing Hamilton's Principle. The modal frequencies of the piezoelectric composite plate are obtained by analytic method. Applying a concentrated moving load on the structure obtain the displacement of the plate and the voltage on the piezoelectric layer. The velocity effect on the displacement and voltage is investigated in the thesis.
 目　錄摘要……………………………………………………………………………...I英文摘要………………………………………………………………………..II誌謝…………………………………………………………………………...VII目錄………………………………………………………………………….VIII圖目錄……………………………………………………………………...….XI表目錄……………………………………………………………………….XIII第一章 緒論……………………………………………………………………11-1 前言……………………………………………………………………11-2 文獻回顧………………………………………………………………31-3 本文大綱………………………………………………………………6第二章 研究架構………………………………………………………………72-1 研究流程………………………………………………………………72-2 基本假設………………………………………………………………7第三章 壓電複合板之運動方程式……………………………………………83-1 研究模型設定…………………………………………………………83-2 鋁板位移函數…………………………………………………………93-3壓電板位移函數……………………………………………………...103-4 鋁板之動能與應變能………………………………………………..143-5壓電板之動能與電焓………………………………………………...163-6 壓電複合板之運動方程式…………………………………………..17第四章 壓電複合板之振動分析……………………………………………..194-1 邊界條件……………………………………………………………..194-2 自由震動……………………………………………………………..204-3 強迫振動……………………………………………………………..254-4 移動負載作用………………………………………………………..28第五章 研究數據分析與討論…………………………………………..……295-1 材料設定……………………………………………………………..295-2 振動分析……………………………………………………………..30 5-2-1 自由震動……………………………………………………....30 5-2-2 強迫振動………………………………………………………315-3 位移與時間之關係………………………………………………......31 5-3-1 不同速度下位移與時間之關係……………………………....31 5-3-2 速度與位移之比較……………………………………………385-4 電壓與時間之關係…………………………………………………..42 5-4-1 不同速度下電壓與時間之關係………...…………………….42 5-4-2 速度與電壓之比較……………………………………………47第六章 總結…………………………………………………………….…….516-1 結論…………………………………………………………………..516-2 未來展望……………………………………………………………..52參考文獻………………………………………………………………………53附錄……………………………………………………………………………57
 1. E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates, Journal of Applied Mechanics, Vol. 12, pp. 69-77, 1945.2. R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of isotropic elastic plates, Journal of Applied Mechanics, Vol. 18, pp. 31-38, 1951.3. R. D. Mindlin, A. Schacknow and H. Deresiewicz, “Flexural vibrations of rectangular plates, Journal of Applied Mechanics, Vol. 23, pp. 431-436, 1955.4. E. Reissner and Y. Stavsky, “Bending and stretching of certain types of heterogeneous aeolotropic elastic plates, Journal of Applied Mechanics, Vol. 28, pp. 402-408, 1961.5. J. M. Whitney and N. J. Pagano, “Shear deformation in heterogeneous anisotropic plates, Journal of Applied Mechanics, Vol. 37, pp. 1031-1036, 1970.6. A. W. Leissa, “The free vibration of rectangular plates, Journal of Sound and Vibration, Vol. 31, pp. 257-293, 1973.7. N. D. Phan and J. N. Reddy, “Analysis of laminated composite plates using a higher‐order shear deformation theory, International Journal for Numerical Methods in Engineering, Vol. 21, pp. 2201-2219, 1985.8. N. S. Putcha and J. N. Reddy, “Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory, Journal of Sound and Vibration, Vol. 104, pp. 285-300, 1986.9. J. N. Reddy, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, 1997.10. L. X. Luccioni and S. B. Dong, “Levy-type finite element analyses of vibration and stability of thin and thick laminated composite rectangular plates, Composites Part B: Engineering, Vol. 29, pp. 459-475, 1998.11. J. A. Gbadeyan and S. T. Oni, “Dynamic behaviour of beams and rectangular plates under moving loads, Journal of Sound and Vibration, Vol. 182, pp. 677-695, 1995.12. J. S. Wu, M. L. Lee and T. S. Lai, “The dynamic analysis of a flat plate under a moving load by the finite element method, International Journal for Numerical Methods in Engineering, Vol. 24, pp. 743-762, 1987.13. J. J. Wu, A. R. Whittaker and M. P. Cartmell, “The use of finite element techniques for calculating the dynamic response of structures to moving loads, Computers ＆ Structures, Vol. 78, pp. 789-799, 2000.14. C. C. Chao and Y. C. Chern, “Comparison of Natural Frequencies of Laminated by 3-D Theory, Journal of Sound and Vibration, Vol. 230, No. 5, pp. 985-1007, 2000.15. M. Aydogdu and T. Timarci, “Vibration Analysis of Cross-Ply Laminated Square Plates with General Boundary Condition, Composites Science and Technology, Vol. 63, pp.1061-1070, 2003.16. G. Bradfiled, “Ultrasonic transducers 1. Introduction transducers. Part A. Ultrasonic, pp.112-113, 1970.17. R. D. Mindlin, “Forced thickness –shear and flexural vibrations of piezoelectric crystal plates, Journal of Applied Physics, Vol. 22, pp. 83- 88, 1952.18. H. F. Tiersten, “Thickness vibrations of piezoelectric plates, The Journal of the Acoustical Society of America, Vol. 35, pp. 53-58, 1963.19. P. Lloyd and M. Redwood, “Finite‐difference method for the Investigation of the vibrations of solids and the evaluation of the equivalent‐circuit characteristics of piezoelectric resonators, The Journal of the Acoustical Society of America, Vol. 39, pp. 346-354, 1966.20. C. K. Lee and F. C. Moon, “Laminated piezopolymer plates for torsion and bending sensors and actuators, The Journal of the Acoustical Society of America, Vol. 85, pp. 2432-2439, 1989.21. E. F. Crawley and J. De Luis, “Use of piezoelectric actuators as elements of intelligent structures, AIAA Journal, Vol. 25, pp. 1373-1385, 1987.22. S. Brooks and P. Heyliger, “Static behavior of piezoelectric laminates with distributed and patched actuators, Journal of Intelligent Material Systems and Structures, Vol. 5, pp. 635-646, 1994.23. Y. K. Kang, H. C. Park, W. Hwang and K. S. Han, “Optimum placement of piezoelectric sensor/actuator for vibration control of laminatedbeams, AIAA Journal, Vol. 34, pp. 1921-1926, 1996.24. M. W. Lin, A. O. Abatan and C. A. Rogers, “Application of commercial finite element codes for the analysis of induced strain-actuated structures, Journal of Intelligent Material Systems and Structures, Vol. 5, pp. 869- 875, 1994.25. J. H. Huang and H. I. Yu, “Dynamic electromechanical response of piezoelectric plates as sensors or actuators, Materials Letters, Vol. 46, pp. 70-80, 2000.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 無相關期刊

 無相關點閱論文

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室