跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林育宏
研究生(外文):Yu-HungLin
論文名稱:大葉桃花心木種子飛行特性之研究
論文名稱(外文):Study on Flight Characteristics of Swietenia macrophylla Seeds
指導教授:周榮華周榮華引用關係
指導教授(外文):Jung-Hua Chou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩士在職專班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:58
中文關鍵詞:桃花心木種子穩態旋轉流場FLUENT模擬
外文關鍵詞:Swietenia macrophylla Seedsteady state rotationflow fieldFLUENT simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1681
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
大葉桃花心木種子構造十分簡單堅固,利用自轉來降低下降速度傳播種子,且受損後仍可以自動旋轉。本論文主要是研究桃花心木種子的相關特性,分析相關參數趨勢與相關空氣力學特性之結果。本研究以桃花心木種子進行觀測實驗,以影片計算相關數據取得趨勢與參數數據,使用FLUENT模擬計算,最後使用乾冰的白色煙霧觀察種子穩態旋轉的流場變化來驗證。
分析結果桃花心木種子的穩態旋轉發現,其旋轉平均轉速805 rpm,下降速度1.2 m/sec,傾斜角29.9 度;分析其趨勢可知1.面積單位重量越重,降落速度與轉速越快2.種子的表面積越大,越慢進入旋轉高程,並且轉速越慢3.重量越重,下降速度越高,越慢進入穩態旋轉軌跡4.種子長度越長,轉速越慢5.寬度越寬,轉速越慢,越慢進入穩態旋轉。桃花心木種子的翼面截斷與破損的動作分析得知,破損是否對進入穩態旋轉軌跡高度有明顯影響,翼長越短越慢轉為穩態旋轉,但是轉速越快。利用FLUENT模擬桃花心木種子旋轉分析的流場分析中,可以看到漩渦中心向後偏移,將旋轉種子前緣翼面被渦漩吸引朝上,翼尾部朝下,如飛機升空時的機翼狀態,以此產生浮力減緩下降速度。
The structure of Swietenia macrophylla seed is simple and sturdy. It uses rotation to reduce the descending speed for seed spreading and can still rotate automatically after being partially damaged. This thesis studies the related aerodynamic characteristics by both experiments and simulation.
The results showed that steady rotation of the Swietenia macrophylla seeds has an average rotational speed of 805 rpm, a descending speed of 1.2 m/sec, and a tilt angle of 29.9 degrees. Moreover, seeds of heavier weight will have faster landing speed and rotational speeds. A larger the surface area of the seed will lead to slower rotation speed; a longer seed length results in a slower rotational speed. Also, a wider width will have a slower speed and slower steady state rotation. Shortening the seed length has a significant effect on the height of the steady-state rotation trajectory. The shorter the wing length, the slower the rotation to the steady state rotation, but the faster the rotation speed. In the flow field finite element analysis, we can see that the center of the vortex shifts backwards, and the leading edge of the rotating seed is curing upwards, and the tail of the wing is facing downwards. The state of the wing, thereby generating lift to slow down the rate of descend.
摘要 I
Extended Abstract II
目錄 IX
圖目錄 XI
表目錄 XII
第一章 緒論 1
1.1前言 1
1.2研究動機 2
第二章 文獻回顧 3
2.1 自旋種子 3
2.2 自旋種子氣動力學 4
第三章 理論基礎 7
3.1 FLUENT升阻力計算公式 7
第四章 實驗設計 9
4.1 實驗規劃 9
4.2 檢測儀器與軟體 10
4.3 種子翼片樣品 11
4.4 截短種子翼片實驗 13
4.5 模擬分析設定 15
4.6 流場實驗設計 20
第五章 結果分析 21
5.1 實驗結果 21
5.2 比對分析 27
5.3 截斷分析 34
5.4 FLUENT 模擬與流場實際觀測 36
第六章 結論與建議 41
6.1 結論 41
6.2 建議 42
參考文獻 43
1.馮豐隆 and 張鈞媛, 大葉桃花心木的自然性質與利用. 2008.
2.Howe, H.F. and J. Smallwood, Ecology of seed dispersal. Annual review of ecology and systematics, 1982. 13(1): pp. 201-228.
3.Varshney, K., S. Chang, and Z.J. Wang, The kinematics of falling maple seeds and the initial transition to a helical motion. Nonlinearity, 2011. 25(1): pp. C1.
4.Birch, J.M., W.B. Dickson, and M.H. Dickinson, Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Journal of Experimental Biology, 2004. 207(7): pp. 1063-1072.
5.NORBERG, R.Å., Autorotation, self‐stability, and structure of single‐winged fruits and seeds (samaras) with comparative remarks on animal flight. Biological Reviews, 1973. 48(4): pp. 561-596.
6.Augspurger, C.K., Morphology and dispersal potential of wind‐dispersed diaspores of neotropical trees. American journal of Botany, 1986. 73(3): pp. 353-363.
7.Azuma, A. and Y. Okuno, Flight of a samara, Alsomitra macrocarpa. Journal of Theoretical Biology, 1987. 129(3): pp. 263-274.
8.Azuma, A. and K. Yasuda, Flight performance of rotary seeds. Journal of Theoretical Biology, 1989. 138(1): pp. 23-53.
9.Dickinson, M.H. and K.G. Gotz, Unsteady aerodynamic performance of model wings at low Reynolds numbers. Journal of Experimental Biology, 1993. 174(1): pp. 45-64.
10.Thomas, A.L., et al., Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Journal of Experimental Biology, 2004. 207(24): pp. 4299-4323.
11.Brodsky, A., Vortex formation in the tethered flight of the peacock butterfly Inachis io L.(Lepidoptera, Nymphalidae) and some aspects of insect flight evolution. Journal of Experimental Biology, 1991. 161(1): pp. 77-95.
12.Somps, C. and M. Luttges, Dragonfly flight: novel uses of unsteady separated flows. Science, 1985. 228(4705): pp. 1326-1329.
13.Grodnitsky, D.L. and PP.PP. Morozov, Vortex formation during tethered flight of functionally and morphologically two-winged insects, including evolutionary considerations on insect flight. Journal of experimental biology, 1993. 182(1): pp. 11-40.
14.Dickinson, M.H., F.-O. Lehmann, and S.PP. Sane, Wing rotation and the aerodynamic basis of insect flight. Science, 1999. 284(5422): pp. 1954-1960.
15.Usherwood, J.R. and C.PP. Ellington, The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. Journal of Experimental Biology, 2002. 205(11): pp. 1565-1576.
16.Birch, J.M. and M.H. Dickinson, Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature, 2001. 412(6848): pp. 729.
17.Sane, S.PP. and M.H. Dickinson, The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of experimental biology, 2002. 205(8): pp. 1087-1096.
18.Lentink, D. and M.H. Dickinson, Rotational accelerations stabilize leading edge vortices on revolving fly wings. Journal of Experimental Biology, 2009. 212(16): pp. 2705-2719.
19.Bomphrey, R.J., G.K. Taylor, and A.L. Thomas, Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair, in Animal Locomotion. 2010, Springer. pp. 249-259.
20.Garmann, D. and M. Visbal. Three-dimensional flow structure and aerodynamic loading on a low aspect ratio, revolving wing. in 42nd AIAA Fluid Dynamics Conference and Exhibit. 2012.
21.Ozen, C. and D. Rockwell, Flow structure on a rotating plate. Experiments in Fluids, 2012. 52(1): pp. 207-223.
22.Limacher, E. and D.E. Rival, On the distribution of leading-edge vortex circulation in samara-like flight. Journal of Fluid Mechanics, 2015. 776: pp. 316-333.
23.Salcedo,Erick., et al.,Stereoscopic particle image velocimetry measurements of the three-dimensional flow field of a descending autorotating mahogany seed (Swietenia macrophylla). Journal of Experimental Biology, 2013. 216(11): pp. 2017-2030.
24.Lee, I. and H. Choi, Scaling law for the lift force of autorotating falling seeds at terminal velocity. Journal of Fluid Mechanics, 2018. 835: pp. 406-420.
25.ANSYS,ANSYS Fluent Theory Guide.Vol.19.2018:ANSYS, Inc. .
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top