|
1.馮豐隆 and 張鈞媛, 大葉桃花心木的自然性質與利用. 2008. 2.Howe, H.F. and J. Smallwood, Ecology of seed dispersal. Annual review of ecology and systematics, 1982. 13(1): pp. 201-228. 3.Varshney, K., S. Chang, and Z.J. Wang, The kinematics of falling maple seeds and the initial transition to a helical motion. Nonlinearity, 2011. 25(1): pp. C1. 4.Birch, J.M., W.B. Dickson, and M.H. Dickinson, Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Journal of Experimental Biology, 2004. 207(7): pp. 1063-1072. 5.NORBERG, R.Å., Autorotation, self‐stability, and structure of single‐winged fruits and seeds (samaras) with comparative remarks on animal flight. Biological Reviews, 1973. 48(4): pp. 561-596. 6.Augspurger, C.K., Morphology and dispersal potential of wind‐dispersed diaspores of neotropical trees. American journal of Botany, 1986. 73(3): pp. 353-363. 7.Azuma, A. and Y. Okuno, Flight of a samara, Alsomitra macrocarpa. Journal of Theoretical Biology, 1987. 129(3): pp. 263-274. 8.Azuma, A. and K. Yasuda, Flight performance of rotary seeds. Journal of Theoretical Biology, 1989. 138(1): pp. 23-53. 9.Dickinson, M.H. and K.G. Gotz, Unsteady aerodynamic performance of model wings at low Reynolds numbers. Journal of Experimental Biology, 1993. 174(1): pp. 45-64. 10.Thomas, A.L., et al., Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Journal of Experimental Biology, 2004. 207(24): pp. 4299-4323. 11.Brodsky, A., Vortex formation in the tethered flight of the peacock butterfly Inachis io L.(Lepidoptera, Nymphalidae) and some aspects of insect flight evolution. Journal of Experimental Biology, 1991. 161(1): pp. 77-95. 12.Somps, C. and M. Luttges, Dragonfly flight: novel uses of unsteady separated flows. Science, 1985. 228(4705): pp. 1326-1329. 13.Grodnitsky, D.L. and PP.PP. Morozov, Vortex formation during tethered flight of functionally and morphologically two-winged insects, including evolutionary considerations on insect flight. Journal of experimental biology, 1993. 182(1): pp. 11-40. 14.Dickinson, M.H., F.-O. Lehmann, and S.PP. Sane, Wing rotation and the aerodynamic basis of insect flight. Science, 1999. 284(5422): pp. 1954-1960. 15.Usherwood, J.R. and C.PP. Ellington, The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. Journal of Experimental Biology, 2002. 205(11): pp. 1565-1576. 16.Birch, J.M. and M.H. Dickinson, Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature, 2001. 412(6848): pp. 729. 17.Sane, S.PP. and M.H. Dickinson, The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of experimental biology, 2002. 205(8): pp. 1087-1096. 18.Lentink, D. and M.H. Dickinson, Rotational accelerations stabilize leading edge vortices on revolving fly wings. Journal of Experimental Biology, 2009. 212(16): pp. 2705-2719. 19.Bomphrey, R.J., G.K. Taylor, and A.L. Thomas, Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair, in Animal Locomotion. 2010, Springer. pp. 249-259. 20.Garmann, D. and M. Visbal. Three-dimensional flow structure and aerodynamic loading on a low aspect ratio, revolving wing. in 42nd AIAA Fluid Dynamics Conference and Exhibit. 2012. 21.Ozen, C. and D. Rockwell, Flow structure on a rotating plate. Experiments in Fluids, 2012. 52(1): pp. 207-223. 22.Limacher, E. and D.E. Rival, On the distribution of leading-edge vortex circulation in samara-like flight. Journal of Fluid Mechanics, 2015. 776: pp. 316-333. 23.Salcedo,Erick., et al.,Stereoscopic particle image velocimetry measurements of the three-dimensional flow field of a descending autorotating mahogany seed (Swietenia macrophylla). Journal of Experimental Biology, 2013. 216(11): pp. 2017-2030. 24.Lee, I. and H. Choi, Scaling law for the lift force of autorotating falling seeds at terminal velocity. Journal of Fluid Mechanics, 2018. 835: pp. 406-420. 25.ANSYS,ANSYS Fluent Theory Guide.Vol.19.2018:ANSYS, Inc. .
|