跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:殷蕙怡
研究生(外文):Hui-IYin
論文名稱:提升腿部穩定性之輔助氣動裝置設計與評估
論文名稱(外文):Design and Evaluation of the Assistive Pneumatic Device to Improve the Stability of Legs
指導教授:吳豐光吳豐光引用關係陳建旭陳建旭引用關係
指導教授(外文):Fong-Gong WuChien-Hsu Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工業設計學系
學門:設計學門
學類:產品設計學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:72
中文關鍵詞:膝關節負荷步態周期氣動裝置
外文關鍵詞:Knee joint loadingGait cyclePneumatic device
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於承受行走時大部分的負荷,內側膝關節為最常發生退化性膝關節炎的部位之一。對於初期膝關節炎患者來說,減少膝關節負荷以及增強肌力是改善症狀的根本方式。因此,本研究的目的為以預防為出發點,提出基於生物力學之可增加肌力共同收縮與減少膝關節負荷之創新輔助裝置,以維持身體平衡和膝關節穩定性。
為了設計創新的退化性膝關節炎輔助裝置,本研究的設計階段透過蒐集文獻以及使用者觀察與專家訪談找出設計準則,以焦點團體法產生設計概念並進行第二次專家訪談後篩選設計。接著,原型設計階段包括前測實驗和模型設計。模型設計主要為步態偵測與氣動裝置之機電整合,然後依照前測實驗結果製作成原型。此原型包括三個部分:步態偵測,氣體控制和氣體壓力支撐。此外,原型有三個特點:(1)可穿戴式之輔助裝置,結合傳統輔助裝置(護膝)與感測器(2)步態偵測與即時回饋(3)單腳站立期之氣體壓力支撐。。
最後本實驗進行三個客觀效率評估與一個主觀效率評估: (1) 膝關節伸屈角度和骨盆傾斜角度評估膝關節穩定性(2)肌電圖評估肌肉疲勞(3)彎曲感測器評估大腿到小腿的負荷(4)主觀問卷評估設計標準。實驗結果顯示本研究設計的創新退化性關節炎輔助裝置透過EMG數據於補償肌肉力量有顯著效果(p = 0.00 〈0.05),由單腳站立期之膝關節伸屈角度(p = 0.0〈 0.05)和骨盆傾斜角度(p = 0.01〈 0.05)評估結果為可有效提升穩定性。大腿對小腿的負荷有顯著性降低(p = 0.00 〈0.05),而設計標準也符合我們的目的(p = 0.00 〈0.05)。然而,需要更進一步評估其減少膝關節負荷和減少副作用的功效。
Osteoarthritis occurs in joints which is mostly in medial knee joint since it bears most of the loading during gait. For early osteoarthritis, unloading knee joint and increasing muscle strength is the most fundamental ways. In terms of prevention, the purpose of this research is to develop a new assisting device, which can improve free muscle contraction and reduce the knee joint loading based on knee biomechanics to keep body balance and knee stability.
In order to design an innovative OA device, we identified design criterions through literature review, user observation and expert interviews. After that, we got design concepts through the co-design in focus group and refined them into the prototype by the second expert interview. Next, the prototype stage included the pre-test and the model design. The model design was mainly the electromechanical integration of gait detection and the pneumatic device. Then, the prototype were built according to the result of the pre-test. The prototype of research consisted of three parts: gait recognition, air control and air pressure support. Moreover, there was three characteristic of the prototype: (1) A wearable assistive device which combined the traditional aids (knee sleeves) with sensors (2) Gait recognition and feedback in real time (3) Air pressure support in single stand stance.
At last, there were three objective efficiency items and one subjective efficiency item needed to be evaluated: (1) the knee stability assessed by knee extension and flexion, and the degree of pelvic obliquity (2) the muscle fatigue assessed by EMG (3) the loading of thigh to calf assessed by flex sensors (4) the design criterion assessed by questionnaire. The result of experiences showed this innovative assisting device could significantly compensate for the lack muscle strength effectively by EMG data (p=0.00〈0.05), and improve stability by knee extension and flexion (p=0.00〈0.05) and pelvic obliquity in the stand stance (p = 0.01〈 0.05). The loading of thigh to calf significantly reduced (p=0.00〈0.05) and the design criterion met our purpose (p=0.00〈0.05). However, long-term experiments are needed to further evaluate its efficiency on reducing knee joint loading and reducing side effects.
摘要 ii
ABSTRACT iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES viii
LIST OF FIGURES ix
LIST OF SYMBOLS AND ABBREVIATIONS xi
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.1.1 The Importance of Stability in Knee Osteoarthritis 1
1.1.2 Current Ways to Improve Body Stability 2
1.2 Motivation 3
1.3 Purpose 3
1.4 Range and Limitation 3
1.5 Framework 4
CHAPTER 2 Literature Review 5
2.1 The Mechanism of Osteoarthritis 5
2.1.1 The Stability and the Body Balance in Osteoarthritis 7
2.1.2 The Anatomy of Osteoarthritis 9
2.1.3 The Biomechanics of Osteoarthritis 12
2.2 Aids for Osteoarthritis 14
2.3 Evaluation Methods 16
2.3.1 Measuring the Knee Stability 17
2.3.2 Measuring the Muscle Fatigue 17
2.3.3 Design Criterions 18
CHAPTER 3 Methods 19
3.1 Study Outline 19
3.1.1 Study Process 19
3.1.2 Framework of Study 20
3.2 Study 1: Development of Assisting Device 21
3.2.1 Expert Interview 1 21
3.2.2 Focus Group 22
3.2.3 Expert Interview 2 23
3.2.4.1 Study Selection and Inclusion Criteria 23
3.2.4.2 Experiment Procedure 24
3.2.4 Pre-test for Pressure Position 24
3.2.5 Pre-test for Pressure Evaluation 26
3.2.6 Prototyping 28
3.2.6.1 Arduino UNO Rev3 28
3.2.6.2 Bluetooth module (HC-05) 29
3.2.6.3 Force Sensitive Resistor (FSR) 29
3.2.6.4 Max Pump Plus (Flextailgear) 30
3.3 Study 2: Evaluation of Prototype 31
3.3.1 Participants and Equipment 31
3.3.1.1 Electromyography (EMG) 32
3.3.2 Experiment Procedure 33
CHAPTER 4 RESULTS 34
4.1 Development of Assisting Device 34
4.1.1 Expert Interview 1 34
4.1.2 Focus Group 36
4.1.3 Expert Interview 2 37
4.1.4 Pre-test for Pressure Position 38
4.1.5 Pre-test for Pressure Evaluation 40
4.1.6 Prototype 42
4.1.6.1 Experiment process 42
4.1.6.2 Gait analysis and testing 43
4.1.6.3 Control structure 44
4.2 Evaluation of Prototype 45
4.2.1 Stability 46
4.2.2 Muscle Fatigue 48
4.2.3 The Loading of Thigh to Calf 51
4.2.4 Design Criterions 51
CHAPTER 5 DISCUSSION AND CONCLUSION 53
5.1 Development of Assisting Device 53
5.2 Evaluation of Prototype 55
5.3 Conclusion 57
5.4 Suggestion 58
REFERENCES 59
Appendix A 退化性膝關節炎問卷 65
Appendix B Raw Range of Angle of Knee E/F Data 66
Appendix C RAW RANGE OF ANGLE OF PO DATA 67
Appendix D RAW EMG DATA OF VR,VM AND BF 68
Appendix E RAW EMG DATA OF GM AND TOTAL 69
Appendix F RAW DESIGN CRITERION QUESTIONNAIRE DATA 70
Appendix G RAW ANALOG READING DATA IN PRE-TEST 71
Appendix H RAW ANALOG READING DATA IN EVALUATION 72
Ardestani, M. M., & Moazen, M. (2016). How human gait responds to muscle impairment in total knee arthroplasty patients: muscular compensations and articular perturbations. Journal of Biomechanics, 49(9), 1620–1633.
Basford, J. R., & Johnson, S. J. (2002). Form may be as important as function in orthotic acceptance: a case report. Archives of physical medicine and rehabilitation, 83(3), 433-435.
Beaudreuil, J., Bendaya, S., Faucher, M., Coudeyre, E., Ribinik, P., Revel, M., & Rannou, F. (2009). Clinical practice guidelines for rest orthosis, knee sleeves, and unloading knee braces in knee osteoarthritis. Joint Bone Spine, 76(6), 629-636.
Bijlsma, J. W., Berenbaum, F., & Lafeber, F. P. (2011). Osteoarthritis: an update with relevance for clinical practice. The Lancet, 377(3), 2115-2126.
Callaghan, M. J., Parkes, M. J., & Hutchinson, C. E. (2015). A randomised trial of a brace for patellofemoral osteoarthritis targeting knee pain and bone marrow lesions. Ann Rheum Dis, 74(5), 1164-1170.
Childs, J. D., Sparto, P. J., Fitzgerald, G. K., Bizzini, M., & Irrgang, J. J. (2004). Alterations in lower extremity movement and muscle activation patterns in individuals with knee osteoarthritis. Clin Biomech, 19(8), 44-49.
Chmielewski, T., Hurd, W., Snyder-Mackler, L. (2005). Elucidation of a potentially destabilizing control strategy in ACL deficient non-copers. Electromyogr Kinesiol, 15(1), 83-92.
Cho, H. Y., Kim, E. H., & Kim, J. (2015). Kinesio taping improves pain, range of motion, and proprioception in older patients with knee osteoarthritis: a randomized controlled trial. Am J Phys Med Rehabil, 94(1), 192-200.
Crea, S., Donati, M., De Rossi, S., Oddo, C., & Vitiello, N. (2014). A Wireless Flexible Sensorized Insole for Gait Analysis. Sensors, 14(2), 1073–1093.
De Bruin, E. D., Hartmann, A., Uebelhart, D., Murer, K., & Zijlstra, W. (2008). Wearable systems for monitoring mobility-related activities in older people: a systematic review. Clinical rehabilitation, 22(10-11), 878-895.
Doan, B. K., Kwon, Y. H., Newton, R. U., Shim, J., Popper, E. M., & Rogers, R. A. (2003). Evaluation of a lower-body compression garment. J Sports Sci, 21(8), 601-610.
Dobson, F., Hinman, R.S., Roos, E.M., Abbott, J.H., Stratford, P., & Davis, A. M. (2013). OARSI recommended performance-based tests to assess physical function in people diagnosed with hip or knee osteoarthritis. Osteoarthritis Cartilage, 21(8), 1042-1052.
Farrokhi, S.,Voycheck, C.A., Klatt, B.A., Gustafson, J.A. Tashman, S., & Fitzgerald, G.K. (2014). Altered tibiofemoral joint contact mechanics and kinematics in patients with knee osteoarthritis and episodic complaints of joint instability. Clin Biomech, 29(8), 629-635.
Felson, D. T. (2006). Osteoarthritis of the knee. New England Journal of Medicine, 354(8), 841-848.
Fitzgerald, G. K., Piva, S. R., Gil, A. B., Wisniewski, S. R., Oddis, C. V., & Irrgang, J. J. (2011). Agility and perturbation training techniques in exercise therapy for reducing pain and improving function in people with knee osteoarthritis: a randomized clinical trial. Phys Ther, 91(8), 56-65.
Gandevia, S. C., Refshauge, K. M., & Collins, D. F. (2002). Proprioception: peripheral inputs and perceptual interactions. Adv Exp Med Biol, 25(8), 61-75.
Ghai, S., Driller, M. W., & Masters, R. S. (2018) The influence of below-knee compression garments on knee-joint proprioception. Gait Posture, 60(2), 53-61.
Ghasemzadeh, H., Jafari, R., & Prabhakaran, B. (2010). A body sensor network with electromyogram and inertial sensors: Multimodal interpretation of muscular activities. IEEE Trans. Inf. Technol. Biomed, 14(3), 198-206.
Hassan, B. S., Mockett, S., & Doherty, M. (2002). Influence of elastic bandage on knee pain, proprioception, and postural sway in subjects with knee osteoarthritis. Ann Rheum Dis, 61(1), 24-28.
Heather, E. S., Jessica, D.T., & Jason, R. F. (2017). The Neuromuscular Origins of Kinematic Variability during Perturbed Walking. Scientific Reports, 50(7), 808-915.
Hinmann, R. S., Crossley, K. M., & McConnell, J. (2003). Efficacy of knee tape in the management of osteoarthritis of the knee: blinded randomised controlled trial. BMJ, 327(2), 135-143.
Hunter, D. J., Harvey, W., & Gross, K. D. (2011). A randomized trial of patellofemoral bracing for treatment of patellofemoral osteoarthritis. Osteoarthritis Cartilage, 19(2), 792-800.
Hurd, W.J., & Snyder-Mackler, L. (2007).Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. Journal of Orthopaedic Research, 25(1), 1369-1377
Hurley, M. V. (1999). The role of muscle weakness in the pathogenesis of osteoarthritis. Rheumatic Disease Clinics of North America, 25(2), 283-298.
Ivanenko, Y.P., Poppele, R.E., & Lacquaniti, F. (2006). Motor control programs and walking. Neuroscientist, 12(2), 339-348.
Kaufman, K. R., Hughes, C., Morrey, B. F., Morrey, M., & An, K.-N. (2001). Gait characteristics of patients with knee osteoarthritis. Journal of biomechanics, 34(7), 907-915.
Kirkley, A., Webster-Bogaert, S., & Litchfield, R. (1999). The effect of bracing on varus gonarthrosis. Bone Joint Surg, 81(1), 539-548
Knoop, J., van der Leeden, M., van der Esch M., Thorstensson, C.A., Gerritsen, M., & Voorneman, R. E. (2012). Association of lower muscle strength with self-reported knee instability in osteoarthritis of the knee: results from the Amsterdam Osteoarthritis cohort. Arthritis Care Res, 64(2), 38-45.
Lafeber, F. P., Intema, F., Van Roermund, P. M., & Marijnissen, A. C. (2006). Unloading joints to treat osteoarthritis, including joint distraction. Current opinion in rheumatology, 18(5), 519-525.
Lewek, M. D., Rudolph, K.S., Snyder-Mackler, L. (2004). Control of frontal plane knee laxity during gait in patients with medial compartment knee osteoarthritis. Osteoarthr Cartilage, 12(2), 745-751.
Lloyd, D. G., & Buchanan, T. S. (2001). Strategies of muscular support of varus and valgus isometric loads at the human knee. Journal of biomechanics, 34(1), 1257-1267.
Manal, K., Gardinier, E., Buchanan, T., & Snyder-Mackler, L. (2015). A more informed evaluation of medial compartment loading: the combined use of the knee adduction and flexor moments. Osteoarthritis and cartilage, 23(7), 1107-1111.
Mangione, K. K., Axen, K., & Haas, F. (1996). Mechanical unweighting effects on treadmill exercise and pain in elderly people with osteoarthritis of the knee. Physical therapy, 76(4), 387-394.
Miyamoto, N., Hirata, K., Mitsukawa, N., Yanai, T., & Kawakami,Y. (2011). Effect of pressure intensity of graduated elastic compression stocking on muscle fatigue following calf-raise exercise. Electromyogr Kinesiol, 21(2), 249–54.
Mündermann, A., Dyrby, C. O., Hurwitz, D. E., Sharma, L., & Andriacchi, T. P. (2004). Potential strategies to reduce medial compartment loading in patients with knee osteoarthritis of varying severity: reduced walking speed. Arthritis & Rheumatism, 50(4), 1172-1178.
Muro-de-la-Herran, A., Garcia-Zapirain, B., & Mendez-Zorrilla, A. (2014). Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors, 14(2), 3362-3394.
Negyesi, J., Mobark, A., Zhang, L. Y., Hortobagyi, T., & Nagatomi, R. (2018). An above-knee compression garment does not improve passive knee joint position sense in healthy adults. Plos one, 9(13), 35-48.
Neptune, R. R., Clark, D. J., & Kautz, S. A. (2009) Modular control of human walking: a simulation study. J. Biomech, 42(3), 1282-1287.
Palmieri-Smith, R. M., & Thomas, A. C. (2009). A neuromuscular mechanism of posttraumatic osteoarthritis associated with ACL injury. Exercise and sport sciences reviews, 37(3), 147-153.
Park, J., Kim, M., Lee, Y., Lee, H. S., & Ko, H. (2015). Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv, 25(1), 35-42.
Proske, U. (2015). What is the role of muscle receptors in proprioception? Muscle Nerve, 31(6), 780–790.
Rahman, J., Tang, Q., Monda, M., Miles, J., & McCarthy, I. (2015). Gait assessment as a functional outcome measure in total knee arthroplasty: a cross-sectional study. BMC Musculoskeletal Disorders, 16(1), 66-72.
Rannou,F., & Poiraudeau, S. (2010). Non-pharmacological approaches for the treatment of osteoarthritis. Best Pract Res Clin Rheumatol, 24(1), 93-106.
Risberg, M. A., Holm, I., Steen, H., Eriksson, J., & Ekeland, A. (1999). The Effect of Knee Bracing After Anterior Cruciate Ligament Reconstruction A Prospective, Randomized Study with Two Years’ Follow-up. The American Journal of Sports Medicine, 27(1), 76-83.
Schmitt, L. C., Fitzgerald, G. K., Reisman, A. S, & Rudolph, K. S. (2008). Instability, laxity, and physical function in patients with medial knee osteoarthritis. Phys Ther, 88(8), 1506-1516.
Seel, T., Raisch, J., & Schauer, T. (2014). IMU-based joint angle measurement for gait analysis. Sensors, 14(4), 6891–6909.
Segal, N. A. (2012). Bracing and orthoses: a review of efficacy and mechanical effects for tibiofemoral osteoarthritis. PM&R, 4(5), S89-S96.
Sharma, L., Dunlop, D. D., Song, J., & Hayes, K. W. (2003). Quadriceps strength and osteoarthritis progression in malaligned and lax knees. Annals of internal medicine, 138(8), 613-619.
Sharma, L., Song, J., Felson, D. T., Shamiyeh, E., & Dunlop, D. D. (2001). The role of knee alignment in disease progression and functional decline in knee osteoarthritis. Jama, 286(2), 188-195.
Sharma, V., Anuvat, K., John, L., & Davis, M. (2017).Scientific American Pain Management - Arthritis of the knee. Decker: Pain related disease states. Journal of Orthopaedic Research, 27(1), 136-147.
Shelburne, K. B., Torry, M. R., & Pandy, M. G. (2006). Contributions of muscles, ligaments, and the ground‐reaction force to tibiofemoral joint loading during normal gait. Journal of Orthopaedic Research, 24(10), 1983-1990.
Skou, S. T., Wrigley, T. V., Metcalf, B. R., Hinman, R. S., & Bennell, K. L., (2014). Association of knee confidence with pain, knee instability, muscle strength, and dynamic varus-valgus joint motion in knee osteoarthritis. Arthrit Care Res, 66(5), 695-701.
Slemenda, C., Brandt, K. D., Heilman, D. K., Mazzuca, S., Braunstein, E. M., Katz, B. P., & Wolinsky, F. D. (1997). Quadriceps weakness and osteoarthritis of the knee. Annals of internal medicine, 127(2), 97-104.
Stratford, P. W., Kennedy, D. M., & Woodhouse, L. J. (2006). Performance measures provide assessments of pain and function in people with advanced osteoarthritis of the hip or knee. Physical therapy, 86(11), 1489-1496.
Tao, W., Liu, T., Zheng, R., & Feng, H. (2012). Gait analysis using wearable sensors. Sensors, 12(2), 2255–2283.
Terwee, C. B., van der Slikke, R. M., van Lummel, R. C., Benink, R. J., Meijers, W. G., & de Vet, H. C. (2006). Self-reported physical functioning was more influenced by pain than performance-based physical functioning in knee-osteoarthritis patients. Journal of clinical epidemiology, 59(7), 724-731.
Thorp, L. E., Sumner, D. R., Wimmer, M. A., & Block, J. A. (2006). Relationship between pain and medial knee joint loading in mild radiographic knee osteoarthritis. Arthritis care & research, 57(7), 1254-1260.
Tiggelen, D., Coorevits, P., & Witvrouw, E. (2008). The use of a neoprene knee sleeve to compensate the deficit in knee joint position sense caused by muscle fatigue. Scand J Med Sci Sports, 18(1), 62–67.
Vargas-Valencia, L., Elias, A., Rocon, E., Bastos-Filho, T., & Frizera, A. (2016). An IMU-to-Body Alignment Method Applied to Human Gait Analysis. Sensors, 16(1), 2090-2103.
Zhang, Y., & Jordan, J. M. (2010). Epidemiology of osteoarthritis. Clin Geriatr Med, 26(3), 355–69.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top