跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/20 15:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張凱鈞
研究生(外文):Kai-ChunChang
論文名稱:受限於短期人力短缺下之X-bar管制圖之適應性經濟設計
論文名稱(外文):An Economic Design of Adaptive X-bar Control Chart Subjected to Short-term Manpower Shortage
指導教授:張裕清
指導教授(外文):Yu-Ching Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工業與資訊管理學系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:72
中文關鍵詞:管制圖人力限制經濟設計適應性管制圖變動抽樣間隔警戒界限成本函數
外文關鍵詞:Control chartManpower constraintEconomic designAdaptive control chartVariable sampling intervalWarning limitCost function
相關次數:
  • 被引用被引用:1
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自1956年Duncan發表X-bar經濟設計管制圖後,許多學者受此啟發,針對不同管制圖進行經濟設計的相關研究。經濟設計為調整管制圖的三個重要決策變數:抽樣間隔長度、樣本大小及管制界限以獲得最低之總成本。若將這些決策變數由定值改為會隨前一次製程觀測資料進行變動,便稱為適應性管制圖。然而,傳統的管制圖或經濟設計管制圖均以長期的架構建構管制圖,他們的決策變數在決定後便不再變動,短期內若有大幅度的調整便有大機率會使成本上升,但在某些特殊情況,如短期的人力之配置下,便可能會透過調整決策變數來因應人力在短期的變化。近幾年開始有學者將管制圖的經濟設計融入人力配置的概念,藉由事前優化監控管制圖所需的人力以更進一步達到成本的降低。然而,過去的經濟設計管制圖多是針對單張管制圖進行監控,但在實際工廠運作中通常是多種不同製程同時運行,因此必須考量同時監控多張管制圖的情況。本研究建構一套可同時調整抽樣間隔長度、管制界限及警戒界限的方法,不但更具彈性,成本減少及偵測變異的效率也較傳統的管制圖高。當短期內監控管制圖之人力有限且須同時監控多張管制圖,為避免在人力不足時產生過多的警報導致人力無法負荷,此時抽樣間隔長度、管制界限及警戒界限便需因應人力做出適當的調整。因此,本研究主要目的為考量短期時間且工程師人力受限下,如何因人數調整最適當的抽樣間隔長度、管制界限及警戒界限之組合,以使總成本最小化。最後,透過實際案例驗證本研究數學模型之正確性,也確實發現隨著工程師人數減少,管制界限與警戒界限適當的放寬及抽樣間隔長度適當的增加確實有助於降低成本,並利用敏感度分析發現對成本函數影響較明顯之參數。
Economic design of control charts have drawn a great number of researchers’ attention since Duncan first proposed the economic design of X-bar control charts in 1956. We call it economic design when we adjust three important decision variables in the control chart: sampling interval length, sample size and control limits in order to minimize the total cost. However, we call it adaptive control chart if these three decision variables varied based on the value of the preceding sample statistics. Wu et al. merge the concept of deploying manpower in the statistical process control scheme for the purpose of minimizing the expected total cost. The concept of constructing traditional or economic control chart is from a long-term perspective, and both of their decision variables were decided at the beginning. If we change decision variables at will, cost will rise in the short term. Our research develop a methodology for adjusting sampling interval length, warning limits and control limits simultaneously, subject to short-term manpower shortage for monitoring multiple control charts. The purpose of our research is to find the best combination of sampling interval length, warning limits and control limits by minimizing total cost per unit time. We modify Bai and Lee cost function for adaptive economic design and added in the M/M/c queueing model for manpower construction. The results show that expected total cost per unit time can be lowered by adjusting the combination of control limits, warning limits and sampling interval length appropriately. Sensitivity analysis is presented to evaluate how the parameters influence the total cost per unit time.
摘要……………………………………………………………………………………I
目錄…………………………………………………………………………………...X
表目錄………………………………………………………………………………XII
圖目錄……………………………………………………………………………...XIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 4
1.4 研究流程 5
第二章 文獻回顧 6
2.1 修華特管制圖 6
2.1.1 計數值管制圖 9
2.1.2 計量值管制圖 10
2.2 適應性管制圖 11
2.2.1 適應性修華特管制圖 11
2.2.2 適應性累積和管制圖 14
2.2.3 適應性指數加權移動平均管制圖 15
2.3 經濟設計 16
2.3.1 單個可歸屬原因之經濟設計 17
2.3.2 多個可歸屬原因之經濟設計 19
2.3.3 聯合管制圖之經濟設計 20
2.3.4 變動管制圖之經濟設計 21
2.3.5 累積和管制圖之經濟設計 24
2.3.6 指數加權移動平均管制圖之經濟設計 25
2.4 人力限制 26
第三章 僅考慮管制界限之X-bar管制圖之適應性設計 28
3.1 研究問題描述 28
3.2 研究假設 29
3.3 符號定義 30
3.4 研究模型建構 31
3.5 小結 34
第四章 同時考慮管制界限、警戒界限與抽樣間隔長度之X-bar管制圖適應性經濟設計………………………………………..……………………………37
4.1 研究問題描述 37
4.2 研究假設 40
4.3 符號定義 41
4.4 研究模型建構 43
4.5 決策變數求解 51
4.6 小結 53
第五章 數值驗證與敏感度分析 54
5.1 案例討論 54
5.2 敏感度分析 57
5.2.1 成本分析 57
第六章 結論與建議 64
6.1 研究貢獻 64
6.2 未來研究方向 65
第七章 參考文獻 66
中文文獻:
卓怡如 (2018). 短期內受限於人力資源下X-bar管制圖之管制界限設定 國立成功大學碩士論文
英文文獻:
Arnold, J. C. (1970). A markovian sampling policy applied to water quality monitoring of streams. Biometrics, 26(4), 739-747.
Arnold, J. C., Reynolds, M. R., Jr., Sawalapurkarpowers, U. (1993). Control charts with variable sample size and variable interval size. Proceedings, Section on Quality and Productivity. American Statistical Association, 138-143.
Arnold, J. C. & Reynolds, M. R., Jr. (2001). CUSUM control charts with variable sample sizes and sampling intervals. Journal of Quality Technology, 33(1), 66-81.
Aslam, M., Azam, M., Kim, K. J., Jun, C. H. (2018). Designing of an attribute control chart for two-stage process. Measurement & Control, 51(7-8), 285-292.
Bai, D. S. & Lee, K. T. (1998). An economic design of variable sampling interval x-bar control charts. International Journal of Production Economics, 54(1), 57-64.
Banerjee, P. K. & Rahim, M. A. (1988). Economic design of x-bar control charts under Weibull shock models. Technometrics, 30(4), 407-414.
Carolan, C. A., Kros, J. F., Said, S. E. (2009). Economic design of x-bar control charts with continuously variable sampling intervals. Quality and Reliability Engineering International, 26(3), 235-245.
Chen, Y. S. & Yang, Y. M. (2002). Economic design of x-bar control charts with Weibull in-control times when there are multiple assignable causes. International Journal of Production Economics, 77(1), 17-23.
Chen, Y. K. (2007). Economic design of an adaptive T^2 control chart. Journal of the Operational Research Society, 58(3), 337-345.
Chiu, W. K. (1974). The economic design of cusum charts for controlling normal means. Journal of the Royal Statistical Society, 23(3), 420-433.
Chiu, W. K. (1975). Economic design of attribute control charts. Technometrics, 17(1), 81-87.
Costa, A. F. B. (1993). Joint economic design of and R control charts for processes subject to two independent assignable causes. IIE Transactions, 25(6), 27-33.
Costa, A. F. B. (1994). charts with variable sample size. Journal of Quality Technology, 26, 155-163.
Costa, A. F. B. (1997). chart with variable sample size and sampling intervals. Journal of Quality Technology, 29, 197-204.
De Magalhaes, M. S., Epprecht, E. K., Costa, A. F. B. (2001). Economic design of a Vp x-bar chart. International Journal of Production Economics, 74, 191-200.
De Magalhaes, M. S. & Neto, F. D. M. (2005). Joint economic model for totally adaptive x-bar and R charts. European Journal of Operational Research, 161(1), 148-161.
Duffuaa, S. O., Al-Turki, U. M., Kolus, A. A. (2009). Process-targeting model for a product with two dependent quality characteristics using acceptance sampling plans. International Journal of Production Research, 47(14), 4031-4046.
Duncan, A. J. (1956). The economic design of x-bar charts used to maintain current control of a process. Journal of the American Statistical Association, 51(274), 228-242.
Duncan, A. J. (1971). The economic design of-charts when there is a multiplicity of assignable causes. Journal of the American Statistical Association, 66(333), 107-121.
Faraz, A., Kazemzadeh, R. B., Saniga, E. (2010). Economic and economic statistical design of T^2 control chart with two adaptive sample sizes. Journal of Statistical Computation and Simulation, 80(12), 1299-1316.
Nenes, G. (2011). A new approach for the economic design of fully adaptive control charts. International Journal of Production Economics, 131(2), 631-642.
Girshick, M. A. & Rubin, H. (1952). A Bayes’ approach to a quality control model. Annals of Mathematical Statistics, 23, 114-125.
Haridy, A. M. A. & El-Shabrawy, A. Z. (1994). The economic design of cumulative sum charts used to maintain current control of non-normal process means. Computers & Industrial Engineering, 31, 783-790.
Ho, C. & Case, K. E. (1994). Economic design of control charts : a literature review for 1981-1991. Journal of Quality Technology, 26, 39-53.
Ho, C. & Case, K. E. (1994). The economically-based EWMA control chart. International Journal of Production Research, 32(9), 2179-2186.
Hunter, J. S. (1986). The exponentially weighted moving average. Journal of Quality Technology, 18(4), 203-210.
Knappenberger, H. A. & Grandage, A. H. E. (1969). Minimum cost quality control tests. AIIE Transactions, 1(1), 24-32.
Koo, T. Y. & Case, K. E. (1990). Economic design x-bar control charts for using in monitoring continuous flow processes. International Journal of Production Research, 28, 2001-2011.
Li, C. I., Su, N. C., Su, P. F., Shyr, Y. (2014). The design of X-bar and R control charts for skew normal distributed data. Communications in Statistics, 43(23), 4908-4924.
Lorenzen, T. J. & Vance, L. C. (1986). The economic design of control charts : a unified approach. Technometrics, 28(1), 3-10.
Luo, Y., Li, Z., Wang, Z. (2009). Adaptive CUSUM control chart with variable sampling intervals. Computational Statistics and Data Analysis, 53, 2693-2701.
Montgomery, D. C. (2009). Introduction to Statistical Quality Control (6 ed.): Wiley:Hoboken, NJ.
Mullins E. (1994). Introduction to control charts in the analytical laboratory. Tutorial review. Analyst, 119, 369-375.
Niaki, S. T. A., Ershadi, M. J. (2012). A parameter-tuned genetic algorithm for statistically constrained economic design of multivariate CUSUM control charts : a Taguchi loss approach. International Journal of Systems Science, 43(12), 2275-2287.
Nickerson, D. M., Weheba, G. S. (2005). The economic design of x-bar charts : a proactive approach. Quality and Reliability Engineering International, 21, 91-104.
Parkhideh, B. & Case, K. E. (1989). The economic design of a dynamic x-control chart. IIE Transactions, 21(4), 313-323.
Park, C. & Reynolds, M. R. Jr. (1994). Economic design of a variable sample size x-bar chart. Communications in Statistics-Simulation and Computation, 23, 467-483.
Prabhu, S. S., Runger, G. C., Keats, J. B. (1993). An adaptive sample size x-bar chart. International Journal of Production Research, 31, 2895-2909.
Prabhu, S. S., Montgomery, D. C., Runger, G. C. A. (1994). Combined adaptive sample size and sampling interval x-bar control scheme. Journal of Quality Technology, 26, 164-176.
Rahim, M. A. & Costa, A. F. B. (2000). Joint economic design of X and R charts under Weibull shock models. International Journal of Production Research, 38(13), 2871-2889.
Reynolds, M. R., Jr. (1986). Optimal two-sided variable sampling interval control charts for the exponential family. Technical Report 86-4, Virginia Polytechnic Institute and State University, Dept. of Statistics.
Reynolds, M. R., Jr. & Arnold, J. C. (1986). Optimal one-sided Shewhart control charts with variable sampling intervals between samples. Technical Report 86-3, Virginia Polytechnic Institute and State University, Dept. of Statistics.
Reynolds, M. R., Jr. (1988). Optimal markov chain and two-sided Shewhart control charts with variable sampling intervals. Technical Report 88-2, Virginia Polytechnic Institute and State University, Dept. of Statistics.
Reynolds, M. R., Jr., Amin, R. W., Arnold, J. C., Nachlas, J. A. (1988). X-bar charts with variable sampling intervals. Technometrics, 30(2), 181-192.
Reynolds, M. R., Jr. (1996). Shewhart and EWMA variable sampling interval control charts with sampling at fixed times. Journal of Quality Technology, 28(2), 199-212.
Reynolds, M. R., Jr. (1996). Variable-sampling-interval control charts with sampling at fixed times. IIE Transactions, 28, 497-510.
Reynolds, M. R. Jr. & Arnold, J. C. (2001). EWMA control charts with variable sample sizes and variable sampling intervals. IIE Transactions, 33, 511-530.
Roberts, S. W. (1959). Control chart tests based on geometric moving-averages. Technometrics, 1, 239-250.
Ross, E. M. (1970). Applied probability models with optimization applications. Holden-Day, San Francisco.
Runger, G. C. & Pignatiello Jr. J. J. (1991). Adaptive sampling enhancements for Shewhart control charts. Journal of Quality Technology, 23, 135-155.
Saccucci, M. S., Amin, R. W., Lucas, J. M. (1992). Exponentially weighted moving average control schemes with variable sampling intervals. Communications in Statistics-Simulation and Computation. 21(3), 627-657.
Salmasnia, A., Abdzadeh, B., Namdar, M. (2017). A joint design of production run length, maintenance policy and control chart with multiple assignable causes. Journal of manufacturing system, 42, 44-56.
Saniga, E. M. (1977). Joint economically optimal design of X and R control charts. Management Science, 24(4), 420-431.
Saniga, E. M. (1989). Economic statistical control-chart designs with an application to x-bar and R charts. Technometrics, 31(3), 313-320.
Serel, D. A. & Moskowitz, H. (2008). Joint economic design of EWMA control charts for mean and variance. European Journal of Operational Research, 184(1), 157-168.
Serel, D. A. (2009). Economic design of EWMA control charts based on loss function. Mathematical and Computer Modelling, 49, 745-759.
Shamsuzzaman, M., Wu, Z., Elias, M. R. U. S. (2009). Designs of x-bar & S control
charts with optimal manpower deployment. Computers & Industrial Engineering, 56(4), 1589-1596.
Taylor, H. M. (1968). The economic design of cumulative sum control charts. Technometrics, 10(3), 479-488.
Ugaz, W., Sanchez, I., Alonso, A. M. (2017). Adaptive EWMA control charts with time-varying smoothing parameter. International Journal of Advanced Manufacturing Technology, 93(9-12), 3847-3858.
Vance, L. C. (1983). A bibliography of statistical quality control chart techniques, 1970-1980. Journal of Quality Technology, 15, 59-62.
Woodall, W. H. (1986). Weaknesses of the economic design of control charts. Technometrics, 28(4), 408-409.
Wu, Z., Shamsuzzaman, M., Wang, Q. (2006). Designs of control charts with optimal manpower deployment. International Journal of Production Research, 44(11), 2119-2132.
Wu, Z., Shamsuzzaman, M., Wang, Q. (2007). The cost minimization and manpower deployment to SPC in a multistage manufacturing system. International Journal of Production Economics, 106(1), 275-287.
Yang, S. F. (2013). Using a new VSI EWMA average loss control chart to monitor changes in the difference between the process mean and target and/or the process variability. Applied Mathematical Modelling, 37, 7973-7982.
Zhang, G. (2013). Improved R and S control charts for monitoring the process variance. Journal of Applied Statistics, 41(6), 1260-1273.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊