中文文獻:
卓怡如 (2018). 短期內受限於人力資源下X-bar管制圖之管制界限設定 國立成功大學碩士論文英文文獻:
Arnold, J. C. (1970). A markovian sampling policy applied to water quality monitoring of streams. Biometrics, 26(4), 739-747.
Arnold, J. C., Reynolds, M. R., Jr., Sawalapurkarpowers, U. (1993). Control charts with variable sample size and variable interval size. Proceedings, Section on Quality and Productivity. American Statistical Association, 138-143.
Arnold, J. C. & Reynolds, M. R., Jr. (2001). CUSUM control charts with variable sample sizes and sampling intervals. Journal of Quality Technology, 33(1), 66-81.
Aslam, M., Azam, M., Kim, K. J., Jun, C. H. (2018). Designing of an attribute control chart for two-stage process. Measurement & Control, 51(7-8), 285-292.
Bai, D. S. & Lee, K. T. (1998). An economic design of variable sampling interval x-bar control charts. International Journal of Production Economics, 54(1), 57-64.
Banerjee, P. K. & Rahim, M. A. (1988). Economic design of x-bar control charts under Weibull shock models. Technometrics, 30(4), 407-414.
Carolan, C. A., Kros, J. F., Said, S. E. (2009). Economic design of x-bar control charts with continuously variable sampling intervals. Quality and Reliability Engineering International, 26(3), 235-245.
Chen, Y. S. & Yang, Y. M. (2002). Economic design of x-bar control charts with Weibull in-control times when there are multiple assignable causes. International Journal of Production Economics, 77(1), 17-23.
Chen, Y. K. (2007). Economic design of an adaptive T^2 control chart. Journal of the Operational Research Society, 58(3), 337-345.
Chiu, W. K. (1974). The economic design of cusum charts for controlling normal means. Journal of the Royal Statistical Society, 23(3), 420-433.
Chiu, W. K. (1975). Economic design of attribute control charts. Technometrics, 17(1), 81-87.
Costa, A. F. B. (1993). Joint economic design of and R control charts for processes subject to two independent assignable causes. IIE Transactions, 25(6), 27-33.
Costa, A. F. B. (1994). charts with variable sample size. Journal of Quality Technology, 26, 155-163.
Costa, A. F. B. (1997). chart with variable sample size and sampling intervals. Journal of Quality Technology, 29, 197-204.
De Magalhaes, M. S., Epprecht, E. K., Costa, A. F. B. (2001). Economic design of a Vp x-bar chart. International Journal of Production Economics, 74, 191-200.
De Magalhaes, M. S. & Neto, F. D. M. (2005). Joint economic model for totally adaptive x-bar and R charts. European Journal of Operational Research, 161(1), 148-161.
Duffuaa, S. O., Al-Turki, U. M., Kolus, A. A. (2009). Process-targeting model for a product with two dependent quality characteristics using acceptance sampling plans. International Journal of Production Research, 47(14), 4031-4046.
Duncan, A. J. (1956). The economic design of x-bar charts used to maintain current control of a process. Journal of the American Statistical Association, 51(274), 228-242.
Duncan, A. J. (1971). The economic design of-charts when there is a multiplicity of assignable causes. Journal of the American Statistical Association, 66(333), 107-121.
Faraz, A., Kazemzadeh, R. B., Saniga, E. (2010). Economic and economic statistical design of T^2 control chart with two adaptive sample sizes. Journal of Statistical Computation and Simulation, 80(12), 1299-1316.
Nenes, G. (2011). A new approach for the economic design of fully adaptive control charts. International Journal of Production Economics, 131(2), 631-642.
Girshick, M. A. & Rubin, H. (1952). A Bayes’ approach to a quality control model. Annals of Mathematical Statistics, 23, 114-125.
Haridy, A. M. A. & El-Shabrawy, A. Z. (1994). The economic design of cumulative sum charts used to maintain current control of non-normal process means. Computers & Industrial Engineering, 31, 783-790.
Ho, C. & Case, K. E. (1994). Economic design of control charts : a literature review for 1981-1991. Journal of Quality Technology, 26, 39-53.
Ho, C. & Case, K. E. (1994). The economically-based EWMA control chart. International Journal of Production Research, 32(9), 2179-2186.
Hunter, J. S. (1986). The exponentially weighted moving average. Journal of Quality Technology, 18(4), 203-210.
Knappenberger, H. A. & Grandage, A. H. E. (1969). Minimum cost quality control tests. AIIE Transactions, 1(1), 24-32.
Koo, T. Y. & Case, K. E. (1990). Economic design x-bar control charts for using in monitoring continuous flow processes. International Journal of Production Research, 28, 2001-2011.
Li, C. I., Su, N. C., Su, P. F., Shyr, Y. (2014). The design of X-bar and R control charts for skew normal distributed data. Communications in Statistics, 43(23), 4908-4924.
Lorenzen, T. J. & Vance, L. C. (1986). The economic design of control charts : a unified approach. Technometrics, 28(1), 3-10.
Luo, Y., Li, Z., Wang, Z. (2009). Adaptive CUSUM control chart with variable sampling intervals. Computational Statistics and Data Analysis, 53, 2693-2701.
Montgomery, D. C. (2009). Introduction to Statistical Quality Control (6 ed.): Wiley:Hoboken, NJ.
Mullins E. (1994). Introduction to control charts in the analytical laboratory. Tutorial review. Analyst, 119, 369-375.
Niaki, S. T. A., Ershadi, M. J. (2012). A parameter-tuned genetic algorithm for statistically constrained economic design of multivariate CUSUM control charts : a Taguchi loss approach. International Journal of Systems Science, 43(12), 2275-2287.
Nickerson, D. M., Weheba, G. S. (2005). The economic design of x-bar charts : a proactive approach. Quality and Reliability Engineering International, 21, 91-104.
Parkhideh, B. & Case, K. E. (1989). The economic design of a dynamic x-control chart. IIE Transactions, 21(4), 313-323.
Park, C. & Reynolds, M. R. Jr. (1994). Economic design of a variable sample size x-bar chart. Communications in Statistics-Simulation and Computation, 23, 467-483.
Prabhu, S. S., Runger, G. C., Keats, J. B. (1993). An adaptive sample size x-bar chart. International Journal of Production Research, 31, 2895-2909.
Prabhu, S. S., Montgomery, D. C., Runger, G. C. A. (1994). Combined adaptive sample size and sampling interval x-bar control scheme. Journal of Quality Technology, 26, 164-176.
Rahim, M. A. & Costa, A. F. B. (2000). Joint economic design of X and R charts under Weibull shock models. International Journal of Production Research, 38(13), 2871-2889.
Reynolds, M. R., Jr. (1986). Optimal two-sided variable sampling interval control charts for the exponential family. Technical Report 86-4, Virginia Polytechnic Institute and State University, Dept. of Statistics.
Reynolds, M. R., Jr. & Arnold, J. C. (1986). Optimal one-sided Shewhart control charts with variable sampling intervals between samples. Technical Report 86-3, Virginia Polytechnic Institute and State University, Dept. of Statistics.
Reynolds, M. R., Jr. (1988). Optimal markov chain and two-sided Shewhart control charts with variable sampling intervals. Technical Report 88-2, Virginia Polytechnic Institute and State University, Dept. of Statistics.
Reynolds, M. R., Jr., Amin, R. W., Arnold, J. C., Nachlas, J. A. (1988). X-bar charts with variable sampling intervals. Technometrics, 30(2), 181-192.
Reynolds, M. R., Jr. (1996). Shewhart and EWMA variable sampling interval control charts with sampling at fixed times. Journal of Quality Technology, 28(2), 199-212.
Reynolds, M. R., Jr. (1996). Variable-sampling-interval control charts with sampling at fixed times. IIE Transactions, 28, 497-510.
Reynolds, M. R. Jr. & Arnold, J. C. (2001). EWMA control charts with variable sample sizes and variable sampling intervals. IIE Transactions, 33, 511-530.
Roberts, S. W. (1959). Control chart tests based on geometric moving-averages. Technometrics, 1, 239-250.
Ross, E. M. (1970). Applied probability models with optimization applications. Holden-Day, San Francisco.
Runger, G. C. & Pignatiello Jr. J. J. (1991). Adaptive sampling enhancements for Shewhart control charts. Journal of Quality Technology, 23, 135-155.
Saccucci, M. S., Amin, R. W., Lucas, J. M. (1992). Exponentially weighted moving average control schemes with variable sampling intervals. Communications in Statistics-Simulation and Computation. 21(3), 627-657.
Salmasnia, A., Abdzadeh, B., Namdar, M. (2017). A joint design of production run length, maintenance policy and control chart with multiple assignable causes. Journal of manufacturing system, 42, 44-56.
Saniga, E. M. (1977). Joint economically optimal design of X and R control charts. Management Science, 24(4), 420-431.
Saniga, E. M. (1989). Economic statistical control-chart designs with an application to x-bar and R charts. Technometrics, 31(3), 313-320.
Serel, D. A. & Moskowitz, H. (2008). Joint economic design of EWMA control charts for mean and variance. European Journal of Operational Research, 184(1), 157-168.
Serel, D. A. (2009). Economic design of EWMA control charts based on loss function. Mathematical and Computer Modelling, 49, 745-759.
Shamsuzzaman, M., Wu, Z., Elias, M. R. U. S. (2009). Designs of x-bar & S control
charts with optimal manpower deployment. Computers & Industrial Engineering, 56(4), 1589-1596.
Taylor, H. M. (1968). The economic design of cumulative sum control charts. Technometrics, 10(3), 479-488.
Ugaz, W., Sanchez, I., Alonso, A. M. (2017). Adaptive EWMA control charts with time-varying smoothing parameter. International Journal of Advanced Manufacturing Technology, 93(9-12), 3847-3858.
Vance, L. C. (1983). A bibliography of statistical quality control chart techniques, 1970-1980. Journal of Quality Technology, 15, 59-62.
Woodall, W. H. (1986). Weaknesses of the economic design of control charts. Technometrics, 28(4), 408-409.
Wu, Z., Shamsuzzaman, M., Wang, Q. (2006). Designs of control charts with optimal manpower deployment. International Journal of Production Research, 44(11), 2119-2132.
Wu, Z., Shamsuzzaman, M., Wang, Q. (2007). The cost minimization and manpower deployment to SPC in a multistage manufacturing system. International Journal of Production Economics, 106(1), 275-287.
Yang, S. F. (2013). Using a new VSI EWMA average loss control chart to monitor changes in the difference between the process mean and target and/or the process variability. Applied Mathematical Modelling, 37, 7973-7982.
Zhang, G. (2013). Improved R and S control charts for monitoring the process variance. Journal of Applied Statistics, 41(6), 1260-1273.