|
Aburomman, A. A., & Reaz, M. B. (2017). A novel weighted support vector machines multiclass classifier based on differential evolution for intrusion detection systems. Information Sciences, 414, 225-246. doi:10.1016/j.ins.2017.06.007 Aggarwal, K., Rutgers, T., Timbers, F., Hindle, A., Greiner, R., & Stroulia, E. (2015, 2-6 March 2015). Detecting duplicate bug reports with software engineering domain knowledge. Paper presented at the 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER). Akman, S., Ozmut, M., Aydin, B., & Gokturk, S. (2016). Experience report: implementing requirement traceability throughout the software development life cycle. Journal of Software-Evolution and Process, 28(11), 950-954. doi:10.1002/smr.1824 Alguliyev, R. M., Aliguliyev, R. M., Isazade, N. R., Abdi, A., & Idris, N. (2019). COSUM: Text summarization based on clustering and optimization. Expert Systems, 36(1), 17. doi:10.1111/exsy.12340 Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). Text Summarization Techniques: A Brief Survey. International Journal of Advanced Computer Science and Applications, 8(10), 397-405. Arabshahi, H., & Fazlollahtabar, H. (2018). Classifying Innovative Activities Using Decision Tree and Gini Index. International Journal of Innovation and Technology Management, 15(3), 14. doi:10.1142/s0219877018500256 Babu, T. A., & Kumar, P. R. (2018, 4-5 Jan. 2018). Characterization and classification of uterine magnetomyography signals using KNN classifier. Paper presented at the 2018 Conference on Signal Processing And Communication Engineering Systems (SPACES). Banerjee, S., Syed, Z., Helmick, J., Culp, M., Ryan, K., & Cukic, B. (2017). Automated triaging of very large bug repositories. Information and Software Technology, 89, 1-13. doi:10.1016/j.infsof.2016.09.006 Barushka, A., & Hajek, P. (2018). Spam filtering using integrated distribution-based balancing approach and regularized deep neural networks. Applied Intelligence, 48(10), 3538-3556. doi:10.1007/s10489-018-1161-y Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. doi:https://doi.org/10.1016/j.isprsjprs.2016.01.011 Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 Bužić, D., & Dobša, J. (2018, 21-25 May 2018). Lyrics classification using Naive Bayes. Paper presented at the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Cheng, D., Shi, Y., Lin, T., Gwee, B., & Toh, K. (2018). Hybrid K-Means Clustering and Support Vector Machine Method for Via and Metal Line Detections in Delayered IC Images. IEEE Transactions on Circuits and Systems II: Express Briefs, 1-1. doi:10.1109/TCSII.2018.2827044 Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273-297. doi:10.1007/bf00994018 da Silva, P. R. N., Gabbar, H. A., Vieira, P., & da Costa, C. T. (2018). A new methodology for multiple incipient fault diagnosis in transmission lines using QTA and Naive Bayes classifier. International Journal of Electrical Power & Energy Systems, 103, 326-346. doi:10.1016/j.ijepes.2018.05.036 Dastgheib, M. B., Fakhrahmad, S. M., & Jahromi, M. Z. (2017). Perspell: A new Persian semanticbased spelling correction system. Digital Scholarship in the Humanities, 32(3), 543-553. doi:10.1093/llc/fqw015 Desokey, E. N., Badr, A., & Hegazy, A. F. (2017, 27-28 Dec. 2017). Enhancing stock prediction clustering using K-means with genetic algorithm. Paper presented at the 2017 13th International Computer Engineering Conference (ICENCO). Du, P., Samat, A., Waske, B., Liu, S., & Li, Z. (2015). Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 38-53. doi:https://doi.org/10.1016/j.isprsjprs.2015.03.002 Duan, J. Y., Ji, T. X., & Wang, H. (2018). Error Correction for Search Engine by Mining Bad Case. Ieice Transactions on Information and Systems, E101D(7), 1938-1945. doi:10.1587/transinf.2017EDP7284 Gomes, S. R., Saroar, S. G., Mosfaiul, M., Telot, A., Khan, B. N., Chakrabarty, A., & Mostakim, M. (2017, 28-30 Sept. 2017). A comparative approach to email classification using Naive Bayes classifier and hidden Markov model. Paper presented at the 2017 4th International Conference on Advances in Electrical Engineering (ICAEE). Granik, M., & Mesyura, V. (2017, 29 May-2 June 2017). Fake news detection using naive Bayes classifier. Paper presented at the 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). Graovac, J., Kovacevic, J., & Pavlovic-Lazetic, G. (2017). Hierarchical vs. flat n-gram-based text categorization: can we do better? Computer Science and Information Systems, 14(1), 103-121. doi:10.2298/csis151017030g Guan, H., Li, J., Chapman, M., Deng, F., Ji, Z., & Yang, X. (2013). Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests. International Journal of Remote Sensing, 34(14), 5166-5186. doi:10.1080/01431161.2013.788261 Hajj, N., Filo, M., & Awad, M. (2018). Automated composer recognition for multi-voice piano compositions using rhythmic features, n-grams and modified cortical algorithms. Complex & Intelligent Systems, 4(1), 55-65. doi:10.1007/s40747-017-0052-x Herzig, K., Just, S., & Zeller, A. (2013, 18-26 May 2013). It's not a bug, it's a feature: How misclassification impacts bug prediction. Paper presented at the 2013 35th International Conference on Software Engineering (ICSE). Jo, T. (2018, 11-14 Feb. 2018). String Vector based KNN for text categorization. Paper presented at the 2018 20th International Conference on Advanced Communication Technology (ICACT). Jones, K. S. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, 28(1), 11-21. doi:10.1108/eb026526 Kim, K. (2018). An improved semi-supervised dimensionality reduction using feature weighting: Application to sentiment analysis (Vol. 109). Kukkar, A., & Mohana, R. (2018). A Supervised Bug Report Classification with Incorporate and Textual field Knowledge. Procedia Computer Science, 132, 352-361. doi:https://doi.org/10.1016/j.procs.2018.05.194 Lin, C.-Y., & Hovy, E. (2003). Automatic Evaluation of Summaries Using n-gram Co-occurrence Statistics. Liu, W. J., Wang, S. S., Chen, X., & Jiang, H. (2018). Predicting the Severity of Bug Reports Based on Feature Selection. International Journal of Software Engineering and Knowledge Engineering, 28(4), 537-558. doi:10.1142/s0218194018500158 Liu, Y., Shi, Y. K., Xu, M. W., Zhang, L. L., Yu, N., & Ding, Y. L. (2017, 10-13 Dec. 2017). A further improved support vector machine model along with particle swarm optimization for face orientations recognition based on eigeneyes by using hybrid kernel. Paper presented at the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). Lo, S. L., Cambria, E., Chiong, R., & Cornforth, D. (2016). A multilingual semi-supervised approach in deriving Singlish sentic patterns for polarity detection. Knowledge-Based Systems, 105, 236-247. doi:10.1016/j.knosys.2016.04.024 Luaphol, B., Srikudkao, B., Polpinij, J., & Kaenampornpan, M. (2018, 24-26 Oct. 2018). Assembling Relevant Bug Report using the Constraint-based k-means Clustering. Paper presented at the 2018 International Conference on Information Technology (InCIT). Manalu, S. R. (2017, 27-30 June 2017). Stop words in review summarization using TextRank. Paper presented at the 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Manochandar, S., & Punniyamoorthy, M. (2018). Scaling feature selection method for enhancing the classification performance of Support Vector Machines in text mining. Computers & Industrial Engineering, 124, 139-156. doi:10.1016/j.cie.2018.07.008 Masso, M. (2015). Sequence-Based Predictive Models of Resistance to HIV-1 Integrase Inhibitors: An n-Grams Approach to Phenotype Assessment. Current Hiv Research, 13(6), 497-502. doi:10.2174/1570162x13666150624100535 Nagwani, N. K., & Verma, S. (2016). Generating Intelligent Summary Terms for Improving Knowledge Discovery in Software Bug Repositories. International Journal of Software Engineering and Knowledge Engineering, 26(5), 827-844. doi:10.1142/s0218194016500273 Palshikar, G. K., Apte, M., & Pandita, D. (2018). Weakly Supervised and Online Learning of Word Models for Classification to Detect Disaster Reporting Tweets. Information Systems Frontiers, 20(5), 949-959. doi:10.1007/s10796-018-9830-2 Pandey, N., Sanyal, D. K., Hudait, A., & Sen, A. (2017). Automated classification of software issue reports using machine learning techniques: an empirical study. Innovations in Systems and Software Engineering, 13(4), 279-297. doi:10.1007/s11334-017-0294-1 Pawlovsky, A. P. (2018, 24-27 Jan. 2018). An ensemble based on distances for a kNN method for heart disease diagnosis. Paper presented at the 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA. Pradip, K. G., & Patil, D. R. (2016, 18-19 March 2016). Summarization of sentences using fuzzy and hierarchical clustering approach. Paper presented at the 2016 Symposium on Colossal Data Analysis and Networking (CDAN). Rahman, A., & Islam, Z. (2018). Application of a density based clustering technique on biomedical datasets. Applied Soft Computing, 73, 623-634. doi:10.1016/j.asoc.2018.09.012 Rakha, M. S., Bezemer, C. P., & Hassan, A. E. (2018). Revisiting the performance of automated approaches for the retrieval of duplicate reports in issue tracking systems that perform just-in-time duplicate retrieval. Empirical Software Engineering, 23(5), 2597-2621. doi:10.1007/s10664-017-9590-5 Rampado, O., Gianusso, L., Nava, C. R., & Ropolo, R. (2019). Analysis of a CT patient dose database with an unsupervised clustering approach. Physica Medica-European Journal of Medical Physics, 60, 91-99. doi:10.1016/j.ejmp.2019.03.015 Roslan, R., Nazery, N. A., Jamil, N., & Hamzah, R. (2017, 24-27 Oct. 2017). Color-based bird image classification using Support Vector Machine. Paper presented at the 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE). Saito, S., Iimura, Y., Massey, A. K., & Antón, A. I. (2017, 4-8 Sept. 2017). How Much Undocumented Knowledge is there in Agile Software Development?: Case Study on Industrial Project Using Issue Tracking System and Version Control System. Paper presented at the 2017 IEEE 25th International Requirements Engineering Conference (RE). Sanchez-Gomez, J. M., Vega-Rodriguez, M. A., & Perez, C. J. (2018). Extractive multi-document text summarization using a multi-objective artificial bee colony optimization approach. Knowledge-Based Systems, 159, 1-8. doi:10.1016/j.knosys.2017.11.029 Sharma, M., & Singh, V. (2016). Clustering-based association rule mining for bug assignee prediction (Vol. 11). Shukla, S. K., & Koley, E. (2017, 21-23 Dec. 2017). Detection and classification of open conductor faults in six-phase transmission system using k-nearest neighbour algorithm. Paper presented at the 2017 7th International Conference on Power Systems (ICPS). Singha, S., & Shenoy, P. P. (2018). An adaptive heuristic for feature selection based on complementarity. Machine Learning, 107(12), 2027-2071. doi:10.1007/s10994-018-5728-y Stewart, T. G., Zeng, D. L., & Wu, M. C. (2018). Constructing support vector machines with missing data. Wiley Interdisciplinary Reviews-Computational Statistics, 10(4), 16. doi:10.1002/wics.1430 Thu, H. N. T., Ngoc, C. N., Ngoc, T. N., & Huynh, H. X. (2016). Improving Quality of Vietnamese Text Summarization Based on Sentence Compression. International Journal of Advanced Computer Science and Applications, 7(2), 362-366. Tian, Y., Lo, D., Xia, X., & Sun, C. N. (2015). Automated prediction of bug report priority using multi-factor analysis. Empirical Software Engineering, 20(5), 1354-1383. doi:10.1007/s10664-014-9331-y Wang, X. J., Zhang, Y. J., Luo, Y. P., He, J. H., Ling, P., & Fang, C. (2018). Two-layer coordination architecture HIF detection with mu PMU data. Journal of Engineering-Joe(15), 1033-1037. doi:10.1049/joe.2018.0258 Weinmann, M., Jutzi, B., Hinz, S., & Mallet, C. (2015). Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 286-304. doi:https://doi.org/10.1016/j.isprsjprs.2015.01.016 Yildiz, K., Camurcu, Y., & Dogan, B. (2018). Comparison of Dimension Reduction Techniques on High Dimensional Datasets. International Arab Journal of Information Technology, 15(2), 256-262. Zhao, S. T., Sun, J. Q., Shimizu, K., & Kadota, K. (2018). Silhouette Scores for Arbitrary Defined Groups in Gene Expression Data and Insights into Differential Expression Results. Biological Procedures Online, 20, 12. doi:10.1186/s12575-018-0067-8 Zhou, S., Xu, Z., & Liu, F. (2017). Method for Determining the Optimal Number of Clusters Based on Agglomerative Hierarchical Clustering. IEEE Transactions on Neural Networks and Learning Systems, 28(12), 3007-3017. doi:10.1109/TNNLS.2016.2608001 Zhou, Y., Tong, Y., Gu, R., & Gall, H. (2016). Combining text mining and data mining for bug report classification. Journal of Software: Evolution and Process, 28(3), 150-176. doi:10.1002/smr.1770
|