跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 02:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇文翎
研究生(外文):Wen-LingSu
論文名稱:大氣溫度對妊娠糖尿病診斷發生的影響
論文名稱(外文):Influence of Ambient Temperature on Risk of Diagnosis for Gestational Diabetes Mellitus
指導教授:李中一李中一引用關係
指導教授(外文):CHUNG-YI LI
學位類別:碩士
校院名稱:國立成功大學
系所名稱:公共衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:133
中文關鍵詞:妊娠糖尿病溫度季節性變化世代研究流行病學研究
外文關鍵詞:Gestational diabetes mellitusTemperatureSeasonal variationCohort studiesEpidemiologic studies
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:隨著全球暖化,國際社會相當重視極端氣候造成的健康危害,尤其是脆弱的易感族群以及遭受氣溫劇烈變化的地區。自從1994年巴西的研究以來,越來越多的研究指出妊娠糖尿病盛行率具有季節性,夏季有較高的盛行率,而近期的研究更發現其與大氣溫度亦具有相關性。台灣位處熱帶與亞熱帶交錯處,有關大氣溫度與妊娠糖尿病盛行率相關性之研究仍屬有限,而國外研究雖然顯示高溫季節妊娠糖尿病盛行率較高,但針對日均溫度高低或同一天內溫差變化大小與妊娠糖尿病診斷發生間的相關性研究也很有限。
目的:探討台灣第二妊娠期環境氣溫暴露與妊娠糖尿病診斷發生風險之間是否具相關性,並分析此相關性是否會隨著產婦年齡、原始國籍與社會經濟地位不同而有所差異。
方法:本研究為全人口的回溯性世代研究設計,使用「衛生福利部衛生福利資料科學中心」之全人口健保與出生通報資料,納入2013-2014年所有經歷分娩之孕婦,分析其於妊娠糖尿病診斷日(或懷孕第27週第1天)所在之季節與前35日每日氣溫與與每日高低溫差之平均值。妊娠糖尿病盛行率並以世界衛生組織2000年標準人口進行年齡標準化,以連結點迴歸(joinpoint regression)找尋盛行率與平均氣溫關係是否存在轉折點,再以單變量與多變量邏輯斯迴歸搭配廣義估計方程式,經控制潛在干擾因子(人口學、生產特性與社會經濟地位等)後,計算不同季節、氣溫與溫差之下,妊娠糖尿病診斷發生風險之勝算比及其95%信賴區間,並納入交互作用項,檢定潛在效果修飾因子的顯著性。
結果:2013-2014年研究樣本共371,131產婦人次,當中於懷孕期間有妊娠糖尿病診斷共有43,538產婦人次(11.73%)。妊娠糖尿病年齡標準化盛行率以夏季與秋季較高(13.04%與12.63%),冬季與春季較低(11.63%與11.53%),且隨著暴露指標日前35天平均日均溫上升而上升,在日均溫達28°C以上時,上升的幅度更為明顯。多變量迴歸分析發現:相較於冬季,夏季與秋季發生妊娠糖尿病診斷之調整後勝算比顯著較高,分別為1.05(95%信賴區間:1.04-1.07)與1.04(95%信賴區間:1.04-1.07)。另外,日均溫與妊娠糖尿病診斷之關係並非呈線性關係,利用連結點迴歸找出關係轉折點並區分成兩段線性分析,溫度區間為14-27°C時,平均日均溫之勝算比為1.03(95%信賴區間:1.02-1.03),28-30°C時,平均日均溫之勝算比則大幅增加為1.54(95%信賴區間:1.48-1.60)。此外,妊娠糖尿病盛行率則是與日溫差平均值呈現線性的負相關,平均日溫差每增加1°C,妊娠糖尿病盛行率下降10%(調整後勝算比0.90,95%信賴區間:0.87-0.92)。雖然年齡與均溫,以及社經地位與均溫及溫差之交互作用均達到統計顯著性,不過分層分析顯示:年齡、社經地位、以及孕婦原生國籍別對溫度、溫差與妊娠糖尿病間相關性之效果修飾作用並不明顯。
結論:本研究發現:季節、均溫與溫差與台灣妊娠期婦女妊娠糖尿病診斷發生的風險有關,於夏季、高溫之下妊娠糖尿病診斷發生風險將提升,超過28°C之後風險將會更加明顯;另一方面,溫差增加則是會降低妊娠糖尿病診斷的發生。
SUMMARY
Recent studies have found the association between prevalence of gestational diabetes mellitus (GDM) and daily temperature. On the basis of these literatures, the aim of this study was to examine the association between the identical factors in Taiwan, a sub-tropic country. This was a population-based retrospective cohort study with Birth Notification database 2013 to 2014, and the National Health Insurance (NHI) program to investigate the prevalence of GDM. Multivariate unconditional logistic regression analysis with generalized estimation equation was used to estimate the adjusted odds ratio (aOR) and 95% confidence interval (CI) of GDM. In all women (n=371,131) who gave birth in 2013 and 2014, 43538(11.7%) had a GDM diagnosis during pregnancy. The age-standardized prevalence of GDM was higher in summer (13.04%) and fall (12.63%), but lower in winter (11.63%) and spring (11.53%), and also steadily raised with increasing temperature from 14°C to 30°C, with a noticeable rise after 28°C. After controlling for potential confounders, summer and fall were associated with a significantly higher risk of GDM diagnosis, with an adjusted OR [95% CI] of 1.05 [1.04–1.07] and 1.04 [1.02–1.06], with reference to winter. The adjusted OR [95% CI] in 14°C to 27°C was 1.03[1.02-1.03], but in 28°C to 30°C was 1.54[1.48-1.60]. The principal conclusion was that season and temperature conferred an increased risk of GDM in Taiwan. A significant dose–gradient effect of temperature on GDM was noted in mothers living in sub-tropic regions; and the association became stronger after 28°C.
Key words:Gestational diabetes mellitus, Temperature, Seasonal variation, Cohort studies, Epidemiologic studies
BACKGROUND
The impact of climate variability on health, especially susceptible populations and regions, has become increasingly importan given the global warming over the past century. After the first Brazil study published in 1994, several studies found a seasonal clustering of gestational diabetes mellitus (GDM) with a significantly higher prevalence noted in summer. Furthermore, recent studies have found the association between prevalence of GDM and daily temperature, or daily temperature difference. Although the climate of Taiwan is warmer than most countries around the world, no study that explored this issue in Taiwan. Moreover, it is in dispute whether the screen of GDM should be covered in National Health Insurance (NHI).
OBJECTIVES
This study aimed to investigate the association of ambient temperature with prevalence of GDM in Taiwan, a sub-tropic country. Furthermore, our study attempted to evaluate whether maternal age, birth country or socioeconomic status may interact with temperature on the risk of GDM.
METHODS
This was a population-based retrospective cohort study with Birth Notification database 2013 to 2014, and the NHI program to investigate the prevalence of GDM in Taiwan. The average daily temperature over a 35-day period prior to GDM diagnosis or the first day of the 27th gestational week was used to indicate exposure. The prevalence of GDM was standardized by using the WHO 2000 standard population. We performed joinpoint regression to assess whether there is a threshold for the putative temperature and GDM relationship. Multivariate unconditional logistic regression analyses with generalized estimation equation were further performed to estimate the adjusted odds ratio (aOR) and 95% confidence interval (CI) of GDM.
RESULTS
Between 2013 and 2014, there were 371,131 women who gave birth, and among them 43,538 (11.7%) women had a diagnosis of GDM during pregnancy. The age-standardized prevalence of GDM was higher in summer (13.04%) and fall (12.63%), but lower in winter (11.63%) and spring (11.53%). The prevalence of GDM also steadily raised with increasing temperature from 14°C to 30°C, with a noticeable rise after 28°C. After controlling for potential confounders, summer and fall were associated with a significantly higher risk of GDM diagnosis, with an adjusted OR [95% CI] of 1.05 [1.04–1.07] and 1.04 [1.02–1.06], with reference to winter. Additionally, an increase of 1°C was associated with a 4% higher risk of being diagnosed as GDM( adjusted OR [95% CI] was 1.04[1.04-1.04] ). If we classified the temperature into two group according to the outcome of joinpoint regression, the adjusted OR [95% CI] in 14°C to 27°C was 1.03[1.02-1.03], but in 28°C to 30°C was 1.54[1.48-1.60].
CONCLUSIONS
Our study found that season and temperature conferred an increased risk of GDM in Taiwan. A significant dose–gradient effect of temperature on GDM was noted in mothers living in sub-tropic regions; and the association became stronger after 28°C. On the other hand, maternal age and socioeconomic status interacted with temperature on the risk of GDM. Findings from our study may help formulate prenatal care programs that may effectively manage the GDM of pregnant women.
目錄
摘要 II
誌謝 VII
第壹章 前言 1
第一節 研究背景 1
第二節 研究目的 1
第三節 研究假設 2
第貳章 文獻回顧 3
第一節 妊娠糖尿病介紹 3
第二節 溫度與疾病的關係 15
第三節 溫度與妊娠糖尿病的關係 17
第叁章 研究設計 22
第一節 資料來源 22
第二節 研究設計 22
第三節 研究對象與病例定義 23
第四節 妊娠日期之界定方法以及大氣溫度之暴露評估 23
第五節 其他影響妊娠糖尿病之危險因子定義 25
第六節 統計分析 27
第肆章 研究結果 29
第一節 研究對象特徵描述 29
第二節 研究期間氣象參數描述 29
第三節 盛行率描述 30
第四節 各氣象參數與妊娠糖尿病診斷發生之勝算比 31
第五節 交互作用描述 31
第伍章 討論 34
第一節 研究主要發現 34
第二節 與過去研究比較 35
第三節 研究結果之重要性 39
第四節 研究優勢與限制 40
第陸章 結論與建議 44
第柒章 參考文獻 45


表目錄
表2- 1、國際妊娠糖尿病診斷標準整理 61
表2- 2、妊娠糖尿病與氣象參數之相關性文獻整理 62
表3- 1、氣象測站資訊 64
表3- 2、查爾森共病指標內容 66
表4- 1、研究對象特徵描述 67
表4- 2、台灣各地理區域於研究期間(2012-2014)四季之每日溫濕度參數統計表 69
表4- 3、研究對象於不同觀察區間內之氣象觀測值 71
表4- 4、研究期間(2012-2014)各氣象觀測值之皮爾森相關係數 72
表4- 5、研究期間(2012-2014)暴露指標日前不同期間之平均日均溫之皮爾森相關係數 73
表4- 6、研究期間(2012-2014)暴露指標日前不同期間之平均日溫差之皮爾森相關係數 74
表4- 7、研究期間月份別以及季節別妊娠糖尿病盛行率其95%信賴區間 75
表4- 8、平均日均溫別妊娠糖尿病盛行率及其95%信賴區間 76
表4- 9、平均日溫差別妊娠糖尿病盛行率及其95%信賴區間 77
表4- 10、研究對象特性分析(以產婦原始國籍分組)1 78
表4- 11、日均溫別與妊娠糖尿病盛行率及其95%信賴區間(以產婦原始國籍分層) 80
表4- 12、日溫差別與妊娠糖尿病盛行率及其95%信賴區間(以產婦原始國籍分層) 82
表4- 13、日均溫別與妊娠糖尿病盛行率及其95%信賴區間(以生產年齡分層) 83
表4- 14、日溫差與妊娠糖尿病盛行率及其95%信賴區間(以生產年齡分層) 85
表4- 15、日均溫與妊娠糖尿病盛行率及其95%信賴區間(以健保投保金額分層) 86
表4- 16、溫差與妊娠糖尿病盛行率及其95%信賴區間(以健保投保金額分類) 90
表4- 17、季節與妊娠糖尿病診斷之邏輯斯迴歸分析 92
表4- 18、平均日均溫與妊娠糖尿病診斷之邏輯斯迴歸分析 95
表4- 19、平均日溫差與妊娠糖尿病診斷之邏輯斯迴歸分析 98
表4- 20、氣象參數與妊娠糖尿病診斷發生之國籍別勝算比1 101
表4- 21、氣象參數與妊娠糖尿病診斷發生之母親生產年齡別勝算比1 102
表4- 22、氣象參數與妊娠糖尿病診斷發生之健保投保金額別勝算比1 103


圖目錄
圖3、資料擷取流程圖 105
圖4- 1、2012/06/01-2014/12/31台灣四大地理區域平均氣象參數折線圖 107
圖4- 2、2012/06/01-2014/12/31台灣四大區域平均氣象參數期間(前7、14、21、28與35天)平均折線圖 109
圖4- 3、月份別妊娠糖尿病粗盛行率及其95%信賴區間 110
圖4- 4、月份別年齡標準化妊娠糖尿病盛行率其95%信賴區間 111
圖4- 5、季節別妊娠糖尿病粗盛行率及其95%信賴區間 112
圖4- 6、季節別年齡標準化妊娠糖尿病盛行率及其95%信賴區間 113
圖4- 7、以joinpoint regression 分析季節與妊娠糖尿病粗盛行率之關係圖 114
圖4- 8、以joinpoint regression 分析季節與年齡標準化妊娠糖尿病盛行率之關係圖 115
圖4- 9、平均日均溫別妊娠糖尿病粗盛行率及其95%信賴區間 116
圖4- 10、平均日均溫別年齡標準化妊娠糖尿病盛行率及其95%信賴區間 117
圖4- 11、以joinpoint regression 分析平均日均溫與妊娠糖尿病粗盛行率之關係圖 118
圖4- 12、以joinpoint regression 分析平均日均溫與年齡標準化妊娠糖尿病盛行率之關係圖 119
圖4- 13、平均日溫差別妊娠糖尿病粗盛行率及其95%信賴區間 120
圖4- 14、平均日溫差別年齡標準化妊娠糖尿病盛行率及其95%信賴區間 121
圖4- 15、以joinpoint regression 分析平均日溫差與妊娠糖尿病粗盛行率之關係圖 122
圖4- 16、以joinpoint regression 分析平均日溫差與年齡標準化妊娠糖尿病盛行率之關係圖 123
圖4- 17、平均日均溫別妊娠糖尿病粗盛行率及其95%信賴區間(以產婦原始出生國籍分層) 124
圖4- 18、平均日均溫別年齡標準化妊娠糖尿病盛行率及其95%信賴區間(以產婦原始出生國籍分層) 125
圖4- 19、平均日溫差別妊娠糖尿病粗盛行率及其95%信賴區間(以產婦原始出生國籍分層) 126
圖4- 20、平均日溫差別年齡標準化妊娠糖尿病盛行率及其95%信賴區間(以產婦原始出生國籍分層) 127
圖4- 21、平均日均溫別妊娠糖尿病粗盛行率及其95%信賴區間(以產婦生產年齡分層) 128
圖4- 22、平均日溫差別妊娠糖尿病盛行率及其95%信賴區間(以產婦生產年齡分層) 129
圖4- 23、平均日均溫別妊娠糖尿病粗盛行率及其95%信賴區間(以產婦健保投保金額分層) 130
圖4- 24、平均日均溫別年齡標準化妊娠糖尿病盛行率及其95%信賴區間(以產婦健保投保金額分層) 131
圖4- 25、平均日溫差別妊娠糖尿病粗盛行率及其95%信賴區間(以產婦健保投保金額分層) 132
圖4- 26、平均日溫差別年齡標準化妊娠糖尿病盛行率及其95%信賴區間(以產婦健保投保金額分層) 133
Alfadhli, E. M. (2015). Gestational diabetes mellitus. Saudi Medical Journal, 36(4), 399.
Al-Rubeaan, K., Al-Manaa, H. A., Khoja, T. A., Youssef, A. M., Al-Sharqawi, A. H., Siddiqui, K., & Ahmad, N. A. (2014). A community-based survey for different abnormal glucose metabolism among pregnant women in a random household study (SAUDI-DM). BMJ Open, 4(8), e005906.
American Diabetes Association. (2018). 4. Lifestyle management: Standards of medical care in diabetes—2018. Diabetes Care, 41(Supplement 1), S38-S50.
Anna, V., Van Der Ploeg, H. P., Cheung, N. W., Huxley, R. R., & Bauman, A. E. (2008). Sociodemographic correlates of the increasing trend in prevalence of gestational diabetes mellitus in a large population of women between 1995 and 2005. Diabetes Care, 31(12), 2288-2293.
Arya, S., Mulla, Z. D., & Plavsic, S. K. (2018). Outcomes of women delivering at very advanced maternal age. Journal of Women's Health, 27(11), 1378-1384.
Asad, H., & Carpenter, D. O. (2018). Effects of climate change on the spread of zika virus: a public health threat. Reviews on Environmental Health, 33(1), 31-42.
Ashrafi, M., Sheikhan, F., Arabipoor, A., Hosseini, R., Nourbakhsh, F., & Zolfaghari, Z. (2014). Gestational diabetes mellitus risk factors in women with polycystic ovary syndrome (PCOS). European Journal of Obstetrics & Gynecology and Reproductive Biology, 181, 195-199.
Assaf-Balut, C., García de la Torre, N., Fuentes, M., Durán, A., Bordiú, E., del Valle, L., ... & Torrejón, M. (2019). A high adherence to six food targets of the mediterranean diet in the late first trimester is associated with a reduction in the risk of materno-foetal outcomes: The St. Carlos gestational diabetes mellitus prevention study. Nutrients, 11(1), 66.
Bai, J., Wong, F. W. S., Bauman, A., & Mohsin, M. (2002). Parity and pregnancy outcomes. American Journal of Obstetrics and Gynecology, 186(2), 274–278.
Bao, W., Tobias, D. K., Bowers, K., Chavarro, J., Vaag, A., Grunnet, L. G., ... & Zhang, C. (2014). Physical activity and sedentary behaviors associated with risk of progression from gestational diabetes mellitus to type 2 diabetes mellitus: A prospective cohort study. JAMA Internal Medicine, 174(7), 1047-1055.
Basu, R., Rau, R., Pearson, D., & Malig, B. (2018). Temperature and term low birth weight in California. American Journal of Epidemiology, 187(11), 2306-2314.
Bender, W., Hirshberg, A., & Levine, L. D. (2019). Interpregnancy body mass index changes: Distribution and impact on adverse pregnancy outcomes in the subsequent pregnancy. American Journal of Perinatology, 36(5), 517-521.
Benhalima, K., Van Crombrugge, P., Moyson, C., Verhaeghe, J., Vandeginste, S., Verlaenen, H., ... & Jacquemyn, Y. (2018). The sensitivity and specificity of the glucose challenge test in a universal two-step screening strategy for gestational diabetes mellitus using the 2013 world health organization criteria. Diabetes Care, 41(7), e111-e112.
Ben-Haroush, A., Yogev, Y., & Hod, M. (2004). Epidemiology of gestational diabetes mellitus and its association with type 2 diabetes. Diabetic Medicine, 21(2), 103-113.
Betz, M. J., & Enerbäck, S. (2015). Human brown adipose tissue: What we have learned so far. Diabetes, 64(7), 2352-2360.
Bezirtzoglou, C., Dekas, K., & Charvalos, E. (2011). Climate changes, environment and infection: Facts, scenarios and growing awareness from the public health community within Europe. Anaerobe, 17(6), 337-340.
Bond, R., Pace, R., Rahme, E., & Dasgupta, K. (2017). Diabetes risk in women with gestational diabetes mellitus and a history of polycystic ovary syndrome: A retrospective cohort study. Diabetic Medicine, 34(12), 1684-1695.
Booth, G. L., Luo, J., Park, A. L., Feig, D. S., Moineddin, R., & Ray, J. G. (2017). Influence of environmental temperature on risk of gestational diabetes. Canadian Medical Association Journal, 189(19), E682-E689.
Bottalico, J. N. (2007). Recurrent gestational diabetes: Risk factors, diagnosis, management, and implications. Seminars in Perinatology, 31(3), 176–184.
Boussoussou, N., Boussoussou, M., Merész, G., Rakovics, M., Entz, L., & Nemes, A. (2019). Complex effects of atmospheric parameters on acute cardiovascular diseases and major cardiovascular risk factors: Data from the Cardiometeorologysm study. Scientific Reports, 9(1), 6358.
Bouthoorn, S. H., Silva, L. M., Murray, S. E., Steegers, E. A., Jaddoe, V. W., Moll, H., ... & Raat, H. (2015). Low-educated women have an increased risk of gestational diabetes mellitus: The Generation R Study. Acta Diabetologica, 52(3), 445-452.
Brite, J., Shiroma, E. J., Bowers, K., Yeung, E., Laughon, S. K., Grewal, J. G., & Zhang, C. (2014). Height and the risk of gestational diabetes: Variations by race/ethnicity. Diabetic Medicine, 31(3), 332-340.
Bruckner, T. A., Modin, B., & Vågerö, D. (2014). Cold ambient temperature in utero and birth outcomes in Uppsala, Sweden, 1915–1929. Annals of Epidemiology, 24(2), 116-121.
Brüggmann, D., Richter, T., Klingelhöfer, D., Gerber, A., Bundschuh, M., Jaque, J., & Groneberg, D. A. (2015). Global architecture of gestational diabetes research: Density-equalizing mapping studies and gender analysis. Nutrition Journal, 15(1), 36.
Buchanan, T. A., & Xiang, A. H. (2005). Gestational diabetes mellitus. Journal of Clinical Investigation,115(3), 485-491.
Butalia, S., Donovan, L., Savu, A., Johnson, J., Edwards, A., & Kaul, P. (2017). Postpartum diabetes testing rates after gestational diabetes mellitus in Canadian women: A population-based study. Canadian Journal of Diabetes, 41(6), 613–620.
Byrn, M., & Penckofer, S. (2015). The relationship between gestational diabetes and antenatal depression. Journal of Obstetric, Gynecologic and Neonatal Nursing, 44(2), 246-255.
Carolan, M., Davey, M. A., Biro, M. A., & Kealy, M. (2012). Maternal age, ethnicity and gestational diabetes mellitus. Midwifery, 28(6), 778-783.
Carstensen, B., Lindström, J., Sundvall, J., Borch-Johnsen, K., & Tuomilehto, J. (2008). Measurement of blood glucose: Comparison between different types of specimens. Annals of Clinical Biochemistry, 45(2), 140-148.
Chen, L., Hu, F. B., Yeung, E., Willett, W., & Zhang, C. (2009). Prospective study of pre-gravid sugar-sweetened beverage consumption and the risk of gestational diabetes mellitus. Diabetes Care, 32(12), 2236-2241.
Chen, Y. Y., Gunnell, D., Lu, C. L., Chang, S. S., Lu, T. H., & Li, C. Y. (2013). Perinatal risk factors for suicide in young adults in Taiwan. International Journal of Epidemiology, 42(5), 1381-1389.
Cheung, N. W., & Moses, R. G. (2018). Gestational diabetes mellitus: Is it time to reconsider the diagnostic criteria? Diabetes care, 41(7), 1337-1338.
Chiefari, E., Arcidiacono, B., Foti, D., & Brunetti, A. (2017). Gestational diabetes mellitus: An updated overview. Journal of Endocrinological Investigation, 40(9), 899-909.
Chowdhury, F. R., Nur, Z., Hassan, N., Seidlein, L., & Dunachie, S. (2017). Pandemics, pathogenicity and changing molecular epidemiology of cholera in the era of global warming. Annals of Clinical Microbiology and Antimicrobials, 16(1), 10.
Collier, A., Abraham, E. C., Armstrong, J., Godwin, J., Monteath, K., & Lindsay, R. (2017). Reported prevalence of gestational diabetes in Scotland: The relationship with obesity, age, socioeconomic status, smoking and macrosomia, and how many are we missing? Journal of Diabetes Investigation, 8(2), 161-167.
Conger, R. D., & Donnellan, M. B. (2007). An interactionist perspective on the socioeconomic context of human development. Annual Review of Psychology, 58, 175-199.
Deyo, R. A., Cherkin, D. C., & Ciol, M. A. (1992). Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: Differing perspectives. Journal of Clinical Epidemiology, 45(6), 613-619.
Diouf, K., & Nour, N. M. (2017). Mosquito-borne diseases as a global health problem: Implications for pregnancy and travel. Obstetrical & Gynecological Survey, 72(5), 309-318.
Dode, M. A. S. D. O., & Santos, I. S. D. (2009). Non classical risk factors for gestational diabetes mellitus: A systematic review of the literature. Cadernos de Saúde Pública, 25, S341-S359.
Domanski, G., Lange, A. E., Ittermann, T., Allenberg, H., Spoo, R. A., Zygmunt, M., & Heckmann, M. (2018). Evaluation of neonatal and maternal morbidity in mothers with gestational diabetes: A population-based study. BMC Pregnancy and Childbirth, 18(1), 367.
Donovan, L., Hartling, L., Muise, M., Guthrie, A., Vandermeer, B., & Dryden, D. M. (2013). Screening tests for gestational diabetes: A systematic review for the US Preventive Services Task Force. Annals of Internal Medicine, 159(2), 115-122.
Downs, D. S., Chasan-Taber, L., Evenson, K. R., Leiferman, J., & Yeo, S. (2012). Physical activity and pregnancy: Past and present evidence and future recommendations. Research Quarterly for Exercise and Sport, 83(4), 485-502.
Dumke, C. L., Slivka, D. R., Cuddy, J. S., Hailes, W. S., Rose, S. M., & Ruby, B. C. (2015). The effect of environmental temperature on glucose and insulin after an oral glucose tolerance test in healthy young men. Wilderness & Environmental Medicine, 26(3), 335-342.
Duran, A., Sáenz, S., Torrejón, M. J., Bordiú, E., del Valle, L., Galindo, M., ... & Runkle, I. (2014). Introduction of IADPSG criteria for the screening and diagnosis of gestational diabetes mellitus results in improved pregnancy outcomes at a lower cost in a large cohort of pregnant women: The St. Carlos Gestational Diabetes Study. Diabetes Care, 37(9), 2442-2450.
Egeland, G. M., Skjaerven, R., & Irgens, L. M. (2000). Birth characteristics of women who develop gestational diabetes: Population based study. BMJ, 321(7260), 546-547.
England, L. J., Levine, R. J., Qian, C., Soule, L. M., Schisterman, E. F., Yu, K. F., & Catalano, P. M. (2004). Glucose tolerance and risk of gestational diabetes mellitus in nulliparous women who smoke during pregnancy. American Journal of Epidemiology, 160(12), 1205-1213.
Faure, C., Charlot, K., Henri, S., Hardy-Dessources, M. D., Hue, O., & Antoine-Jonville, S. (2016). Impaired glucose tolerance after brief heat exposure: A randomized crossover study in healthy young men. Clinical Science, 130(12), 1017-1025.
Feig, D. S., Hwee, J., Shah, B. R., Booth, G. L., Bierman, A. S., & Lipscombe, L. L.(2014). Trends in incidence of diabetes in pregnancy and serious perinatal outcomes: A large, population-based study in Ontario, Canada, 1996-2010. Diabetes Care, 37(6), 1590-1596.
Feig, D. S., Zinman, B., Wang, X., & Hux, J. E. (2008). Risk of development of diabetes mellitus after diagnosis of gestational diabetes. Canadian Medical Association Journal, 179(3), 229-234.
Ferrara, A. (2007). Increasing prevalence of gestational diabetes mellitus: A public health perspective. Diabetes Care, 30(Suppl 2), S141-S146.
Finer, L. B., & Zolna, M. R. (2011). Unintended pregnancy in the United States: Incidence and disparities, 2006. Contraception, 84(5), 478-485.
Frayn, K. N., Whyte, P. L., Benson, H. A., Earl, D. J., & Smith, H. A. (1989). Changes in forearm blood flow at elevated ambient temperature and their role in the apparent impairment of glucose tolerance. Clinical Science, 76(3), 323-328.
Goedegebure, E. A., Koning, S. H., Hoogenberg, K., Korteweg, F. J., Lutgers, H. L., Diekman, M. J., ... & Zwart, J. J. (2018). Pregnancy outcomes in women with gestational diabetes mellitus diagnosed according to the WHO-2013 and WHO-1999 diagnostic criteria: A multicentre retrospective cohort study. BMC Pregnancy and Childbirth, 18(1), 152.
Greenhalgh, T., Clinch, M., Afsar, N., Choudhury, Y., Sudra, R., Campbell-Richards, D., ... & Finer, S. (2015). Socio-cultural influences on the behaviour of South Asian women with diabetes in pregnancy: Qualitative study using a multi-level theoretical approach. BMC Medicine, 13(1), 120.
Gronlund, C. J., Sullivan, K. P., Kefelegn, Y., Cameron, L., & O’Neill, M. S. (2018). Climate change and temperature extremes: A review of heat-and cold-related morbidity and mortality concerns of municipalities. Maturitas, 114, 54-59.
Guo, T., Wang, Y., Zhang, H., Zhang, Y., Zhao, J., Wang, Y., ... & He, Y. (2018b). The association between ambient temperature and the risk of preterm birth in China. Science of the Total Environment, 613, 439-446.
Guo, Y., Gasparrini, A., Li, S., Sera, F., Vicedo-Cabrera, A. M., Coelho, M. D. S. Z. S., ... & Overcenco, A. (2018a). Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study. PLoS Medicine, 15(7), e1002629.
Ha, S., Nguyen, K., Liu, D., Männistö, T., Nobles, C., Sherman, S., & Mendola, P. (2017). Ambient temperature and risk of cardiovascular events at labor and delivery: A case-crossover study. Environmental Research, 159, 622-628.
He, J. R., Yuan, M. Y., Chen, N. N., Lu, J. H., Hu, C. Y., Mai, W. B., ... & Xiao, W. Q. (2015). Maternal dietary patterns and gestational diabetes mellitus: A large prospective cohort study in China. British Journal of Nutrition, 113(8), 1292-1300.
Hung, T. H. (2015). The effects of implementing the international association of diabetes and pregnancy study groups criteria for diagnosing gestational diabetes on maternal and neonatal outcomes. PLoS One, 10(3), e0122261.
Hunsberger, M., Rosenberg, K. D., & Donatelle, R. J. (2010). Racial/ethnic disparities in gestational diabetes mellitus: Findings from a population-based survey. Womens Health Issues, 20(5), 323-328.
Huvinen, E., Grotenfelt, N. E., Eriksson, J. G., Rönö, K., Klemetti, M. M., Roine, R., ... & Knip, M. (2016). Heterogeneity of maternal characteristics and impact on gestational diabetes (GDM) risk—Implications for universal GDM screening?. Annals of Medicine, 48(1-2), 52-58.
Ignell, C., Claesson, R., Anderberg, E., & Berntorp, K. (2014). Trends in the prevalence of gestational diabetes mellitus in southern Sweden, 2003–2012. Acta Obstetricia et Gynecologica Scandinavica, 93(4), 420-424.
International Association of Diabetes and Pregnancy Study Groups Consensus Panel. (2010). International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care, 33(3), 676-682.
International Diabetes Federation (2013). IDF Diabetes Atlas 6th Edition (2013). Retrieved from https://www.idf.org/e-library/epidemiology-research/diabetes-atlas.html
International Diabetes Federation (2017). IDF Diabetes Atlas 8th. Retrieved from https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/134-idf-diabetes-atlas-8th-edition.htm
Janevic, T., Borrell, L. N., Savitz, D. A., Herring, A. H., & Rundle, A. (2010). Neighbourhood food environment and gestational diabetes in New York City. Paediatric and Perinatal Epidemiology, 24(3), 249-254.
Janghorbani, M., Stenhouse, E., Jones, R. B., & Millward, A. (2006). Gestational diabetes mellitus in Plymouth, UK: Prevalence, seasonal variation and associated factors. The Journal of Reproductive Medicine, 51(2), 128-134.
Jesmin, S., Akter, S., Akashi, H., Al-Mamun, A., Rahman, M. A., Islam, M. M., ... & Mizutani, T. (2014). Screening for gestational diabetes mellitus and its prevalence in Bangladesh. Diabetes Research and Clinical Practice, 103(1), 57-62.
Kahr, M. K., Suter, M. A., Ballas, J., Ramin, S. M., Monga, M., Lee, W., ... & Griffin, E. N. (2016). Geospatial analysis of food environment demonstrates associations with gestational diabetes. American Journal of Obstetrics and Gynecology, 214(1), 110.e1–110.e9.
Kahveci, B., Melekoglu, R., Evruke, I. C., & Cetin, C. (2018). The effect of advanced maternal age on perinatal outcomes in nulliparous singleton pregnancies. BMC Pregnancy and Childbirth, 18(1), 343.
Kakoly, N. S., Earnest, A., Moran, L. J., Teede, H. J., & Joham, A. E. (2017). Group-based developmental BMI trajectories, polycystic ovary syndrome, and gestational diabetes: A community-based longitudinal study. BMC Medicine, 15(1), 195.
Katsarou, A., Claesson, R., Ignell, C., Shaat, N., & Berntorp, K. (2016). Seasonal pattern in the diagnosis of gestational diabetes mellitus in southern Sweden. Diabetologia, 59, S46-S46.
Kent, J., Dodson, W. C., Kunselman, A., Pauli, J., Stone, A., Diamond, M. P., ... & Christman, G. M. (2018). Gestational weight gain in women with polycystic ovary syndrome: A controlled study. The Journal of Clinical Endocrinology & Metabolism, 103(11), 4315-4323.
Kim, C. (2014). Maternal outcomes and follow‐up after gestational diabetes mellitus. Diabetic Medicine, 31(3), 292-301.
Kominiarek, M. A., Saade, G., Mele, L., Bailit, J., Reddy, U. M., Wapner, R. J., ... & Tita, A. T. (2018). Association between gestational weight gain and perinatal outcomes. Obstetrics & Gynecology, 132(4), 875-881.
Koo, B. K., Lee, J. H., Kim, J., Jang, E. J., & Lee, C. H. (2016). Prevalence of gestational diabetes mellitus in Korea: A national health insurance database study. PLoS One, 11(4), e0153107.
Kralisch, S., Hoffmann, A., Kratzsch, J., Blüher, M., Stumvoll, M., Fasshauer, M., & Ebert, T. (2018). The brown-fat-secreted adipokine neuregulin 4 is decreased in gestational diabetes mellitus. Diabetes & Metabolism, 44(2), 150-154.
Kuehn, L., & McCormick, S. (2017). Heat exposure and maternal health in the face of climate change. International Journal of Environmental Research and Public Health, 14(8), 853.
Kuo, C. H., Chen, S. C., Fang, C. T., Nien, F. J., Wu, E. T., Lin, S. Y., ... & Li, H. Y. (2017). Screening gestational diabetes mellitus: The role of maternal age. PloS One, 12(3), e0173049.
Lamyian, M., Hosseinpour-Niazi, S., Mirmiran, P., Moghaddam Banaem, L., Goshtasebi, A., & Azizi, F. (2017). Pre-pregnancy fast food consumption is associated with gestational diabetes mellitus among Tehranian women. Nutrients, 9(3), 216.
Lee, K. W., Ching, S. M., Ramachandran, V., Yee, A., Hoo, F. K., Chia, Y. C., ... & Veettil, S. K. (2018). Prevalence and risk factors of gestational diabetes mellitus in Asia: A systematic review and meta-analysis. BMC Pregnancy and Childbirth, 18(1), 494.
Lee, K. W., Ching, S. M., Ramachandran, V., Yee, A., Hoo, F. K., Chia, Y. C., ... & Veettil, S. K. (2018). Prevalence and risk factors of gestational diabetes mellitus in Asia: A systematic review and meta-analysis. BMC Pregnancy and Childbirth, 18(1), 494.
Liang, L., & Gong, P. (2017). Climate change and human infectious diseases: A synthesis of research findings from global and spatio-temporal perspectives. Environment International, 103, 99-108.
Lin, C. H., Wen, S. F., Wu, Y. H., & Huang, M. J. (2009). Using the 100-g oral glucose tolerance test to predict fetal and maternal outcomes in women with gestational diabetes mellitus. Chang Gung Medical Journal, 32(3), 283-9.
Lin, C. Y., Chua, Y. J., Sheng, Y. F., Hsu, H. H., Cheng, C. T., & Lin, Y. Y. (2015). Altitudinal and latitudinal dependence of future warming in Taiwan simulated by WRF nested with ECHAM5/MPIOM. International Journal of Climatology, 35(8), 1800-1809.
Lin, P. C., Hung, C. H., Chan, T. F., Lin, K. C., Hsu, Y. Y., & Tzeng, Y. L. (2016). The risk factors for gestational diabetes mellitus: A retrospective study. Midwifery, 42, 16-20.
Lin, S., Lin, Z., Ou, Y., Soim, A., Shrestha, S., Lu, Y., ... & Shaw, G. M. (2018). Maternal ambient heat exposure during early pregnancy in summer and spring and congenital heart defects–A large US population-based, case-control study. Environment International, 118, 211-221.
Lin, T. C., Mu, C. F., & Hsu, C. Y. (2015). Risk factors for gestational diabetes mellitus: Ethnic disparities. Australian Journal of Rural Health, 23(3), 176-180.
Liu, J., Liu, E., Leng, J., Pan, L., Zhang, C., Li, W., ... & Hu, G. (2018). Indicators of socio-economic status and risk of gestational diabetes mellitus in pregnant women in urban Tianjin, China. Diabetes Research and Clinical Practice, 144, 192-199.
Lu, C. L., Chang, H. H., Chen, H. F., Ku, L. J. E., Chang, Y. H., Shen, H. N., & Li, C. Y. (2016). Inverse relationship between ambient temperature and admissions for diabetic ketoacidosis and hyperglycemic hyperosmolar state: A 14-year time-series analysis. Environment International, 94, 642-648.
Lu, M. C., Huang, S. S., Yan, Y. H., & Wang, P. (2016). Use of the national diabetes data group and the carpenter-coustan criteria for assessing gestational diabetes mellitus and risk of adverse pregnancy outcome. BMC Pregnancy and Childbirth, 16(1), 231.
March, W. A., Moore, V. M., Willson, K. J., Phillips, D. I., Norman, R. J., & Davies, M. J. (2009). The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Human Reproduction, 25(2), 544-551.
Martin, A. O., Simpson, J. L., Ober, C., & Freinkel, N. (1985). Frequency of diabetes mellitus in mothers of probands with gestational diabetes: Possible maternal influence on the predisposition to gestational diabetes. American Journal of Obstetrics and Gynecology, 151(4), 471-475.
McAllister, D. A., Morling, J. R., Fischbacher, C. M., MacNee, W., & Wild, S. H. (2013). Socioeconomic deprivation increases the effect of winter on admissions to hospital with COPD: Retrospective analysis of 10 years of national hospitalisation data. Primary Care Respiratory Journal, 22(3), 296.
McIntyre, H. D., Jensen, D. M., Jensen, R. C., Kyhl, H. B., Jensen, T. K., Glintborg, D., & Andersen, M. (2018). Gestational diabetes mellitus: Does one size fit all? A challenge to uniform worldwide diagnostic thresholds. Diabetes Care, 41(7), 1339-1342.
Melchior, H., Kurch-Bek, D., & Mund, M. (2017). The prevalence of gestational diabetes: A population-based analysis of a nationwide screening program. Deutsches Ärzteblatt International, 114(24), 412.
Mercereau, L., Todd, N., Rey, G., & Valleron, A. J. (2017). Comparison of the temperature-mortality relationship in foreign born and native born died in France between 2000 and 2009. International Journal of Biometeorology, 61(10), 1873-1884.
Mijatovic-Vukas, J., Capling, L., Cheng, S., Stamatakis, E., Louie, J., Cheung, N., ... & Flood, V. (2018). Associations of diet and physical activity with risk for gestational diabetes mellitus: A systematic review and meta-analysis. Nutrients, 10(6), 698.
Moses, R. G. (1996). The recurrence rate of gestational diabetes in subsequent pregnancies. Diabetes Care, 19(12), 1348-1350.
Moses, R. G., Patterson, M. J., Regan, J. M., Chaunchaiyakul, R., Taylor, N. A. S., & Jenkins, A. B. (1997). A non-linear effect of ambient temperature on apparent glucose tolerance. Diabetes Research and Clinical Practice, 36(1), 35-40.
Moses, R. G., Wong, V. C., Lambert, K., Morris, G. J., & San Gil, F. (2016). Seasonal changes in the prevalence of gestational diabetes mellitus. Diabetes Care, 39(7): 1218-1221.
Moses, R., & Griffiths, R. (1995). Is there a seasonal variation in the incidence of gestational diabetes? Diabetic Medicine, 12(7), 563-565.
Mustaniemi, S., Vääräsmäki, M., Eriksson, J. G., Gissler, M., Laivuori, H., Ijäs, H., ... & Morin-Papunen, L. (2018). Polycystic ovary syndrome and risk factors for gestational diabetes. Endocrine Connections, 7(7), 859-869.
Mwanri, A. W., Kinabo, J., Ramaiya, K., & Feskens, E. J. (2014). Prevalence of gestational diabetes mellitus in urban and rural Tanzania. Diabetes Research and Clinical Practice, 103(1), 71-78.
Neira, M. (2014). Climate change: An opportunity for public health. Retrieved from http://www.who.int/mediacentre/commentaries/climate-change/en/
Nguyen, C. L., Pham, N. M., Binns, C. W., Duong, D. V., & Lee, A. H. (2018). Prevalence of gestational diabetes mellitus in eastern and Southeastern Asia: A systematic review and meta-analysis. Journal of Diabetes Research, 2018, 1-10.
Pan, M. L., Chen, L. R., Tsao, H. M., & Chen, K. H. (2015). Relationship between polycystic ovarian syndrome and subsequent gestational diabetes mellitus: A nationwide population-based study. PLoS One, 10(10), e0140544.
Petry, C. J., Ong, K. K., & Dunger, D. B. (2018). Age at menarche and the future risk of gestational diabetes: A systematic review and dose response meta-analysis. Acta Diabetologica, 55(12), 1209-1219.
Plows, J., Stanley, J., Baker, P., Reynolds, C., & Vickers, M. (2018). The pathophysiology of gestational diabetes mellitus. International Journal of Molecular Sciences, 19(11), 3342.
Poola-Kella, S., Steinman, R. A., Mesmar, B., & Malek, R. (2018). Gestational diabetes mellitus: Post-partum risk and follow up. Reviews on Recent Clinical Trials, 13(1), 5-14.
Pu, J., Zhao, B., Wang, E. J., Nimbal, V., Osmundson, S., Kunz, L., Popat, R. A., Chung, S., & Palaniappan, L. P. (2015). Racial/ethnic differences in gestational diabetes prevalence and contribution of common risk factors. Paediatr Perinat Epidemiol, 29(5), 436-443.
Rani, P. R., & Begum, J. (2016). Screening and diagnosis of gestational diabetes mellitus, where do we stand. Journal of Clinical and Diagnostic Research, 10(4), QE01- QE04.
Retnakaran, R., Kramer, C. K., Ye, C., Kew, S., Hanley, A. J., Connelly, P. W., ... & Zinman, B. (2015). Fetal sex and maternal risk of gestational diabetes mellitus: The impact of having a boy. Diabetes Care, 38(5), 844-851.
Retnakaran, R., Ye, C., Kramer, C. K., Hanley, A. J., Connelly, P. W., Sermer, M., & Zinman, B. (2018). Impact of daily incremental change in environmental temperature on beta cell function and the risk of gestational diabetes in pregnant women. Diabetologia, 61(12), 2633-2642.
Robitaille, J., & Grant, A. M. (2008). The genetics of gestational diabetes mellitus: Evidence for relationship with type 2 diabetes mellitus. Genetics in Medicine, 10(4), 240.
Ruohomäki, A., Toffol, E., Upadhyaya, S., Keski-Nisula, L., Pekkanen, J., Lampi, J., ... & Pasanen, M. (2018). The association between gestational diabetes mellitus and postpartum depressive symptomatology: A prospective cohort study. Journal of Affective Disorders, 241, 263–268.
Rylander, C., Odland, J. Ø., & Sandanger, T. M. (2013). Climate change and the potential effects on maternal and pregnancy outcomes: An assessment of the most vulnerable–The mother, fetus, and newborn child. Global Health Action, 6(1). https://doi.org/10.3402/gha.v6i0.19538.
Schmidt, M. I., Mengue, S. S., Duncan, B. B., Branchtein, L., Matos, M. C., Reichelt, A. J., & Iochida, L. C. (1994). Variation in glucose tolerance with ambient temperature. The Lancet, 344(8929), 1054-1055.
Schoenaker, D. A., Vergouwe, Y., Soedamah-Muthu, S. S., Callaway, L. K., & Mishra, G. D. (2018). Preconception risk of gestational diabetes: Development of a prediction model in nulliparous Australian women. Diabetes Research and Clinical Practice, 146, 48-57.
Schwartz, N., Nachum, Z., & Green, M. S. (2015). The prevalence of gestational diabetes mellitus recurrence–Effect of ethnicity and parity: A metaanalysis. American Journal of Obstetrics and Gynecology, 213(3), 310-317.
Schwartz, N., Nachum, Z., & Green, M. S. (2016). Risk factors of gestational diabetes mellitus recurrence: A meta-analysis. Endocrine, 53(3), 662-671.
Seshiah, V., Balaji, V., Balaji, M. S., Paneerselvam, A., & Kapur, A. (2009). Pregnancy and diabetes scenario around the world: India. International Journal of Gynecology & Obstetrics, 104 (2009), S35–S38.
Shin, C. S., Lee, H. K., Koh, C. S., Kim, Y. I., Shin, Y. S., Yoo, K. Y., ... & Yang, B. G. (1997). Risk factors for the development of NIDDM in Yonchon County, Korea. Diabetes Care, 20(12), 1842-1846.
Solomon, C. G., Willett, W. C., Carey, V. J., Rich-Edwards, J., Hunter, D. J., Colditz, G. A., Stampfer, M. J., Speizer, F. E., Spiegelman, D., & Manson, J. E. (1997). A prospective study of pregravid determinants of gestational diabetes mellitus. JAMA, 278(13), 1078-1083.
Stacey, T., Tennant, P. W. G., McCowan, L. M. E., Mitchell, E. A., Budd, J., Li, M., ... & Heazell, A. E. P. (2019). Gestational diabetes and the risk of late stillbirth: A case–control study from England, UK. BJOG: An International Journal of Obstetrics and Gynaecolog, 126(8), 973-982.
Strand, L. B., Barnett, A. G., & Tong, S. (2011). The influence of season and ambient temperature on birth outcomes: A review of the epidemiological literature. Environmental Research, 111(3), 451-462.
The American College of Obstetricians and Gynecologists[ACOG] . Obstetric data definitions (Version 1.0) . Retrieved from https://www.acog.org/-/media/Departments/Patient-Safety-and-Quality-Improvement/2014reVITALizeObstetricDataDefinitionsV10.pdf?dmc=1&ts=20190102T0733332835
Tseng, C. H. (2008). Parental diabetes in Taiwanese diabetic women with and without previous gestational diabetes. European Journal of Clinical Investigation, 38(8), 555-561.
Tutino, G. E., Tam, W. H., Yang, X., Chan, J. C. N., Lao, T. T. H., & Ma, R. C. W. (2014). Diabetes and pregnancy: Perspectives from Asia. Diabetic Medicine, 31(3), 302-318.
Van der Lans, A. A., Hoeks, J., Brans, B., Vijgen, G. H., Visser, M. G., Vosselman, M. J., ... & Schrauwen, P. (2013). Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. Journal of Clinical Investigation, 123(8), 3395-3403.
Van der Ploeg, H. P., Van Poppel, M. N., Chey, T., Bauman, A. E., & Brown, W. J. (2011). The role of pre-pregnancy physical activity and sedentary behaviour in the development of gestational diabetes mellitus. Journal of Science and Medicine in Sport, 14(2), 149-152.
Vasileiou, V., Kyratzoglou, E., Paschou, S. A., Kyprianou, M., & Anastasiou, E. (2018). The impact of environmental temperature on the diagnosis of gestational diabetes mellitus. European journal of Endocrinology, 178(3), 209-214.
Verburg, P. E., Tucker, G., Scheil, W., Erwich, J. J. H., Dekker, G. A., & Roberts, C. T. (2016). Seasonality of gestational diabetes mellitus: A South Australian population study. BMJ Open Diabetes Research and Care, 4(1), e000286.
Wainstock, T., & Yoles, I. (2019). Pregnant women may be sweeter in the summer: Seasonal changes in glucose challenge tests results. A population-based study. Diabetes Research and Clinical Practice, 147, 134-137.
Wang, C., Wei, Y., Zhang, X., Zhang, Y., Xu, Q., Sun, Y., ... & Shou, C. (2017). A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. American journal of Obstetrics and Gynecology, 216(4), 340-351.
Weiss, C., Oppelt, P., & Mayer, R. B. (2019). The participation rate of migrant women in gestational diabetes screening in Austria: A retrospective analysis of 3293 births. Archives of Gynecology and Obstetrics, 299(2), 345-351.
Weng, Y. H., Yang, C. Y., & Chiu, Y. W. (2018). Adverse neonatal outcomes in relation to ambient temperatures at birth: A nationwide survey in Taiwan. Archives of Environmental & Occupational Health, 73(1), 48-55.
Wijayanto, T., Toramoto, S., Maeda, Y., Son, S. Y., Umezaki, S., & Tochihara, Y. (2017). Cognitive performance during passive heat exposure in Japanese males and tropical Asian males from Southeast Asian living in Japan. Journal of Physiological Anthropology, 36(8), 1-11.
Williams, M. A., Qiu, C., Dempsey, J. C., & Luthy, D. A. (2003). Familial aggregation of type 2 diabetes and chronic hypertension in women with gestational diabetes mellitus. The Journal of Reproductive Medicine, 48(12), 955-962.
World Health Organization[WHO](2018). Climate change and health. Retrieved from http://www.who.int/news-room/fact-sheets/detail/climate-change-and-health
World Health Organization[WHO](2018). WHO UNFCCC - Climate and Health Country Profile Project. Retrieved from http://www.who.int/globalchange/resources/countries/en/
Wu, E. T., Nien, F. J., Kuo, C. H., Chen, S. C., Chen, K. Y., Chuang, L. M., & Lee, C. N. (2016a). Diagnosis of more gestational diabetes lead to better pregnancy outcomes: Comparing the International Association of the Diabetes and Pregnancy Study Group criteria, and the Carpenter and Coustan criteria. Journal of Diabetes Investigation, 7(1), 121-126.
Wu, X., Lu, Y., Zhou, S., Chen, L., & Xu, B. (2016b). Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environment International, 86, 14-23.
Yang, X., Hsu-Hage, B., Zhang, H., Yu, L., Dong, L., Li, J., ... & Zhang, C. (2002). Gestational diabetes mellitus in women of single gravidity in Tianjin City, China. Diabetes Care, 25(5), 847-851.
Yeung, R. O., Savu, A., Kinniburgh, B., Lee, L., Dzakpasu, S., Nelson, C., ... & Kaul, P. (2017). Prevalence of gestational diabetes among Chinese and South Asians: A Canadian population-based analysis. Journal of Diabetes and its Complications, 31(3), 529-536.
Yuen, L., & Wong, V. W. (2015). Gestational diabetes mellitus: Challenges for different ethnic groups. World Journal of Diabetes, 6(8), 1024.
Zhang, Y., Yu, C., & Wang, L. (2017). Temperature exposure during pregnancy and birth outcomes: An updated systematic review of epidemiological evidence. Environmental Pollution, 225, 700-712.
Zhu, Y., & Zhang, C. (2016). Prevalence of gestational diabetes and risk of progression to type 2 diabetes: A global perspective. Current Diabetes Reports, 16. doi:10.1007/s11892-015-0699-x.
交通部中央氣象局(2018).全球與臺灣溫度趨勢分析.民108年5月1日取自https://www.cwb.gov.tw/V7/climate/climate_info/monitoring/monitoring_7.html
交通部中央氣象局(2019).觀測資料查詢.民108年5月1日取自https://waww.cwb.gov.tw/V7/climate/climate_info/monitoring/monitoring_7.html
全國法規資料庫(2018a).兒童及少年福利與權益保障法.民108年5月1日取自https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=D0050001
全國法規資料庫(2018b).菸害防制法.民108年5月1日取自https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=L0070021
朱育增與吳肖琪(2010).回顧與探討次級資料適用之共病測量方法.台灣公共衛生雜誌,29(1),8-21。
行政院(2018).我國少子女化對策計畫(107年-111年)(核定本).取自file:///C:/Users/User/Desktop/%E6%A0%B8%E5%AE%9A%E6%9C%AC-%E6%88%91%E5%9C%8B%E5%B0%91%E5%AD%90%E5%A5%B3%E5%8C%96%E5%B0%8D%E7%AD%96%E8%A8%88%E7%95%AB(107%E5%B9%B4-111%E5%B9%B4).pdf
花聖淵(2017).空氣污染物暴露與妊娠糖尿病發生風險之巢式病例對照研究(碩士論文).成功大學公共衛生研究所。
洪洵甄(2015).淺談妊娠糖尿病.中華民國糖尿病衛教學會會訊,11(3),5-8。
財政部財政資訊專區(2018).綜合所得稅申報核定統計專冊.取自http://www.fia.gov.tw/ct.asp?xItem=1601&ctNode=668&mp=1
連賢明(2011).如何使用健保資料推估社經變數.人文及社會科學集刊, 23(3),371-398。
黃安琪(2018).妊娠糖尿病免費篩檢政策喊卡.民108年5月1日取自https://udn.com/news/story/11318/3048522。
黃奕燦、方麗容、黃鈞平、許世賓與祝春紅(2005).臺灣地區之妊娠糖尿病調查.北市醫學雜誌,2(2),132-137。
董鈺琪、李果鴻與周盈邑(2018).國內妊娠糖尿病診斷率、未成年懷孕及人工流產情形統計分析.台北市:衛生福利部國民健康署。
劉介宇、洪永泰、莊義利、陳怡如、翁文舜、劉季鑫與梁賡義(2006).台灣地區鄉鎮市區發展類型應用於大型健康調查抽樣設計之研究.健康管理學刊, 4(1), 1-22。
衛生福利部中央健康保險署(2018).醫療服務給付項目.民108年5月1日取自https://www.nhi.gov.tw/DL.aspx?sitessn=292&u=LzAwMS9VcGxvYWQvMjkyL3JlbGZpbGUvMC82NTcwL%2bmGq%2beZguacjeWLmee1puS7mOmgheebrigxMDgwNDAx5pu05pawKS5wZGY%3d&n=6Yar55mC5pyN5YuZ57Wm5LuY6aCF55uuKDEwODA0MDHmm7TmlrApLnBkZg%3d%3d&ico%20=.pdf
鍾慧、陳怡靜與陳立奇(2011).妊娠糖尿病之診斷與治療.台灣醫學,15(6),662-667。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top