1.S Wang, T Chinnasamy, M Lifson, F Inci, U Demirci. Flexible substrate-based devices for point-of-care diagnostics. Trends in Biotechnology, 34, 909921, 2016.
2.J Wang. Glucose biosensors: 40 years of advances and challenges. Electroanalysis, 13, 983‒988, 2001.
3.FH Cincotto, EL Fava, FC Moraes, O Fatibello-Filho, RC Faria. A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers. Talanta, 195, 6268, 2019.
4.MU Ahmed, MM Hossain, M Safavieh, YL Wong, IA Rahman, M Zourob, E Tamiya. Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes. Critical Reviews in Biotechnology, 36, 495‒505, 2016.
5.Z Zhou, D Du, J Wang, JN Smith, C Timchalk, Y Li, Y Lin. Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos. Analytical Chemistry, 82, 5125‒5133, 2010.
6.教育部顧問室「生物技術科技教育改進計畫」分子檢驗。2003
7.S Lee, H Jo, J Her, H Lee, C Ban. Ultrasensitive electrochemical detection of engrailed-2 based on homeodomain-specific DNA probe recognition for the diagnosis of prostate cancer. Biosensors and Bioelectronics, 66, 32‒38, 2015.
8.M Subat, AS Borovik, B König. Synthetic creatinine receptor: imprinting of a Lewis acidic zinc(II)cyclen binding site to shape its molecular recognition selectivity. Journal of American Chemical Society, 126, 3185‒3190, 2004.
9.T Guinovart, DH Alonso, L Adriaenssens, P Blondeau, FX Rius, P Ballester, FJ Andrade. Characterization of a new ionophore-based ion-selective electrode for the potentiometric determination of creatinine in urine. Biosensors and Bioelectronics, 87, 587‒592, 2017.
10.S Song, L Wang, L Wang, J Li, J Chao, C Fan. Aptamer-based biosensors. Trac-Trends in Analytical Chemistry, 27, 108‒117, 2008.
11.N Aydemir, J Malmstrom, J Travas-Sejdic. Conducting polymer based electrochemical biosensors. Physical Chemistry Chemical Physics, 18, 8264‒8277, 2016.
12.F Wei, S Cheng, Y Korin, EF Reed, D Gjertson, C Ho, HA Gritsch, J Veale. Serum creatinine detection by a conducting-polymer-based electrochemical sensor to identify allograft dysfunction. Analytical Chemistry, 84, 7933‒7937, 2012.
13.A Diouf, S Motia, NE Hassani, NE Bari, B Bouchikhi. Development and characterization of an electrochemical biosensor for creatinine detection in human urine based on functional molecularly imprinted polymer. Journal of Electroanalytical Chemistry, 788, 4453, 2017.
14.GM Holzinger, AL Gof, S Cosnier. Supramolecular immobilization of bio-entities for bioelectrochemical applications. New Journal of Chemistry, 38, 5173-5180, 2014.
15.J Ballesta-Claver, J Ametis-Cabello, J Morales-Sanfrutos, A Megía-Fernández, MC Valencia-Mirón, F Santoyo-González, LF Capitán-Vallvey. Electrochemiluminescent disposable cholesterol biosensor based on avidin–biotin assembling with the electroformed luminescent conducting polymer poly(luminol-biotinylated pyrrole). Analytica Chemica Acta, 91‒98, 2012.
16.A Zamora-Galvez, E Morales-Narvaez, CC Mayorga-Martinez, A Merkoci. Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications. Applied Materials Today, 9, 387‒401, 2017.
17.M Dabrowski, M Cieplak, PS Sharma, P Borowicz, K Noworyta, W Lisowski, F D'Souza, A Kuhn. Hierarchical templating in deposition of semi-covalently imprinted inverse opal polythiophene film for femtomolar determination of human serum albumin. Biosensors and Bioelectronics, 94, 155‒161, 2017.
18.R Schirhagl. Bioapplications for Molecularly Imprinted Polymers. Analytical Chemistry, 86, 250‒261, 2014.
19.H Tsai, C Lin, Y Juang, I Wang, Y Lin, R Wang, H Lin. Multiple type biosensors fabricated using the CMOS BioMEMS platform. Sensors and Actuators B, 144, 407412, 2010.
20.M Syu, T Hsu, Z Lin. Synthesis of recognition matrix from 4-methylamino-N-allylnaphthal-imide with fluorescent effect for the imprinting of creatinine. Analytical Chemistry, 82, 8821‒8829, 2010.
21.J Lee. Bioluminescence, the Nature of the Light. University of Georgia Libraries, 2017.
22.Y Yanase, T Hiragun, K Ishii, T Kawaguchi, T Yanase, M Kawai, K Sakamoto, M Hide. Surface plasmon resonance for cell-based clinical diagnosis. Sensors, 14, 4948‒4959, 2014.
23.JC Wang, WH Lin, E Cao, XF Xu, WJ Liang, XF Zhang. Surface plasmon resonance sensors on raman and fluorescence spectroscopy. Sensors, 17, 2719, 2017.
24.S Unser, I Bruzas, J He, L Sagle. Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors, 15, 15684‒15716, 2015.
25.https://en.wikipedia.org/wiki/Raman_spectroscopy.
26.R Ahmed, AK Yetisen, SH Yun, H Butt. Color-selective holographic retroreflector array for sensing applications. Light-Science & Applications, 6, e16214, 2017.
27.M Elsherif, MU Hassan, AK Yetisen, H Butt. Glucose sensing with phenylboronic acid functionalized hydrogel-based optical diffusers. ACS Nano, 12, 2283‒2291, 2018.
28.D Zhang, Q Liu. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosensors and Bioelectronics, 75, 2016.
29.D Capoferri, R Álvarez-Diduk, M Del Carlo, D Compagnone, A Merkoçi. Electrochromic molecular imprinting sensor for visual and smartphone-based detections. Analytical Chemistry, 90, 5850‒5856, 2018.
30.S Zhang, R Geryak, J Geldmeier, S Kim, VV Tsukruk. Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chemical Reviews, 117, 12942‒13038, 2017.
31.R Gui, H Jin, H Guo, Z Wang. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosensors and Bioelectronics, 100, 56‒70, 2018.
32.Y Fuchs, O Soppera, K Haupt. Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—A review. Analytica Chemica Acta, 717, 7‒20, 2012.
33.G Wulff, J Haarer. The preparation of defined chiral cavities for the racemic resolution of free sugars. Markromol.Chem, 192, 1329‒1338, 1991.
34.H Rao, Z Lu, H Ge, X Liu, B Chen, P Zou, X Wang, H He, X Zeng, Y Wang. Electrochemical creatinine sensor based on a glassy carbon electrode modified with a molecularly imprinted polymer and a Ni@polyaniline nanocomposite. Microchim Acta, 184, 261‒269, 2017.
35.B Babamiri, A Salimi, R Hallaj, M Hasanzadeh. Nickel nanoclusters as a novel emitter for molecularly imprinted electrochemiluminescence based sensor toward nanomolar detection of creatinine. Biosensors and Bioelectronics, 107, 272279, 2018.
36.L N Gómez-Arribas, J L Urraca, E Benito-Peña, M C Moreno-Bondi. Tag-Specific Affinity Purification of Recombinant Proteins by Using Molecularly Imprinted Polymers. Analytical Chemistry, 91, 4100‒4106, 2019.
37.柯定賢。合成螢光單體以製備具螢光之模版高分子膜用於螢光式感測肌酸酐。國立成功大學化工系碩士學位論文,200938.X Zhang, F Zheng, L Ye, P Xiong, L Yan, W Yang, B Jiang. A one-pot sol-gel process to prepare a superhydrophobic and environment-resistant thin film from ORMOSIL nanoparticles. RSC Advances, 4, 9838‒9841, 2014.
39.J Coresh, BC Astor, T Greene, G Eknoyan, AS Levey. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. American Journal of Kidney Diseases, 41, 1‒12, 2003.
40.吳明儒。評估腎臟功能的方法。腎臟語病析,19,45-49,2007
41.SR Dunn, GM Gabuzda, KR Superdock, RS Kolechi, RW Schaedler, ML Simenhoff. Induction of creatininase activity in chronic renal failure: Timing of creatinine degradation and effect of antibiotics. American Journal of Kidney Diseases, 29, 7277, 1997.
42.M Peake, M Whiting. Measurement of Serum Creatinine – Current Status and Future Goals. The clinical biochemist reviews, 4, 173‒184, 2006.
43.V Nguyen, C Wolff, J Seris, J Schwing. Immobilized Enzyme Electrode for Creatinine Determination in Serum. Analytical Chemistry, 63, 611614, 1991.
44.F Wei, S Cheng, Y Korin, E Reed, D Gjertson, C Ho, H Gritsch, J Veale. Serum Creatinine Detection by a Conducting Polymer Based Electrochemical Sensor to Identify Allograft Dysfunction. Analytical Chemistry, 84, 7933‒7937, 2012.
45.EP Randviir, CE Banks. Analytical methods for quantifying creatinine within biological media. Sensors and Actuators B: Chemical, 183, 239252, 2013.
46.EP Randviir, DK Kampouris, CE Banks. An improved electrochemical creatinine detection method via a Jaffé-based procedure. Analyst, 138, 6565‒6572, 2013.
47.AJ Killard, MR Smyth. Creatinine biosensors: principles and designs. Trends in Biotechnology, 18, 433‒437, 2000.
48.T Wen, W Zhu, C Xue, J Wu, Q Han, X Wang, X Zhou, H Jiang. Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@Polyaniline nanoparticles for clinical detection of creatinine. Biosensors and Bioelectronics, 56, 180‒185, 2014.
49.Q Ang, F Chan, P Tan, S Low. Improving imprinted shape cavities of molecularly imprinted sol–gel host matrix with minimal relaxation for sensing of creatinine. Journal of Sol-Gel Science and Technology, 86, 226238,2018.
50.AJ Bard, LR Faulkner. Electrochemical methods: fundamentals and applications. 2001.
51.J Huang, Z Li, H Ge, JB Zhang. Analytical solution to the impedance of electrode/electrolyte interface in lithium-ion batteries. Journal of the electrochemical Society, 162, A7037A7048, 2015.
52.N Elgrishi, KJ Rountree, BD McCarthy, ES Rountree, TT Eisenhart, JL Dempsey. A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 95, 197‒206, 2018.
53.F Scholz, AM Bond, RG Compton, DA Fiedler, G Inzelt, H Kahlert. Electroanalytical methods: guide to experiments and applications. 2nd Ed., Springer, Inc., Berlin 2010.
54.D Pihíková, P Kasák, J Tkac. Glycoprofiling of cancer biomarkers: Label-free electrochemical lectin-based biosensors. Open Chemistry, 13, 636‒655, 2015.
55.E Barsoukov, JR Macdonald. Impedance spectroscopy theory, experiment, and applications. 3rd Ed., John Wailey& Sons, Inc., USA 2018.
56.JB Jorcin, ME Orazem, N Pébère, B Tribollet. CPE analysis by local electrochemical impedance spectroscopy. Electrochemica Acta, 51, 1473‒1479, 2006.
57.許庭榕。以分子模版技術用於螢光式與電化學阻抗式分析感測肌酸酐。國立成功大學化工系碩士學位論文,201058.黃宥霖。製備溶膠凝膠模版高分子薄膜電極用於肌酸酐濃度之交流阻抗式感測。國立成功大學化工系碩士學位論文,201559.KK Reddy, KV Gobi. Artificial molecular recognition material based biosensor for creatinine by electrochemical impedance analysis. Sensors and Actuators B: Chemical, 183, 356363, 2013.
60.B Khadro, C Sanglar, A Bonhomme, A Errachid, N Jaffrezic-Renault. Molecularly imprinted polymers (MIP) based electrochemical sensor for detection of urea and creatinine. Procedia Engineering, 5, 371374, 2010.
61.C Huang, T Tsai, J Thomas, M Lee, B Liu, H Lin. Urinalysis with molecularly imprinted poly(ethylene-co-vinyl alcohol) potentiostat sensors. Biosensors and Bioelectronics, 24, 26112617, 2009.
62.F Martinez-Pina, L Gargallo, D Radic. N-vinylimidazole-N-vinyl-2-pyrrolidone copolymers. Part I. reactivity ratios, solubility and viscosimetric study. Polymer International, 47, 340344, 1998.
63.S Ida, H Kitanaka, T Ishikawa, S Kanaoka, Y Hirokawa. Swelling properties of thermoresponsive/hydrophilic co-networks with functional crosslinked domain structures. Polymer Chemistry, 9, 17011709, 2018.
64.https://en.wikipedia.org/wiki/1-Vinylimidazole#cite_note-12
65.J Du, B Zhu, WR Leow, S Chen, TC Sum, X Peng, X Chen. Colorimetric detection of creatinine based on plasmonic nanoparticles via synergistic coordination chemistry. Small, 33, 4104‒4110, 2015.
66.CM Stumpe, H Grubmueller. Aqueous urea solutions: structure, energetics, and urea aggregation. Journal of Physical Chemistry B, 111, 62206228, 2007.