跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/15 14:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施淳彥
研究生(外文):Chun-YanShih
論文名稱:氧化石墨烯量子點在光動力治療癌症之應用
論文名稱(外文):Graphene Oxide Quantum Dots for Photodynamic Cancer Therapy
指導教授:鄧熙聖
指導教授(外文):Hsisheng Teng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:97
中文關鍵詞:氧化石墨烯量子點光動力治療光敏化劑活性氧化物質
外文關鍵詞:graphene oxidequantum dotsphotodynamic therapyphotosensitizerreactive oxygen species
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用高溫摻雜以及氨水熱法製備含氮官能基氧化石墨烯量子點(ANGODs)。摻雜含氮官能基以及調控氧化石墨烯量子點尺寸大小,可以修補其結構上的缺陷、調整電子結構、增強量子侷限效應來提升其光催化活性。更重要的是,ANGODs具有優異的生物相容性,搭配其在光照射下能夠催化產生活性氧化物質(reactive oxygen species),使得ANGODs在光動力治療上有相當大的潛力。
由研究結果可知,製備的ANGODs自身有能力催化產生足夠量的單重態氧(1O2),此為Type II光動力治療反應。然而在抗壞血酸或三乙醇胺水溶液中,ANGODs具有催化水氧化產生大量過氧化氫的能力(Type I光動力治療反應),這表示抗壞血酸或是三乙醇胺能夠還原ANGODs之光生電洞而轉變光動力治療的反應機制,提升ANGODs光生電子產生過氧化氫的利用率。經過腫瘤細胞毒殺測試,ANGODs在光照下能夠有效地殺死腫瘤細胞,而不會對正常細胞造成嚴重影響,說明其有良好的腫瘤對正常細胞的選擇性。在抗壞血酸存在下,光照ANGODs 10分鐘,肺癌細胞、頭頸癌、及大腸癌細胞僅約3%存活,而正常細胞存活率超過60%。生物相容性測試中,ANGODs有高度的生物相容性以及極低的生物毒性。
ANGODs的化學穩定性高且與生物體的鍵結力強,使其在生物體液、細胞表面、或抗體鍵結上的光動力治療及其他生物醫療有廣泛的應用層面與極大發展潛力。
This study utilized high temperature doping and hydrothermal treatment to synthesize nitrogen-doped graphene oxide quantum dots (ANGODs). Introducing nitrogen functional group and tuning the size of graphene oxide quantum dots would repair the structural defects, tuning electronic structure, and enhance quantum confinement effect to elevate photocatalytic activity. More importantly, ANGODs have great potential on photodynamic therapy because of their excellent biocompatibility and capability to generate reactive oxygen species under illumination. In our study, as-prepared ANGODs have ability to catalyze sufficient amount of singlet oxygen (1O2) through Type II photodynamic therapy. However, ANGODs promote water oxidation to generate large amount of hydrogen peroxide in ascorbic acid (AA) or triethanolamine (TEOA) solution (Type I photodynamic therapy), which indicate AA or TEOA would reduce photogenerated holes from ANGODs to switch photodynamic therapy mechanism in order that enhance the efficiency of photogenerated electron to produce hydrogen peroxide. In cancer killing test, ANGODs selectively killed cancer cells under illumination without severely affecting normal cells, which demonstrates that ANGODs have high tumor-to-normal tissue ratio. In the presence of AA, the cell viability of ANGODs-treated lung cancer cells, head and neck cancer cells, and colon cancer cells remained merely 3% after 10 min irradiation while that of normal cells remained over 60%. In biocompatibility test, ANGODs exhibit high biocompatibility and extremely low cytotoxicity. High chemical stability and strong binding force to organism which make ANGODs have great potential on biofluid, cell surface, or antibody binding related photodynamic therapy and wide application of biomedicine.
中文摘要 I
英文延伸摘要 Ⅱ
誌謝 XV
本文目錄 XVIII
表目錄 XXII
圖目錄 XXVI
第一章 緒論 1
1-1 前言 1
1-2 光動力治療之起源 3
1-3 光動力治療機制 4
1-4 光催化原理與反應機制 6
1-5 犧牲試劑工作原理 8
1-6 抗壞血酸在治療上的應用 9
1-7 研究動機 10
第二章 文獻回顧 11
2-1 光敏化劑簡介 11
2-1-1 第一代光敏化劑 12
2-1-2 第二代光敏化劑 13
2-1-3 第三代光敏化劑 15
2-1-4 半導體量子點(semiconductor quantum dots) 15
2-1-5 碳奈米材料 18
2-2 氧化石墨烯結構與性質 23
2-3 氧化石墨烯改良方法 26
2-3-1 材料表面結構改質 27
2-3-2 尺寸大小改變 27
2-4 光催化產過氧化氫 29
第三章 實驗方法與儀器原理介紹 36
3-1 藥品、材料與儀器設備 36
3-1-1 藥品與材料 36
3-1-2 儀器與實驗設備 37
3-2 氧化石墨烯量子點的製備 38
3-3 光催化反應檢測方法與分析 40
3-3-1 Amplex® Red方法之原理 40
3-3-2 過氧化氫生成與濃度檢測 41
3-4 細胞實驗 42
3-4-1 生物相容性(biocompatibility)評估 42
3-4-2 光動力治療與過氧化氫生物毒性評估 43
3-4-3 H2DCFDA測定法檢測細胞內ROS水平 44
3-5 分析儀器原理簡介 45
3-5-1 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 45
3-5-2 X射線光電子能譜及紫外光電子能譜(X-ray Photoelectron Spectroscopy, XPS & Ultraviolet Photoelectron Spectroscopy, UPS) 47
3-5-3 原子力顯微鏡(Atomic Force Microscope) 50
3-5-4 傅立葉轉換紅外光譜儀(Fourier Transform- Infrared Spectroscopy, FT-IR) 53
3-5-5 拉曼光譜分析儀(Raman Spectroscopy) 54
3-5-6 紫外-可見光分光光度計(UV-Visible Spectrophotometer) 56
3-5-7 光致螢光光譜儀(Photoluminescence, PL) 58
3-5-8 電子順磁共振光譜儀(Electron Paramagnetic Resonance spectrometer, EPR) 59
第四章 結果與討論 62
4-1 穿透式電子顯微鏡(TEM)分析 62
4-2 X射線光電子能譜(XPS)分析 63
4-3 原子力顯微鏡(AFM)分析 66
4-4 傅立葉轉換紅外光譜儀(FTIR)分析 67
4-5 拉曼光譜(Raman)分析 68
4-6 紫外光-可見光吸收光譜圖譜(UV-vis)與光致螢光圖譜(PL)分析 69
4-7 紫外光電子能譜(UPS)與電子結構分析 71
4-8 電子順磁共振光譜儀(EPR)分析與光動力治療機制探討 72
4-9 光催化產過氧化氫之測試 76
4-10 生物相容性測試 78
4-11 光動力治療與過氧化氫毒性評估 79
4-12 細胞內活性氧化物質水平檢測 81
4-13 細胞凋亡測定 82
第五章 結論 85
參考文獻 86
[1]R. Roelandts, “The history of phototherapy: something new under the sun?, Journal of the American Academy of Dermatology 2002, 46, 926.
[2]R. R. Allison, C. H. Sibata, “Oncologic photodynamic therapy photosensitizers: a clinical review, Photodiagnosis and photodynamic therapy 2010, 7, 61.
[3]J. Moan, Q. Peng, “An outline of the history of PDT, Photodynamic therapy 2003, 2, 1.
[4]M. Price, “A Role For Reactive Oxygen Species In Photodynamic Therapy, 2012.
[5]D. E. Dolmans, D. Fukumura, R. K. Jain, “Photodynamic therapy for cancer, Nature reviews cancer 2003, 3, 380.
[6]H. Abrahamse, M. R. Hamblin, “New photosensitizers for photodynamic therapy, Biochemical Journal 2016, 473, 347.
[7]Y. Liu, X. Meng, W. Bu, “Upconversion-based photodynamic cancer therapy, Coordination Chemistry Reviews 2019, 379, 82.
[8]A. Kudo, “Photocatalyst materials for water splitting, Catalysis Surveys from Asia 2003, 7, 31.
[9]A. Kudo, Y. Miseki, “Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews 2009, 38, 253.
[10]Y. Pellegrin, F. Odobel, “Sacrificial electron donor reagents for solar fuel production, Comptes Rendus Chimie 2017, 20, 283.
[11]M. R. Gholipour, C. T. Dinh, F. Beland, T. O. Do, “Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting, Nanoscale 2015, 7, 8187.
[12]N. A. Akram, F. Shafiq, M. Ashraf, “Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance, Frontiers in plant science 2017, 8, 613.
[13]J. Du, J. J. Cullen, G. R. Buettner, “Ascorbic acid: chemistry, biology and the treatment of cancer, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2012, 1826, 443.
[14]Q. Chen, M. G. Espey, M. C. Krishna, J. B. Mitchell, C. P. Corpe, G. R. Buettner, E. Shacter, M. Levine, “Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues, Proceedings of the National Academy of Sciences 2005, 102, 13604.
[15]Q. Chen, M. G. Espey, A. Y. Sun, C. Pooput, K. L. Kirk, M. C. Krishna, D. B. Khosh, J. Drisko, M. Levine, “Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice, Proceedings of the National Academy of Sciences 2008, 105, 11105.
[16]M. J. McConnell, P. M. Herst, “Ascorbate combination therapy: new tool in the anticancer toolbox?, Science translational medicine 2014, 6, 222fs6.
[17]Y. Ma, J. Chapman, M. Levine, K. Polireddy, J. Drisko, Q. Chen, “High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy, Science translational medicine 2014, 6, 222ra18.
[18]S. S. Lucky, K. C. Soo, Y. Zhang, “Nanoparticles in photodynamic therapy, Chemical reviews 2015, 115, 1990.
[19]A. Ormond, H. Freeman, “Dye sensitizers for photodynamic therapy, Materials 2013, 6, 817.
[20]S. Kwiatkowski, B. Knap, D. Przystupski, J. Saczko, E. Kędzierska, K. Knap-Czop, J. Kotlińska, O. Michel, K. Kotowski, J. Kulbacka, “Photodynamic therapy–mechanisms, photosensitizers and combinations, Biomedicine & Pharmacotherapy 2018, 106, 1098.
[21]L. B. Josefsen, R. W. Boyle, “Photodynamic therapy: novel third‐generation photosensitizers one step closer?, British journal of pharmacology 2008, 154, 1.
[22]N. Malatesti, K. Smith, H. Savoie, J. Greenman, R. W. Boyle, “Synthesis and in vitro investigation of cationic 5, 15-diphenyl porphyrin-monoclonal antibody conjugates as targeted photodynamic sensitisers, International journal of oncology 2006, 28, 1561.
[23]A. C. Samia, X. Chen, C. Burda, “Semiconductor quantum dots for photodynamic therapy, Journal of the American Chemical Society 2003, 125, 15736.
[24]D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, D. A. Russell, “Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy, Langmuir 2002, 18, 2985.
[25]I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, P. N. Prasad, “Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug− carrier system for photodynamic therapy, Journal of the American Chemical Society 2003, 125, 7860.
[26]R. Bakalova, H. Ohba, Z. Zhelev, M. Ishikawa, Y. Baba, “Quantum dots as photosensitizers?, Nature biotechnology 2004, 22, 1360.
[27]X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots, Nature biotechnology 2004, 22, 969.
[28]Y. Shen, A. J. Shuhendler, D. Ye, J.-J. Xu, H.-Y. Chen, “Two-photon excitation nanoparticles for photodynamic therapy, Chemical Society Reviews 2016, 45, 6725.
[29]L. Ye, K.-T. Yong, L. Liu, I. Roy, R. Hu, J. Zhu, H. Cai, W.-C. Law, J. Liu, K. Wang, “A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots, Nature nanotechnology 2012, 7, 453.
[30]S. Dayal, C. Burda, “Semiconductor quantum dots as two-photon sensitizers, Journal of the American Chemical Society 2008, 130, 2890.
[31]Z.-D. Qi, D.-W. Li, P. Jiang, F.-L. Jiang, Y.-S. Li, Y. Liu, W.-K. Wong, K.-W. Cheah, “Biocompatible CdSe quantum dot-based photosensitizer under two-photon excitation for photodynamic therapy, Journal of Materials Chemistry 2011, 21, 2455.
[32]K.-L. Chou, N. Won, J. Kwag, S. Kim, J.-Y. Chen, “Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots, Journal of Materials Chemistry B 2013, 1, 4584.
[33]P. Juzenas, W. Chen, Y.-P. Sun, M. A. N. Coelho, R. Generalov, N. Generalova, I. L. Christensen, “Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer, Advanced drug delivery reviews 2008, 60, 1600.
[34]X. Guo, C.-F. Wang, Z.-Y. Yu, L. Chen, S. Chen, “Facile access to versatile fluorescent carbon dots toward light-emitting diodes, Chemical communications 2012, 48, 2692.
[35]P. Huang, J. Lin, X. Wang, Z. Wang, C. Zhang, M. He, K. Wang, F. Chen, Z. Li, G. Shen, “Light‐triggered theranostics based on photosensitizer‐conjugated carbon dots for simultaneous enhanced‐fluorescence imaging and photodynamic therapy, Advanced Materials 2012, 24, 5104.
[36]Z. M. Markovic, B. Z. Ristic, K. M. Arsikin, D. G. Klisic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepic, T. K. Kravic-Stevovic, S. P. Jovanovic, M. M. Milenkovic, “Graphene quantum dots as autophagy-inducing photodynamic agents, Biomaterials 2012, 33, 7084.
[37]J. Ge, M. Lan, B. Zhou, W. Liu, L. Guo, H. Wang, Q. Jia, G. Niu, X. Huang, H. Zhou, “A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation, Nature communications 2014, 5, 4596.
[38]W.-S. Kuo, H.-H. Chen, S.-Y. Chen, C.-Y. Chang, P.-C. Chen, Y.-I. Hou, Y.-T. Shao, H.-F. Kao, C.-L. L. Hsu, Y.-C. Chen, “Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging, Biomaterials 2017, 120, 185.
[39]L. Zhou, X. Ge, J. Zhou, S. Wei, J. Shen, “Multicolor imaging and the anticancer effect of a bifunctional silica nanosystem based on the complex of graphene quantum dots and hypocrellin A, Chemical Communications 2015, 51, 421.
[40]Z. Qian, J. Ma, X. Shan, L. Shao, J. Zhou, J. Chen, H. Feng, “Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation, Rsc Advances 2013, 3, 14571.
[41]W.-S. Kuo, Y.-T. Shao, K.-S. Huang, T.-M. Chou, C.-H. Yang, “Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation, ACS applied materials & interfaces 2018, 10, 14438.
[42]J. Ito, J. Nakamura, A. Natori, “Semiconducting nature of the oxygen-adsorbed graphene sheet, Journal of applied physics 2008, 103, 113712.
[43]R. Ströbel, J. Garche, P. Moseley, L. Jörissen, G. Wolf, “Hydrogen storage by carbon materials, Journal of Power Sources 2006, 159, 781.
[44]F. Valencia, A. H. Romero, F. Ancilotto, P. L. Silvestrelli, “Lithium adsorption on graphite from density functional theory calculations, The Journal of Physical Chemistry B 2006, 110, 14832.
[45]N. Hannay, T. Geballe, B. Matthias, K. Andres, P. Schmidt, D. MacNair, “Superconductivity in graphitic compounds, Physical Review Letters 1965, 14, 225.
[46]S. Eigler, A. Hirsch, “Chemistry with graphene and graphene oxide—challenges for synthetic chemists, Angewandte Chemie International Edition 2014, 53, 7720.
[47]M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, “Graphene-based ultracapacitors, Nano letters 2008, 8, 3498.
[48]K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, “Ultrahigh electron mobility in suspended graphene, Solid State Communications 2008, 146, 351.
[49]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior thermal conductivity of single-layer graphene, Nano letters 2008, 8, 902.
[50]M. S. Fuhrer, “Graphene: Ribbons piece-by-piece, Nature materials 2010, 9, 611.
[51]P. Avouris, “Graphene: Electronic and Photonic Properties and Devices, Nano Letters 2010, 10, 4285.
[52]D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, “The chemistry of graphene oxide, Chemical Society Reviews 2010, 39, 228.
[53]D. P. Singh, C. E. Herrera, B. Singh, S. Singh, R. K. Singh, R. Kumar, “Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications, Materials Science and Engineering: C 2018, 86, 173.
[54]B.-S. Nguyen, Y.-K. Xiao, C.-Y. Shih, V.-C. Nguyen, W.-Y. Chou, H. Teng, “Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decomposition, Nanoscale 2018, 10, 10721.
[55]L.-C. Chen, Y.-K. Xiao, N.-J. Ke, C.-Y. Shih, T.-F. Yeh, Y.-L. Lee, H. Teng, “Synergy between quantum confinement and chemical functionality of graphene dots promotes photocatalytic H 2 evolution, Journal of Materials Chemistry A 2018, 6, 18216.
[56]Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. a. Chen, S. Huang, “Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction, ACS nano 2011, 6, 205.
[57]C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, “Synthesis of phosphorus‐doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries, Advanced materials 2013, 25, 4932.
[58]T. F. Yeh, C. Y. Teng, S. J. Chen, H. Teng, “Nitrogen‐doped graphene oxide quantum dots as photocatalysts for overall water‐splitting under visible light Illumination, Advanced materials 2014, 26, 3297.
[59]L. C. Chen, C. Y. Teng, C. Y. Lin, H. Y. Chang, S. J. Chen, H. Teng, “Architecting nitrogen functionalities on graphene oxide photocatalysts for boosting hydrogen production in water decomposition process, Advanced Energy Materials 2016, 6, 1600719.
[60]C. L. Choi, A. P. Alivisatos, “From artificial atoms to nanocrystal molecules: Preparation and properties of more complex nanostructures, Annual Review of Physical Chemistry 2010, 61, 369.
[61]A. C. Berends, C. de Mello Donega, “Ultrathin One-and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit, The journal of physical chemistry letters 2017, 8, 4077.
[62]K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, “Seawater usable for production and consumption of hydrogen peroxide as a solar fuel, Nature communications 2016, 7, 11470.
[63]Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, “Carbon nitride–aromatic diimide–graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency, Journal of the American Chemical Society 2016, 138, 10019.
[64]W.-C. Hou, Y.-S. Wang, “Photocatalytic generation of H2O2 by graphene oxide in organic electron donor-free condition under sunlight, ACS Sustainable Chemistry & Engineering 2017, 5, 2994.
[65]F. Sandelin, P. Oinas, T. Salmi, J. Paloniemi, H. Haario, “Kinetics of the recovery of active anthraquinones, Industrial & engineering chemistry research 2006, 45, 986.
[66]T. Iwahama, S. Sakaguchi, Y. Ishii, “Production of hydrogen peroxide via aerobic oxidation of alcohols catalyzed by N-hydroxyphthalimide, Organic Process Research & Development 2000, 4, 94.
[67]L. Yang, G. Dong, D. L. Jacobs, Y. Wang, L. Zang, C. Wang, “Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides, Journal of catalysis 2017, 352, 274.
[68]D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, “Photocatalytic H2O2 Production from Ethanol/O-2 System Using TiO2 Loaded with Au-Ag Bimetallic Alloy Nanoparticles, Acs Catalysis 2012, 2, 599.
[69]Y. Aratani, T. Suenobu, K. Ohkubo, Y. Yamada, S. Fukuzumi, “Dual function photocatalysis of cyano-bridged heteronuclear metal complexes for water oxidation and two-electron reduction of dioxygen to produce hydrogen peroxide as a solar fuel, Chemical Communications 2017, 53, 3473.
[70]Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, “Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3N4) Photocatalyst Activated by Visible Light, Acs Catalysis 2014, 4, 774.
[71]Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, “Effects of Surface Defects on Photocatalytic H2O2 Production by Mesoporous Graphitic Carbon Nitride under Visible Light Irradiation, Acs Catalysis 2015, 5, 3058.
[72]Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, “Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts, Angewandte Chemie-International Edition 2014, 53, 13454.
[73]W. S. Hummers Jr, R. E. Offeman, “Preparation of graphitic oxide, Journal of the american chemical society 1958, 80, 1339.
[74]D. Dębski, R. Smulik, J. Zielonka, B. Michałowski, M. Jakubowska, K. Dębowska, J. Adamus, A. Marcinek, B. Kalyanaraman, A. Sikora, “Mechanism of oxidative conversion of Amplex® Red to resorufin: pulse radiolysis and enzymatic studies, Free Radical Biology and Medicine 2016, 95, 323.
[75]D. C. Elias, R. R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. C. Ferrari, D. Boukhvalov, M. Katsnelson, A. Geim, “Control of graphene's properties by reversible hydrogenation: evidence for graphane, Science 2009, 323, 610.
[76]S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, “Graphene-based composite materials, nature 2006, 442, 282.
[77]H. Wang, T. Maiyalagan, X. Wang, “Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications, Acs Catalysis 2012, 2, 781.
[78]R. Pietrzak, “XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal, Fuel 2009, 88, 1871.
[79]B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J. R. Gong, “Controllable N-doping of graphene, Nano letters 2010, 10, 4975.
[80]D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun, “Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts, Nanoscale 2013, 5, 12272.
[81]C.-Y. Teng, B.-S. Nguyen, T.-F. Yeh, Y.-L. Lee, S.-J. Chen, H. Teng, “Roles of nitrogen functionalities in enhancing the excitation-independent green-color photoluminescence of graphene oxide dots, Nanoscale 2017, 9, 8256.
[82]X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors, science 2008, 319, 1229.
[83]C. Y. Panicker, H. T. Varghese, L. Ushakumari, T. Ertan, I. Yildiz, C. M. Granadeiro, H. I. S. Nogueira, Y. S. Mary, “FT-IR, FT-Raman, SERS spectra and computational calculations of 4-ethyl-N-(2 '-hydroxy-5 '-nitrophenyl)benzamide, Journal of Raman Spectroscopy 2010, 41, 381.
[84]J. Ryu, E. Lee, S. Lee, J. Jang, “Fabrication of graphene quantum dot-decorated graphene sheets via chemical surface modification, Chemical Communications 2014, 50, 15616.
[85]A. Y. Arasi, J. J. L. Jeyakumari, B. Sundaresan, V. Dhanalakshmi, R. Anbarasan, “The structural properties of Poly(aniline)-Analysis via FTIR spectroscopy, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2009, 74, 1229.
[86]Y. Liu, P. Y. Wu, “Graphene Quantum Dot Hybrids as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction, Acs Applied Materials & Interfaces 2013, 5, 3362.
[87]M. B. Wu, Y. Wang, W. T. Wu, C. Hu, X. N. Wang, J. T. Zheng, Z. T. Li, B. Jiang, J. S. Qiu, “Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke, Carbon 2014, 78, 480.
[88]D. Y. Pan, J. C. Zhang, Z. Li, M. H. Wu, “Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots, Advanced Materials 2010, 22, 734.
[89]G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, M. Chhowalla, “Blue Photoluminescence from Chemically Derived Graphene Oxide, Advanced Materials 2010, 22, 505.
[90]C. Y. Teng, T. F. Yeh, K. I. Lin, S. J. Chen, M. Yoshimura, H. S. Teng, “Synthesis of graphene oxide dots for excitation-wavelength independent photoluminescence at high quantum yields, Journal of Materials Chemistry C 2015, 3, 4553.
[91]K. Mothilal, J. J. Inbaraj, R. Gandhidasan, R. Murugesan, “Photosensitization with anthraquinone derivatives: optical and EPR spin trapping studies of photogeneration of reactive oxygen species, Journal of Photochemistry and Photobiology A: Chemistry 2004, 162, 9.
[92]É. Hideg, Z. Deák, M. Hakala-Yatkin, M. Karonen, A. W. Rutherford, E. Tyystjärvi, I. Vass, A. Krieger-Liszkay, “Pure forms of the singlet oxygen sensors TEMP and TEMPD do not inhibit Photosystem II, Biochimica et Biophysica Acta (BBA)-Bioenergetics 2011, 1807, 1658.
[93]K. C. Das, H. Misra, “Antiarrhythmic agents. Scavengers of hydroxyl radicals and inhibitors of NADPH-dependent lipid peroxidation in bovine lung microsomes, Journal of Biological Chemistry 1992, 267, 19172.
[94]T.-F. Yeh, C.-Y. Teng, L.-C. Chen, S.-J. Chen, H. Teng, “Graphene oxide-based nanomaterials for efficient photoenergy conversion, Journal of Materials Chemistry A 2016, 4, 2014.
[95]W. Jakubowski, G. Bartosz, “2, 7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure?, Cell biology international 2000, 24, 757.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊