|
[1]R. Roelandts, “The history of phototherapy: something new under the sun?, Journal of the American Academy of Dermatology 2002, 46, 926. [2]R. R. Allison, C. H. Sibata, “Oncologic photodynamic therapy photosensitizers: a clinical review, Photodiagnosis and photodynamic therapy 2010, 7, 61. [3]J. Moan, Q. Peng, “An outline of the history of PDT, Photodynamic therapy 2003, 2, 1. [4]M. Price, “A Role For Reactive Oxygen Species In Photodynamic Therapy, 2012. [5]D. E. Dolmans, D. Fukumura, R. K. Jain, “Photodynamic therapy for cancer, Nature reviews cancer 2003, 3, 380. [6]H. Abrahamse, M. R. Hamblin, “New photosensitizers for photodynamic therapy, Biochemical Journal 2016, 473, 347. [7]Y. Liu, X. Meng, W. Bu, “Upconversion-based photodynamic cancer therapy, Coordination Chemistry Reviews 2019, 379, 82. [8]A. Kudo, “Photocatalyst materials for water splitting, Catalysis Surveys from Asia 2003, 7, 31. [9]A. Kudo, Y. Miseki, “Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews 2009, 38, 253. [10]Y. Pellegrin, F. Odobel, “Sacrificial electron donor reagents for solar fuel production, Comptes Rendus Chimie 2017, 20, 283. [11]M. R. Gholipour, C. T. Dinh, F. Beland, T. O. Do, “Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting, Nanoscale 2015, 7, 8187. [12]N. A. Akram, F. Shafiq, M. Ashraf, “Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance, Frontiers in plant science 2017, 8, 613. [13]J. Du, J. J. Cullen, G. R. Buettner, “Ascorbic acid: chemistry, biology and the treatment of cancer, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2012, 1826, 443. [14]Q. Chen, M. G. Espey, M. C. Krishna, J. B. Mitchell, C. P. Corpe, G. R. Buettner, E. Shacter, M. Levine, “Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues, Proceedings of the National Academy of Sciences 2005, 102, 13604. [15]Q. Chen, M. G. Espey, A. Y. Sun, C. Pooput, K. L. Kirk, M. C. Krishna, D. B. Khosh, J. Drisko, M. Levine, “Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice, Proceedings of the National Academy of Sciences 2008, 105, 11105. [16]M. J. McConnell, P. M. Herst, “Ascorbate combination therapy: new tool in the anticancer toolbox?, Science translational medicine 2014, 6, 222fs6. [17]Y. Ma, J. Chapman, M. Levine, K. Polireddy, J. Drisko, Q. Chen, “High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy, Science translational medicine 2014, 6, 222ra18. [18]S. S. Lucky, K. C. Soo, Y. Zhang, “Nanoparticles in photodynamic therapy, Chemical reviews 2015, 115, 1990. [19]A. Ormond, H. Freeman, “Dye sensitizers for photodynamic therapy, Materials 2013, 6, 817. [20]S. Kwiatkowski, B. Knap, D. Przystupski, J. Saczko, E. Kędzierska, K. Knap-Czop, J. Kotlińska, O. Michel, K. Kotowski, J. Kulbacka, “Photodynamic therapy–mechanisms, photosensitizers and combinations, Biomedicine & Pharmacotherapy 2018, 106, 1098. [21]L. B. Josefsen, R. W. Boyle, “Photodynamic therapy: novel third‐generation photosensitizers one step closer?, British journal of pharmacology 2008, 154, 1. [22]N. Malatesti, K. Smith, H. Savoie, J. Greenman, R. W. Boyle, “Synthesis and in vitro investigation of cationic 5, 15-diphenyl porphyrin-monoclonal antibody conjugates as targeted photodynamic sensitisers, International journal of oncology 2006, 28, 1561. [23]A. C. Samia, X. Chen, C. Burda, “Semiconductor quantum dots for photodynamic therapy, Journal of the American Chemical Society 2003, 125, 15736. [24]D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook, D. A. Russell, “Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy, Langmuir 2002, 18, 2985. [25]I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, P. N. Prasad, “Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug− carrier system for photodynamic therapy, Journal of the American Chemical Society 2003, 125, 7860. [26]R. Bakalova, H. Ohba, Z. Zhelev, M. Ishikawa, Y. Baba, “Quantum dots as photosensitizers?, Nature biotechnology 2004, 22, 1360. [27]X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots, Nature biotechnology 2004, 22, 969. [28]Y. Shen, A. J. Shuhendler, D. Ye, J.-J. Xu, H.-Y. Chen, “Two-photon excitation nanoparticles for photodynamic therapy, Chemical Society Reviews 2016, 45, 6725. [29]L. Ye, K.-T. Yong, L. Liu, I. Roy, R. Hu, J. Zhu, H. Cai, W.-C. Law, J. Liu, K. Wang, “A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots, Nature nanotechnology 2012, 7, 453. [30]S. Dayal, C. Burda, “Semiconductor quantum dots as two-photon sensitizers, Journal of the American Chemical Society 2008, 130, 2890. [31]Z.-D. Qi, D.-W. Li, P. Jiang, F.-L. Jiang, Y.-S. Li, Y. Liu, W.-K. Wong, K.-W. Cheah, “Biocompatible CdSe quantum dot-based photosensitizer under two-photon excitation for photodynamic therapy, Journal of Materials Chemistry 2011, 21, 2455. [32]K.-L. Chou, N. Won, J. Kwag, S. Kim, J.-Y. Chen, “Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots, Journal of Materials Chemistry B 2013, 1, 4584. [33]P. Juzenas, W. Chen, Y.-P. Sun, M. A. N. Coelho, R. Generalov, N. Generalova, I. L. Christensen, “Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer, Advanced drug delivery reviews 2008, 60, 1600. [34]X. Guo, C.-F. Wang, Z.-Y. Yu, L. Chen, S. Chen, “Facile access to versatile fluorescent carbon dots toward light-emitting diodes, Chemical communications 2012, 48, 2692. [35]P. Huang, J. Lin, X. Wang, Z. Wang, C. Zhang, M. He, K. Wang, F. Chen, Z. Li, G. Shen, “Light‐triggered theranostics based on photosensitizer‐conjugated carbon dots for simultaneous enhanced‐fluorescence imaging and photodynamic therapy, Advanced Materials 2012, 24, 5104. [36]Z. M. Markovic, B. Z. Ristic, K. M. Arsikin, D. G. Klisic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepic, T. K. Kravic-Stevovic, S. P. Jovanovic, M. M. Milenkovic, “Graphene quantum dots as autophagy-inducing photodynamic agents, Biomaterials 2012, 33, 7084. [37]J. Ge, M. Lan, B. Zhou, W. Liu, L. Guo, H. Wang, Q. Jia, G. Niu, X. Huang, H. Zhou, “A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation, Nature communications 2014, 5, 4596. [38]W.-S. Kuo, H.-H. Chen, S.-Y. Chen, C.-Y. Chang, P.-C. Chen, Y.-I. Hou, Y.-T. Shao, H.-F. Kao, C.-L. L. Hsu, Y.-C. Chen, “Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging, Biomaterials 2017, 120, 185. [39]L. Zhou, X. Ge, J. Zhou, S. Wei, J. Shen, “Multicolor imaging and the anticancer effect of a bifunctional silica nanosystem based on the complex of graphene quantum dots and hypocrellin A, Chemical Communications 2015, 51, 421. [40]Z. Qian, J. Ma, X. Shan, L. Shao, J. Zhou, J. Chen, H. Feng, “Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation, Rsc Advances 2013, 3, 14571. [41]W.-S. Kuo, Y.-T. Shao, K.-S. Huang, T.-M. Chou, C.-H. Yang, “Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation, ACS applied materials & interfaces 2018, 10, 14438. [42]J. Ito, J. Nakamura, A. Natori, “Semiconducting nature of the oxygen-adsorbed graphene sheet, Journal of applied physics 2008, 103, 113712. [43]R. Ströbel, J. Garche, P. Moseley, L. Jörissen, G. Wolf, “Hydrogen storage by carbon materials, Journal of Power Sources 2006, 159, 781. [44]F. Valencia, A. H. Romero, F. Ancilotto, P. L. Silvestrelli, “Lithium adsorption on graphite from density functional theory calculations, The Journal of Physical Chemistry B 2006, 110, 14832. [45]N. Hannay, T. Geballe, B. Matthias, K. Andres, P. Schmidt, D. MacNair, “Superconductivity in graphitic compounds, Physical Review Letters 1965, 14, 225. [46]S. Eigler, A. Hirsch, “Chemistry with graphene and graphene oxide—challenges for synthetic chemists, Angewandte Chemie International Edition 2014, 53, 7720. [47]M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, “Graphene-based ultracapacitors, Nano letters 2008, 8, 3498. [48]K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, “Ultrahigh electron mobility in suspended graphene, Solid State Communications 2008, 146, 351. [49]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior thermal conductivity of single-layer graphene, Nano letters 2008, 8, 902. [50]M. S. Fuhrer, “Graphene: Ribbons piece-by-piece, Nature materials 2010, 9, 611. [51]P. Avouris, “Graphene: Electronic and Photonic Properties and Devices, Nano Letters 2010, 10, 4285. [52]D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, “The chemistry of graphene oxide, Chemical Society Reviews 2010, 39, 228. [53]D. P. Singh, C. E. Herrera, B. Singh, S. Singh, R. K. Singh, R. Kumar, “Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications, Materials Science and Engineering: C 2018, 86, 173. [54]B.-S. Nguyen, Y.-K. Xiao, C.-Y. Shih, V.-C. Nguyen, W.-Y. Chou, H. Teng, “Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decomposition, Nanoscale 2018, 10, 10721. [55]L.-C. Chen, Y.-K. Xiao, N.-J. Ke, C.-Y. Shih, T.-F. Yeh, Y.-L. Lee, H. Teng, “Synergy between quantum confinement and chemical functionality of graphene dots promotes photocatalytic H 2 evolution, Journal of Materials Chemistry A 2018, 6, 18216. [56]Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. a. Chen, S. Huang, “Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction, ACS nano 2011, 6, 205. [57]C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, “Synthesis of phosphorus‐doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries, Advanced materials 2013, 25, 4932. [58]T. F. Yeh, C. Y. Teng, S. J. Chen, H. Teng, “Nitrogen‐doped graphene oxide quantum dots as photocatalysts for overall water‐splitting under visible light Illumination, Advanced materials 2014, 26, 3297. [59]L. C. Chen, C. Y. Teng, C. Y. Lin, H. Y. Chang, S. J. Chen, H. Teng, “Architecting nitrogen functionalities on graphene oxide photocatalysts for boosting hydrogen production in water decomposition process, Advanced Energy Materials 2016, 6, 1600719. [60]C. L. Choi, A. P. Alivisatos, “From artificial atoms to nanocrystal molecules: Preparation and properties of more complex nanostructures, Annual Review of Physical Chemistry 2010, 61, 369. [61]A. C. Berends, C. de Mello Donega, “Ultrathin One-and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit, The journal of physical chemistry letters 2017, 8, 4077. [62]K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, “Seawater usable for production and consumption of hydrogen peroxide as a solar fuel, Nature communications 2016, 7, 11470. [63]Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, “Carbon nitride–aromatic diimide–graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency, Journal of the American Chemical Society 2016, 138, 10019. [64]W.-C. Hou, Y.-S. Wang, “Photocatalytic generation of H2O2 by graphene oxide in organic electron donor-free condition under sunlight, ACS Sustainable Chemistry & Engineering 2017, 5, 2994. [65]F. Sandelin, P. Oinas, T. Salmi, J. Paloniemi, H. Haario, “Kinetics of the recovery of active anthraquinones, Industrial & engineering chemistry research 2006, 45, 986. [66]T. Iwahama, S. Sakaguchi, Y. Ishii, “Production of hydrogen peroxide via aerobic oxidation of alcohols catalyzed by N-hydroxyphthalimide, Organic Process Research & Development 2000, 4, 94. [67]L. Yang, G. Dong, D. L. Jacobs, Y. Wang, L. Zang, C. Wang, “Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides, Journal of catalysis 2017, 352, 274. [68]D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, “Photocatalytic H2O2 Production from Ethanol/O-2 System Using TiO2 Loaded with Au-Ag Bimetallic Alloy Nanoparticles, Acs Catalysis 2012, 2, 599. [69]Y. Aratani, T. Suenobu, K. Ohkubo, Y. Yamada, S. Fukuzumi, “Dual function photocatalysis of cyano-bridged heteronuclear metal complexes for water oxidation and two-electron reduction of dioxygen to produce hydrogen peroxide as a solar fuel, Chemical Communications 2017, 53, 3473. [70]Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, “Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3N4) Photocatalyst Activated by Visible Light, Acs Catalysis 2014, 4, 774. [71]Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, “Effects of Surface Defects on Photocatalytic H2O2 Production by Mesoporous Graphitic Carbon Nitride under Visible Light Irradiation, Acs Catalysis 2015, 5, 3058. [72]Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, “Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts, Angewandte Chemie-International Edition 2014, 53, 13454. [73]W. S. Hummers Jr, R. E. Offeman, “Preparation of graphitic oxide, Journal of the american chemical society 1958, 80, 1339. [74]D. Dębski, R. Smulik, J. Zielonka, B. Michałowski, M. Jakubowska, K. Dębowska, J. Adamus, A. Marcinek, B. Kalyanaraman, A. Sikora, “Mechanism of oxidative conversion of Amplex® Red to resorufin: pulse radiolysis and enzymatic studies, Free Radical Biology and Medicine 2016, 95, 323. [75]D. C. Elias, R. R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. C. Ferrari, D. Boukhvalov, M. Katsnelson, A. Geim, “Control of graphene's properties by reversible hydrogenation: evidence for graphane, Science 2009, 323, 610. [76]S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, “Graphene-based composite materials, nature 2006, 442, 282. [77]H. Wang, T. Maiyalagan, X. Wang, “Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications, Acs Catalysis 2012, 2, 781. [78]R. Pietrzak, “XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal, Fuel 2009, 88, 1871. [79]B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J. R. Gong, “Controllable N-doping of graphene, Nano letters 2010, 10, 4975. [80]D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun, “Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts, Nanoscale 2013, 5, 12272. [81]C.-Y. Teng, B.-S. Nguyen, T.-F. Yeh, Y.-L. Lee, S.-J. Chen, H. Teng, “Roles of nitrogen functionalities in enhancing the excitation-independent green-color photoluminescence of graphene oxide dots, Nanoscale 2017, 9, 8256. [82]X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors, science 2008, 319, 1229. [83]C. Y. Panicker, H. T. Varghese, L. Ushakumari, T. Ertan, I. Yildiz, C. M. Granadeiro, H. I. S. Nogueira, Y. S. Mary, “FT-IR, FT-Raman, SERS spectra and computational calculations of 4-ethyl-N-(2 '-hydroxy-5 '-nitrophenyl)benzamide, Journal of Raman Spectroscopy 2010, 41, 381. [84]J. Ryu, E. Lee, S. Lee, J. Jang, “Fabrication of graphene quantum dot-decorated graphene sheets via chemical surface modification, Chemical Communications 2014, 50, 15616. [85]A. Y. Arasi, J. J. L. Jeyakumari, B. Sundaresan, V. Dhanalakshmi, R. Anbarasan, “The structural properties of Poly(aniline)-Analysis via FTIR spectroscopy, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2009, 74, 1229. [86]Y. Liu, P. Y. Wu, “Graphene Quantum Dot Hybrids as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction, Acs Applied Materials & Interfaces 2013, 5, 3362. [87]M. B. Wu, Y. Wang, W. T. Wu, C. Hu, X. N. Wang, J. T. Zheng, Z. T. Li, B. Jiang, J. S. Qiu, “Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke, Carbon 2014, 78, 480. [88]D. Y. Pan, J. C. Zhang, Z. Li, M. H. Wu, “Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots, Advanced Materials 2010, 22, 734. [89]G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, M. Chhowalla, “Blue Photoluminescence from Chemically Derived Graphene Oxide, Advanced Materials 2010, 22, 505. [90]C. Y. Teng, T. F. Yeh, K. I. Lin, S. J. Chen, M. Yoshimura, H. S. Teng, “Synthesis of graphene oxide dots for excitation-wavelength independent photoluminescence at high quantum yields, Journal of Materials Chemistry C 2015, 3, 4553. [91]K. Mothilal, J. J. Inbaraj, R. Gandhidasan, R. Murugesan, “Photosensitization with anthraquinone derivatives: optical and EPR spin trapping studies of photogeneration of reactive oxygen species, Journal of Photochemistry and Photobiology A: Chemistry 2004, 162, 9. [92]É. Hideg, Z. Deák, M. Hakala-Yatkin, M. Karonen, A. W. Rutherford, E. Tyystjärvi, I. Vass, A. Krieger-Liszkay, “Pure forms of the singlet oxygen sensors TEMP and TEMPD do not inhibit Photosystem II, Biochimica et Biophysica Acta (BBA)-Bioenergetics 2011, 1807, 1658. [93]K. C. Das, H. Misra, “Antiarrhythmic agents. Scavengers of hydroxyl radicals and inhibitors of NADPH-dependent lipid peroxidation in bovine lung microsomes, Journal of Biological Chemistry 1992, 267, 19172. [94]T.-F. Yeh, C.-Y. Teng, L.-C. Chen, S.-J. Chen, H. Teng, “Graphene oxide-based nanomaterials for efficient photoenergy conversion, Journal of Materials Chemistry A 2016, 4, 2014. [95]W. Jakubowski, G. Bartosz, “2, 7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure?, Cell biology international 2000, 24, 757.
|