|
[1]H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, Dye Sensitized Zinc Oxide: Aqueous Electrolyte: Platinum Photocell, Nature, vol. 261, p. 402-403, 1976. [2]B. O’Regan and M. Grätzel, A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Film, Nature, vol. 353, p. 737-740, 1991. [3]M. Grätzel, Photoelectrochemical Cells, Nature, vol. 414, p. 338-344, 2001. [4]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized Solar Cells, Chemical Reviews, vol. 110, p. 6595-6663, 2010. [5]M. Grätzel, Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells, Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, p. 3-14, 2004. [6]B. Wang and L. L. Kerr, Dye Sensitized Solar Cells on Paper Substrates, Solar Energy Materials and Solar Cells, vol. 95, p. 2531-2535, 2011. [7]H. Weerasinghe, P. Sirimanne, G. Franks, G. Simon, and Y. Cheng, Low Temperature Chemically Sintered Nano-Crystalline TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells, Journal of Photochemistry and Photobiology A: Chemistry, vol. 213, p. 30-36, 2010. [8]Y. Y. Kuo and C. H. Chien, Sinter-Free Ttransferring of Anodized TiO2 Nanotube-Array onto a Flexible and Transparent Sheet for Dye-Sensitized Solar Cells, Electrochimica Acta, vol. 91, p. 337-343, 2013. [9]S. Ito, N. L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Péchy, M. K. Nazeeruddin, and M. Grätzel, High-Efficiency (7.2%) Flexible Dye-Sensitized Solar Cells with Ti-Metal Substrate for Nanocrystalline-TiO2 Photoanode, Chemical Communications, p. 4004-4006, 2006. [10]C. H. Lee, W. H. Chiu, K. M. Lee, W. F. Hsieh, and J. M. Wu, Improved Performance of Flexible Dye-Sensitized Solar Cells by Introducing an Interfacial Layer on Ti Substrates, Journal of Materials Chemistry, vol. 21, p. 5114-5119, 2011. [11]K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, and V. P. S. Perera, An Efficient Dye-Sensitized Photoelectrochemical Solar Cell Made from Oxides of Tin and Zinc, Chemical Communications, p. 15-16, 1999. [12]K. Keis, E. Magnusson, S. E. Lindquist, and A. Hagfeldt, A 5% Efficient Photoelectrochemical Solar Cell Based on Nanostructured ZnO Electrodes, Solar Energy Materials and Solar Cells, vol. 73, p. 51-58, 2002. [13]H. Rensmo, K. Keis, H. Lindström, S. Sö1dergren, A. Solbrand, A. Hagfeldt, and S. E. Lindquist, High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes, The Journal of Physical Chemistry B, vol. 101, p. 2598-2601, 1997. [14]X. J. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis details and applications, Nano Letters, vol. 8, p. 3781-3786, 2008. [15]O. K. Varghese, M. Paulose, and C. A. Grimes, Long Vertically Aligned Titania Nanotubes on Transparent Conducting Oxide for Highly Efficient Solar Cells, Nature Nanotechnology, vol. 4, p. 592-597, 2009. [16]J. T. Jiu, S. Isoda, F. M. Wang, and M. Adachi, Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film, The Journal of Physical Chemistry B, vol. 110, p. 2087-2092, 2006. [17]L. Schmidt‐Mende, U. Bach, R. Humphry‐Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, and M. Grätzel, Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells, Advanced Materials, vol. 17, p. 813-815, 2005. [18]S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, Fabrication of Screen‐Printing Pastes from TiO2 Powders for Dye‐Sensitised Solar Cells, Progress in photovoltaics: research and applications, vol. 15, p. 603-612, 2007. [19]T. Miyasaka and Y. Kijitori, Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers, Journal of the Electrochemical Society, vol. 151, p. A1767-A1773, 2004. [20]W. W. Yu and X. G. Peng, Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers, Angewandte Chemie-International Edition, vol. 41, p. 2368-2371, 2002. [21]A. J. Nozik, Quantum Dot Solar Cells, Physica E: Low-dimensional Systems and Nanostructures, vol. 14, p. 115-120, 2002. [22]W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells, Journal of Applied Physics, vol. 32, p. 510-519, 1961. [23]A. Hagfeldt and M. Grätzel, Molecular Photovoltaics, Accounts of Chemical Research, vol. 33, p. 269-277, 2000. [24]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grätzel, Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline TiO2 Electrodes, Journal of the American Chemical Society, vol. 115, p. 6382-6390, 1993. [25]M. K. Nazeeruddin, P. Pechy, and M. Grätzel, Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a Trithiocyanato-Ruthenium Complex, Chemical Communications, p. 1705-1706, 1997. [26]M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells, Journal of the American Chemical Society, vol. 123, p. 1613-1624, 2001. [27]M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers, Journal of the American Chemical Society, vol. 127, p. 16835-16847, 2005. [28]P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, A stable Quasi-Solid-State Dye-Sensitized Solar Cell with an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte, Nature Materials, vol. 2, p. 402-407, 2003. [29]Y. R. Liu, J. R. Jennings, Y. Huang, Q. Wang, S. M. Zakeeruddin, and M. Grätzel, Cobalt Redox Mediators for Ruthenium-Based Dye-Sensitized Solar Cells: A Combined Impedance Spectroscopy and Near-IR Transmittance Study, The Journal of Physical Chemistry C, vol. 115, p. 18847-18855, 2011. [30]Q. J. Yu, Y. H. Wang, Z. H. Yi, N. N. Zu, J. Zhang, M. Zhang, and P. Wang, High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States, ACS Nano, vol. 4, p. 6032-6038, 2010. [31]T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau, and M. Grätzel, Highly Efficient Mesoscopic Dye‐Sensitized Solar Cells Based on Donor–Acceptor‐Substituted Porphyrins, Angewandte Chemie, vol. 122, p. 6796-6799, 2010. [32]A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency, Science, vol. 334, p. 629-634, Nov 4 2011. [33]S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers, Nature Chemistry, vol. 6, p. 242-247, 2014. [34]S. Ferrere, A. Zaban, and B. A. Gregg, Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives, The Journal of Physical Chemistry B, vol. 101, p. 4490-4493, 1997. [35]N. J. Cherepy, G. P. Smestad, M. Grätzel, and J. Z. Zhang, Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode, The Journal of Physical Chemistry B, vol. 101, p. 9342-9351, 1997. [36]K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, Highly Efficient Photon-to-Electron Conversion of Mercurochrome-sensitized Nanoporous ZnO Solar Cells, Chemistry Letters, vol. 29, p. 316-317, 2000. [37]A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. an Organized Assembly Approach for Enhancing the Efficiency of Photosensitization, The Journal of Physical Chemistry B, vol. 103, p. 4693-4700, 1999. [38]K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y. Abe, H. Sugihara, and H. Arakawa, Photosensitization of a Porous TiO2 Electrode with Merocyanine Dyes Containing a Carboxyl Group and a Long Alkyl Chain, Chemical Communications, p. 1173-1174, 2000. [39]K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, A Coumarin-Derivative Dye Sensitized Nanocrystalline TiO2 Solar Cell Having a High Solar-Energy Conversion Efficiency Up to 5.6%, Chemical Communications, p. 569-570, 2001. [40]T. Horiuchi, H. Miura, and S. Uchida, Highly-Efficient Metal-Free Organic Dyes for Dye-Sensitized Solar Cells, Chemical Communications, p. 3036-3037, 2003. [41]T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes, Journal of the American Chemical Society, vol. 126, p. 12218-12219, 2004. [42]S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, and M. Grätzel, High-Conversion-Efficiency Organic Dye-Sensitized Solar Cells with a Novel Indoline Dye, Chemical Communications, p. 5194-5196, 2008. [43]G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, and P. Wang, High Efficiency and Stable Dye-Sensitized Solar Cells with an Organic Chromophore Featuring a Binary π-Conjugated Spacer, Chemical Communications, p. 2198-2200, 2009. [44]W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, and P. Wang, Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks, Chemistry of Materials, vol. 22, p. 1915-1925, 2010. [45]W. Xiang, W. Huang, U. Bach, and L. Spiccia, Stable High Efficiency Dye-Sensitized Solar Cells Based on a Cobalt Polymer Gel Electrolyte, Chemical Communications, vol. 49, p. 8997-8999, 2013. [46]K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-Anchor and Carboxy-Anchor Dyes, Chemical Communications, vol. 51, p. 15894-15897, 2015. [47]G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, A Channel Flow Cell System Specifically Designed to Test the Efficiency of Redox Shuttles in Dye Sensitized Solar Cells, Solar Energy Materials and Solar Cells, vol. 70, p. 85-101, 2001. [48]S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1): The Case of Solar Cells Using the I-/I3- Redox Couple, The Journal of Physical Chemistry B, vol. 109, p. 3480-3487, 2005. [49]T. W. Hamann, The End of Iodide? Cobalt Complex Redox Shuttles in DSSCs, Dalton Transactions, vol. 41, p. 3111-3115, 2012. [50]K. Omata, S. Kuwahara, K. Katayama, S. Qing, T. Toyoda, K. M. Lee, and C. G. Wu, The Cause for the Low Efficiency of Dye Sensitized Solar Cells with a Combination of Ruthenium Dyes and Cobalt Redox, Physical Chemistry Chemical Physics: PCCP, vol. 17, p. 10170-5, 2015. [51]S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, and A. Hagfeldt, Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells, J. AM. CHEM. SOC., vol. 132, no. 46, p. 16714-16724, 2010. [52]J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J. E. Moser, C. Yi, M. K. Nazeeruddin, and M. Grätzel, A Cobalt Complex Redox Shuttle for Dye-Sensitized Solar Cells with High Open-Circuit Poentials, Nature Communications, vol. 3, p. 631, 2012. [53]Y. Hao, Y. Saygili, J. Cong, A. Eriksson, W. X. Yang, J. B. Zhang, E. Polanski, K. Nonomura, S. M. Zakeeruddin, M. Grätzel, A. Hagfeldt, and G. Boschloo, Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization, ACS Appl. Mater. Interfaces, vol. 8, P. 32797-32804, 2016. [54]Y. L. Lee, C. L. Chen, L. W. Chong, C. H. Chen, Y. F. Liu, and C. F. Chi, A Platinum Counter Electrode with High Electrochemical Activity and High Transparency for Dye-Sensitized Solar Cells, Electrochemistry Communications, vol. 12, p. 1662-1665, 2010. [55]L. L. Li, C. W. Chang, H. H. Wu, J. W. Shiu, P. T. Wu, and E. W. G. Diau, Morphological Control of Platinum Nanostructures for Highly Efficient Dye-Sensitized Solar Cells, Journal of Materials Chemistry, vol. 22, p. 6267, 2012. [56]E. Olsen, G. Hagen, and S. E. Lindquist, Dissolution of Platinum in Methoxy Propionitrile Containing LiI/I2, Solar Energy Materials and Solar Cells, vol. 63, p. 267-273, 2000. [57]T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzel, Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes, Journal of The Electrochemical Society, vol. 153, p. A2255, 2006. [58]K. C. Huang, Y. C. Wang, R. X. Dong, W. C. Tsai, K. W. Tsai, C. C. Wang, Y. H. Chen, R. Vittal, J. J. Lin, and K. C. Ho, A High Performance Dye-Sensitized Solar Cell with a Novel Nanocomposite Film of PtNP/MWCNT on the Counter Electrode, Journal of Materials Chemistry, vol. 20, p. 4067, 2010. [59]L. Kavan, J. H. Yum, and M. Grätzel, Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets, Acs Nano, vol. 5, p. 165-172, 2010. [60]J. M. Pringle, V. Armel, and D. R. MacFarlane, Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells, Chem. Commun., vol. 46, p. 5367-5369, 2010. [61]I. Mathews, P. J. King, F. Stafford, and R. Frizzell, Performance of III-V Solar Cells as Indoor Light Energy Harvesters, IEEE Journal of Photovoltaics, vol. 6, p. 230-235, 2016. [62]P. C. Yang, I. M. Chan, C. H. Lin, and Y. L. Chang, Thin Film Solar Cells for Indoor Use, in IEEE 37th Photovoltaic Specialists Conference (PVSC), p. 696-698, 2011. [63]F. D. Rossi, T. Pontecorvo, and T. M. Brown, Characterization of Photovoltaic Devices for Indoor Light Harvesting and Customization of Flexible Dye Solar Cells to Deliver Superior Efficiency under Artificial Lighting, Applied Energy, vol. 156, p. 413-422, 2015. [64]N. Sridhar and D. Freeman, A Study of Dye Sensitized Solar Cells under Indoor and Low Level Outdoor Lighting: Comparison to Organic and Inorganic Thin Film Solar Cells and Methods to Address Maximum Power Point Tracking, in 26th European Photovoltaic Solar Energy Conference and Exhibition, p. 232-236, 2011. [65]Y. S. Tingare, N. S. Vinh, H. H. Chou, Y. C. Liu, Y. S. Long, T. C. Wu, T. C. Wei, and C. Y. Yeh, New Acetylene‐Bridged 9,10‐Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dye‐Sensitized Solar Cells, Advanced Energy Materials, vol. 7, p. 1700032, 2017. [66]M. C. Tsai, C. L. Wang, C. W. Chang, C. W. Hsu, Y. H. Hsiao, C. L. Liu, C. C. Wang, S. Y. Lina, and C. Y. Lin, A Large, Ultra-Black, Efficient and Cost-Effective Dye-Sensitized Solar Module Approaching 12% Overall Efficiency under 1000 Lux Indoor Light, Journal of Materials Chemistry A, vol. 6, p. 1995-2003, 2018. [67]M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel, and A. Hagfeldt, Dye-Sensitized Solar Cells for Efficient Power Generation under Ambient Lighting, Nature Photon, vol. 11, p. 372-378, 2017. [68]Y. Cao, Y. Liu, S. M. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics, Joule, vol. 2, p. 1-10, 2018. [69]F. Cao, G. Oskam, and P. C. Searson, A solid state, dye sensitized photoelectrochemical cell, The Journal of Physical Chemistry, vol. 99, no. 47, p. 17071-17073, 1995. [70]P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Grätzel, High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte, Chem. Commun., no. 24, p. 2972-2973, 2002. [71]M. B. Achari, V. Elumalai, N. Vlachopoulos, M. Safdari, J. J. Gao, J. M. Gardner, and L. Kloo, A Quasi-Liquid Polymer-Based Cobalt Redox Mediator Electrolyte for Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys., vol. 15, p. 17419-17425, 2013. [72]D. K. Lee, K. S. Ahn, S. Thogiti, and J. H. Kim, Mass Transport Effect on the Photovoltaic Performance of Ruthenium-Based Quasi-Solid Dye Sensitized Solar Cells Using Cobalt Based Redox Couples, Dyes and Pigments, vol. 117, p. 83-91, 2015. [73]C. Wang, L. Wang, Y. Shi, H. Zhang, and T. Ma, Printable Electrolytes for Highly Efficient Quasi-Solid-State Dye-Sensitized Solar Cells, Electrochimica Acta, vol. 91, p. 302-306, 2013. [74]S. J. Seo, H. J. Cha, Y. S. Kang, and M. S. Kang, Printable Ternary Component Polymer-Gel Electrolytes for Long-Term Stable Dye-Sensitized Solar Cells, Electrochimica Acta, vol. 145, p. 217-223, 2014. [75]T. C. Wei, H. H. Chen, Y. H. Chang, and S. P. Feng, Hydrophobic Electrolyte Pastes for Highly Durable Dye-Sensitized Solar Cells, Journal of The Electrochemical Society, vol. 161, no. 4, p. H214-H219, 2014. [76]S. Venkatesan, S. C. Su, W. N. Hung, I. P. Liu, H. Teng, and Y. L. Lee, Printable Electrolytes Based on Polyacrylonitrile and Gamma-Butyrolactone for Dye-Sensitized Solar Cell Application, Journal of Power Sources, vol. 298, p. 385-390, 2015. [77]I. P. Liu, W. N. Hung, H. Teng, S. Venkatesan, J. C. Lin, and Y. L. Lee, High-Performance Printable Electrolytes for Dye-Sensitized Solar Cells, Journal of Materials Chemistry A, vol. 5, no. 19, p. 9190-9197, 2017. [78]S. Venkatesan, I. P. Liu, J. C. Lin, M. H. Tsai, and Y. L. Lee, Highly Efficient Quasi-Solid-State Dye-Sensitized Solar Cells Using Polyethylene Oxide (PEO) and Poly(methyl methacrylate) (PMMA)-Based Printable Electrolytes, Journal of Materials Chemistry A, vol. 6, no. 21, p. 10085-10094, 2018. [79]G. R. Peng, X. J. Zhao, Z. J. Zhan, S. Ci, Q. Wang, Y. j. Liang and M. Zhao, New Crystal Structure and Discharge Efficiency of Poly(vinylidene fluoride-hexafluoropropylene)/Poly(methyl methacrylate) Blend Films, RSC Adv., vol. 4, p. 16849-16854, 2014. [80]S. Ito, S. M. Zakeeruddin, P. Comte, P. Liska, D. Kuang, and M. Grätzel, Bifacial Dye-Sensitized Solar Cells Based on an Ionic Liquid Electrolyte, Nature Photonics, vol. 2, p. 693-698, 2008. [81]Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo, and X. Z. Zhao, In Situ Prepared Transparent Polyaniline Electrode and Its Application in Bifacial Dye-Sensitized Solar Cells, ACS Nano, vol. 5, no. 5, p. 3795-3799, 2011. [82]D.K. Hwang, J. E. Nam, H. J. Jo, and S. J. Sung, Quasi-Solid State Electrolyte for Semi-Transparent Bifacial Dye-Sensitized Solar Cell with Over 10% Power Conversion Efficiency, Journal of Power Sources, vol. 361, p. 87-95, 2017. [83]J. S. Kang, J. Kim, J. Y. Kim, M. J. Lee, J. H. Kang, Y. J. Son, J. O. Jeong, S. H. Park, M. J. Ko, and Y. E. Sung, Highly Efficient Bifacial Dye-Sensitized Solar Cells Employing Polymeric Counter Electrodes, ACS Appl. Mater. Interfaces, vol. 10, p. 8611-8620, 2018.
|