跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 21:33
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

 
twitterline
Author:曾山智美
Author (Eng.):Chih-Mei TsengShan
Title:擬固態鈷系統電解質的製備及其在染料敏化太陽能電池的應用
Title (Eng.):Preparation of Cobalt-Based Quasi-Solid State Electrolytes for Dye-Sensitized Solar Cell Applications
Advisor:李玉郎
advisor (eng):Yuh-Lang Lee
degree:Master
Institution:國立成功大學
Department:化學工程學系
Narrow Field:工程學門
Detailed Field:化學工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2019
Graduated Academic Year:107
language:Chinese
number of pages:114
keyword (chi):染料敏化太陽能電池鈷錯合物氧化還原對膠態電解質印刷式製程
keyword (eng):Dye-sensitized solar cellscobalt complex redox couplequasi-solid state electrolytePrinting process
Ncl record status:
  • Cited Cited :0
  • HitsHits:103
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:0
本研究利用鈷錯合物作為氧化還原對,藉由調控不同高分子組成來製備灌注式與印刷式擬固態電解質,並應用於染料敏化太陽能電池(DSSC)。首先,灌注式電解質的製備是以不同比例的聚偏二氟乙烯-三氯乙烯(PVDF-HFP)與聚甲基丙烯酸甲酯(PMMA)共混來作為膠化劑。實驗結果顯示,與液態電解質相比,膠態電解質之使用會顯著降低元件於太陽光照射下的轉換效率;然而,在室內螢光燈(照度200 lux)照射下,當PVDF-HFP/PMMA之比例為9/1時,膠態元件可達到比液態元件更佳的光電轉換效率20.60%。由FTIR結果得知,在高分子共混系統中,PVDF-HFP與PMMA兩分子間的氫鍵可使電解質混合更加均勻,有利於電荷於電解質中的傳輸。另外,膠態元件於常溫下經過1000小時後仍可維持100%之初使效率,呈現出良好的穩定性。進一步將此灌注式電解質用於組裝可雙面照光之DSSC,當室內光分別由光電極(正向)與對電極(背向)入射至元件時,光電轉換效率可分別達到19.29%與16.89%。
在印刷式電解質的探討上,本研究主要以聚乙二醇(PEO)作為增稠劑來調控電解質的黏度。結果顯示,在加入9 wt.% PEO之後,電解質可呈現適合印刷製程之流變行為;此外,相較於其它PEO添加量,在9 wt.%時,相關元件可量測到最大的電荷再結合阻力,因此可在室內光環境中達到最佳的光電轉換效率20.47%,此元件於常溫中亦呈現極佳的穩定性。進一步將此印刷式電解質應用至可雙面照光之DSSC,於正向與背向照光下,光電轉換效率可分別達到17.22%與14.25%。
In this study, quasi-solid state electrolytes containing cobalt complex redox couples were prepared by adding polymers. There were two kinds of quasi-solid state electrolytes, One was injection gel electrolyte and the other was printable gel electrolyte. In injection gel electrolytes, added PVDF-HFP and PMMA simultaneously into electrolytes and adjusted the ratio of PVDF-HFP/PMMA. In the result, comparing with liquid electrolyte, the gel electrolyte would decrease the power conversion efficiency (PCE) significantly under standard 1 sun irradiation (100 mW/cm2). However, the PCE of gel device could achieve 20.6% when the PVDF-HFP/PMMA ratio was 9/1 under 200-lux fluorescent lighting, which was higher than liquid device. According to the FTIR results, in the polymer blending system, the hydrogen bond between PVDF-HFP and PMMA could make the electrolyte be mixed well, thereby improving the charge transfer. In addition, the stability of gel devices could maintain almost 100% of their initial value for 1000 hours at room temperature. Furthermore, DSSCs for bifacial applications were assembled and investigated in this study. In the fluorescent lighting environment, the PCE of bifacial DSSC with 4 layers TiO2 under front-side and back-side illumination were 19.29% and 16.89%, respectively.
In printable gel electrolytes, added PEO as viscous agent into the electrolyte to regulate the viscosity of electrolyte. The results show that the electrolyte exhibited rheological behavior suitable for the printing process by adding 9 wt.% PEO. Moreover, compared with other printing devices, the device with 9 wt.% PEO had the higher resistance of recombination (Rct), leading to an optimal PCE of 20.47% under 200 lux illumination. In stability test, the DSSC with 9 wt.% PEO also exhibited excellent stability at room temperature. Further, the printable electrolyte was applied to bifacial DSSC, the PCE of DSSC with 4 layers TiO2 under front-side and back-side illumination were 17.22% and 14.25%, respectively.
摘要 I
Extended abstract II
目錄 XI
表目錄 XV
圖目錄 XVI
第一章 緒論 1
1-1 前言 1
1-2 研究目的與動機 3
第二章 實驗原理與文獻回顧 5
2-1 染料敏化太陽能電池介紹 5
2-1-1 染料敏化太陽能電池之工作原理 6
2-1-2 電子在染料敏化太陽能電池中的傳輸路徑 7
2-2 染料敏化太陽能電池之結構介紹 10
2-2-1 透明導電基板 10
2-2-2 氧化物半導體 11
2-2-3 光敏化劑 13
2-2-3-1 半導體敏化劑 14
2-2-3-2 釕金屬錯合物染料 15
2-2-3-3 紫質染料 18
2-2-3-4 純有機染料 19
2-2-4 電解質 22
2-2-4-1 碘電解質 23
2-2-4-2 鈷電解質 24
2-2-5 對電極 27
2-3 文獻回顧 29
2-3-1 染料敏化太陽能電池於室內光下之研究 29
2-3-2 鈷錯合氧化還原對於室內光環境下應用之可行性 32
2-3-3 膠態電解質 33
2-3-4 可印刷式電解質 35
2-3-5 PVDF-HFP與PMMA間的交互作用 36
2-3-6 雙面照光染料敏化太陽能電池 37
第三章 實驗器材與步驟 40
3-1 實驗藥品與材料 40
3-2 實驗儀器與分析原理 43
3-2-1 太陽光模擬器 43
3-2-2 室內光量測系統 46
3-2-3 電化學交流阻抗分析 48
3-2-4 入射光子轉換效率量測系統 54
3-2-5 金屬濺鍍機 55
3-2-6 紫外光-可見光光譜儀 56
3-2-7 傅立葉轉換式紅外線光譜儀 57
3-2-8 掃描式電子顯微鏡 58
3-2-9 迴旋式磁流變分析儀 60
3-2-10 一般儀器 61
3-3 實驗流程及實驗原理 63
3-3-1 二氧化鈦薄膜製備 63
3-3-2 光電極敏化程序 64
3-3-3 對電極製備程序 64
3-3-4 電解質製備程序 65
3-3-5 染料敏化太陽能電池元件組裝 66
第四章 結果與討論 69
4-1 灌注式膠態電解質 69
4-1-1 灌注式電解質於太陽光環境中之應用 69
4-1-1-1 電解質之電化學特性分析 70
4-1-1-2 元件之暗電流及阻抗特性分析 71
4-1-2 灌注式電解質於室內光環境中之應用 75
4-1-2-1 電解質之電化學特性與元件之阻抗分析 76
4-1-2-2 高分子交互作用之影響 79
4-1-3 灌注式膠態元件之穩定性測試 82
4-1-4 可雙面照光型染敏太陽能電池之應用 83
4-1-4-1 對電極之穿透度分析 84
4-1-4-2 光電極之優化 85
4-2 可印刷式電解質之製備及在室內光環境中之應用 89
4-2-1 高分子增稠劑含量之調控 89
4-2-2 印刷式電解質的黏度對元件效能之影響 90
4-2-2-1 電解質之電化學特性與元件阻抗分析 92
4-2-3 共混高分子增稠劑之影響 95
4-2-4 印刷式元件之穩定性測試 98
4-2-5 可雙面照光型元件之應用 99
第五章 結論與建議 102
5-1 結論 102
5-2 未來工作與建議 105
第六章 參考文獻 106
[1]H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, Dye Sensitized Zinc Oxide: Aqueous Electrolyte: Platinum Photocell, Nature, vol. 261, p. 402-403, 1976.
[2]B. O’Regan and M. Grätzel, A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Film, Nature, vol. 353, p. 737-740, 1991.
[3]M. Grätzel, Photoelectrochemical Cells, Nature, vol. 414, p. 338-344, 2001.
[4]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized Solar Cells, Chemical Reviews, vol. 110, p. 6595-6663, 2010.
[5]M. Grätzel, Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells, Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, p. 3-14, 2004.
[6]B. Wang and L. L. Kerr, Dye Sensitized Solar Cells on Paper Substrates, Solar Energy Materials and Solar Cells, vol. 95, p. 2531-2535, 2011.
[7]H. Weerasinghe, P. Sirimanne, G. Franks, G. Simon, and Y. Cheng, Low Temperature Chemically Sintered Nano-Crystalline TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells, Journal of Photochemistry and Photobiology A: Chemistry, vol. 213, p. 30-36, 2010.
[8]Y. Y. Kuo and C. H. Chien, Sinter-Free Ttransferring of Anodized TiO2 Nanotube-Array onto a Flexible and Transparent Sheet for Dye-Sensitized Solar Cells, Electrochimica Acta, vol. 91, p. 337-343, 2013.
[9]S. Ito, N. L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Péchy, M. K. Nazeeruddin, and M. Grätzel, High-Efficiency (7.2%) Flexible Dye-Sensitized Solar Cells with Ti-Metal Substrate for Nanocrystalline-TiO2 Photoanode, Chemical Communications, p. 4004-4006, 2006.
[10]C. H. Lee, W. H. Chiu, K. M. Lee, W. F. Hsieh, and J. M. Wu, Improved Performance of Flexible Dye-Sensitized Solar Cells by Introducing an Interfacial Layer on Ti Substrates, Journal of Materials Chemistry, vol. 21, p. 5114-5119, 2011.
[11]K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, and V. P. S. Perera, An Efficient Dye-Sensitized Photoelectrochemical Solar Cell Made from Oxides of Tin and Zinc, Chemical Communications, p. 15-16, 1999.
[12]K. Keis, E. Magnusson, S. E. Lindquist, and A. Hagfeldt, A 5% Efficient Photoelectrochemical Solar Cell Based on Nanostructured ZnO Electrodes, Solar Energy Materials and Solar Cells, vol. 73, p. 51-58, 2002.
[13]H. Rensmo, K. Keis, H. Lindström, S. Sö1dergren, A. Solbrand, A. Hagfeldt, and S. E. Lindquist, High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes, The Journal of Physical Chemistry B, vol. 101, p. 2598-2601, 1997.
[14]X. J. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis details and applications, Nano Letters, vol. 8, p. 3781-3786, 2008.
[15]O. K. Varghese, M. Paulose, and C. A. Grimes, Long Vertically Aligned Titania Nanotubes on Transparent Conducting Oxide for Highly Efficient Solar Cells, Nature Nanotechnology, vol. 4, p. 592-597, 2009.
[16]J. T. Jiu, S. Isoda, F. M. Wang, and M. Adachi, Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film, The Journal of Physical Chemistry B, vol. 110, p. 2087-2092, 2006.
[17]L. Schmidt‐Mende, U. Bach, R. Humphry‐Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, and M. Grätzel, Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells, Advanced Materials, vol. 17, p. 813-815, 2005.
[18]S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, Fabrication of Screen‐Printing Pastes from TiO2 Powders for Dye‐Sensitised Solar Cells, Progress in photovoltaics: research and applications, vol. 15, p. 603-612, 2007.
[19]T. Miyasaka and Y. Kijitori, Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers, Journal of the Electrochemical Society, vol. 151, p. A1767-A1773, 2004.
[20]W. W. Yu and X. G. Peng, Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers, Angewandte Chemie-International Edition, vol. 41, p. 2368-2371, 2002.
[21]A. J. Nozik, Quantum Dot Solar Cells, Physica E: Low-dimensional Systems and Nanostructures, vol. 14, p. 115-120, 2002.
[22]W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells, Journal of Applied Physics, vol. 32, p. 510-519, 1961.
[23]A. Hagfeldt and M. Grätzel, Molecular Photovoltaics, Accounts of Chemical Research, vol. 33, p. 269-277, 2000.
[24]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grätzel, Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline TiO2 Electrodes, Journal of the American Chemical Society, vol. 115, p. 6382-6390, 1993.
[25]M. K. Nazeeruddin, P. Pechy, and M. Grätzel, Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a Trithiocyanato-Ruthenium Complex, Chemical Communications, p. 1705-1706, 1997.
[26]M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells, Journal of the American Chemical Society, vol. 123, p. 1613-1624, 2001.
[27]M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers, Journal of the American Chemical Society, vol. 127, p. 16835-16847, 2005.
[28]P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, A stable Quasi-Solid-State Dye-Sensitized Solar Cell with an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte, Nature Materials, vol. 2, p. 402-407, 2003.
[29]Y. R. Liu, J. R. Jennings, Y. Huang, Q. Wang, S. M. Zakeeruddin, and M. Grätzel, Cobalt Redox Mediators for Ruthenium-Based Dye-Sensitized Solar Cells: A Combined Impedance Spectroscopy and Near-IR Transmittance Study, The Journal of Physical Chemistry C, vol. 115, p. 18847-18855, 2011.
[30]Q. J. Yu, Y. H. Wang, Z. H. Yi, N. N. Zu, J. Zhang, M. Zhang, and P. Wang, High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States, ACS Nano, vol. 4, p. 6032-6038, 2010.
[31]T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau, and M. Grätzel, Highly Efficient Mesoscopic Dye‐Sensitized Solar Cells Based on Donor–Acceptor‐Substituted Porphyrins, Angewandte Chemie, vol. 122, p. 6796-6799, 2010.
[32]A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency, Science, vol. 334, p. 629-634, Nov 4 2011.
[33]S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers, Nature Chemistry, vol. 6, p. 242-247, 2014.
[34]S. Ferrere, A. Zaban, and B. A. Gregg, Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives, The Journal of Physical Chemistry B, vol. 101, p. 4490-4493, 1997.
[35]N. J. Cherepy, G. P. Smestad, M. Grätzel, and J. Z. Zhang, Ultrafast Electron Injection:  Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode, The Journal of Physical Chemistry B, vol. 101, p. 9342-9351, 1997.
[36]K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, Highly Efficient Photon-to-Electron Conversion of Mercurochrome-sensitized Nanoporous ZnO Solar Cells, Chemistry Letters, vol. 29, p. 316-317, 2000.
[37]A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. an Organized Assembly Approach for Enhancing the Efficiency of Photosensitization, The Journal of Physical Chemistry B, vol. 103, p. 4693-4700, 1999.
[38]K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y. Abe, H. Sugihara, and H. Arakawa, Photosensitization of a Porous TiO2 Electrode with Merocyanine Dyes Containing a Carboxyl Group and a Long Alkyl Chain, Chemical Communications, p. 1173-1174, 2000.
[39]K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, A Coumarin-Derivative Dye Sensitized Nanocrystalline TiO2 Solar Cell Having a High Solar-Energy Conversion Efficiency Up to 5.6%, Chemical Communications, p. 569-570, 2001.
[40]T. Horiuchi, H. Miura, and S. Uchida, Highly-Efficient Metal-Free Organic Dyes for Dye-Sensitized Solar Cells, Chemical Communications, p. 3036-3037, 2003.
[41]T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes, Journal of the American Chemical Society, vol. 126, p. 12218-12219, 2004.
[42]S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, and M. Grätzel, High-Conversion-Efficiency Organic Dye-Sensitized Solar Cells with a Novel Indoline Dye, Chemical Communications, p. 5194-5196, 2008.
[43]G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, and P. Wang, High Efficiency and Stable Dye-Sensitized Solar Cells with an Organic Chromophore Featuring a Binary π-Conjugated Spacer, Chemical Communications, p. 2198-2200, 2009.
[44]W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, and P. Wang, Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks, Chemistry of Materials, vol. 22, p. 1915-1925, 2010.
[45]W. Xiang, W. Huang, U. Bach, and L. Spiccia, Stable High Efficiency Dye-Sensitized Solar Cells Based on a Cobalt Polymer Gel Electrolyte, Chemical Communications, vol. 49, p. 8997-8999, 2013.
[46]K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-Anchor and Carboxy-Anchor Dyes, Chemical Communications, vol. 51, p. 15894-15897, 2015.
[47]G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, A Channel Flow Cell System Specifically Designed to Test the Efficiency of Redox Shuttles in Dye Sensitized Solar Cells, Solar Energy Materials and Solar Cells, vol. 70, p. 85-101, 2001.
[48]S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1):  The Case of Solar Cells Using the I-/I3- Redox Couple, The Journal of Physical Chemistry B, vol. 109, p. 3480-3487, 2005.
[49]T. W. Hamann, The End of Iodide? Cobalt Complex Redox Shuttles in DSSCs, Dalton Transactions, vol. 41, p. 3111-3115, 2012.
[50]K. Omata, S. Kuwahara, K. Katayama, S. Qing, T. Toyoda, K. M. Lee, and C. G. Wu, The Cause for the Low Efficiency of Dye Sensitized Solar Cells with a Combination of Ruthenium Dyes and Cobalt Redox, Physical Chemistry Chemical Physics: PCCP, vol. 17, p. 10170-5, 2015.
[51]S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, and A. Hagfeldt, Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells, J. AM. CHEM. SOC., vol. 132, no. 46, p. 16714-16724, 2010.
[52]J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J. E. Moser, C. Yi, M. K. Nazeeruddin, and M. Grätzel, A Cobalt Complex Redox Shuttle for Dye-Sensitized Solar Cells with High Open-Circuit Poentials, Nature Communications, vol. 3, p. 631, 2012.
[53]Y. Hao, Y. Saygili, J. Cong, A. Eriksson, W. X. Yang, J. B. Zhang, E. Polanski, K. Nonomura, S. M. Zakeeruddin, M. Grätzel, A. Hagfeldt, and G. Boschloo, Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization, ACS Appl. Mater. Interfaces, vol. 8, P. 32797-32804, 2016.
[54]Y. L. Lee, C. L. Chen, L. W. Chong, C. H. Chen, Y. F. Liu, and C. F. Chi, A Platinum Counter Electrode with High Electrochemical Activity and High Transparency for Dye-Sensitized Solar Cells, Electrochemistry Communications, vol. 12, p. 1662-1665, 2010.
[55]L. L. Li, C. W. Chang, H. H. Wu, J. W. Shiu, P. T. Wu, and E. W. G. Diau, Morphological Control of Platinum Nanostructures for Highly Efficient Dye-Sensitized Solar Cells, Journal of Materials Chemistry, vol. 22, p. 6267, 2012.
[56]E. Olsen, G. Hagen, and S. E. Lindquist, Dissolution of Platinum in Methoxy Propionitrile Containing LiI/I2, Solar Energy Materials and Solar Cells, vol. 63, p. 267-273, 2000.
[57]T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzel, Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes, Journal of The Electrochemical Society, vol. 153, p. A2255, 2006.
[58]K. C. Huang, Y. C. Wang, R. X. Dong, W. C. Tsai, K. W. Tsai, C. C. Wang, Y. H. Chen, R. Vittal, J. J. Lin, and K. C. Ho, A High Performance Dye-Sensitized Solar Cell with a Novel Nanocomposite Film of PtNP/MWCNT on the Counter Electrode, Journal of Materials Chemistry, vol. 20, p. 4067, 2010.
[59]L. Kavan, J. H. Yum, and M. Grätzel, Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets, Acs Nano, vol. 5, p. 165-172, 2010.
[60]J. M. Pringle, V. Armel, and D. R. MacFarlane, Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells, Chem. Commun., vol. 46, p. 5367-5369, 2010.
[61]I. Mathews, P. J. King, F. Stafford, and R. Frizzell, Performance of III-V Solar Cells as Indoor Light Energy Harvesters, IEEE Journal of Photovoltaics, vol. 6, p. 230-235, 2016.
[62]P. C. Yang, I. M. Chan, C. H. Lin, and Y. L. Chang, Thin Film Solar Cells for Indoor Use, in IEEE 37th Photovoltaic Specialists Conference (PVSC), p. 696-698, 2011.
[63]F. D. Rossi, T. Pontecorvo, and T. M. Brown, Characterization of Photovoltaic Devices for Indoor Light Harvesting and Customization of Flexible Dye Solar Cells to Deliver Superior Efficiency under Artificial Lighting, Applied Energy, vol. 156, p. 413-422, 2015.
[64]N. Sridhar and D. Freeman, A Study of Dye Sensitized Solar Cells under Indoor and Low Level Outdoor Lighting: Comparison to Organic and Inorganic Thin Film Solar Cells and Methods to Address Maximum Power Point Tracking, in 26th European Photovoltaic Solar Energy Conference and Exhibition, p. 232-236, 2011.
[65]Y. S. Tingare, N. S. Vinh, H. H. Chou, Y. C. Liu, Y. S. Long, T. C. Wu, T. C. Wei, and C. Y. Yeh, New Acetylene‐Bridged 9,10‐Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dye‐Sensitized Solar Cells, Advanced Energy Materials, vol. 7, p. 1700032, 2017.
[66]M. C. Tsai, C. L. Wang, C. W. Chang, C. W. Hsu, Y. H. Hsiao, C. L. Liu, C. C. Wang, S. Y. Lina, and C. Y. Lin, A Large, Ultra-Black, Efficient and Cost-Effective Dye-Sensitized Solar Module Approaching 12% Overall Efficiency under 1000 Lux Indoor Light, Journal of Materials Chemistry A, vol. 6, p. 1995-2003, 2018.
[67]M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel, and A. Hagfeldt, Dye-Sensitized Solar Cells for Efficient Power Generation under Ambient Lighting, Nature Photon, vol. 11, p. 372-378, 2017.
[68]Y. Cao, Y. Liu, S. M. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics, Joule, vol. 2, p. 1-10, 2018.
[69]F. Cao, G. Oskam, and P. C. Searson, A solid state, dye sensitized photoelectrochemical cell, The Journal of Physical Chemistry, vol. 99, no. 47, p. 17071-17073, 1995.
[70]P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Grätzel, High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte, Chem. Commun., no. 24, p. 2972-2973, 2002.
[71]M. B. Achari, V. Elumalai, N. Vlachopoulos, M. Safdari, J. J. Gao, J. M. Gardner, and L. Kloo, A Quasi-Liquid Polymer-Based Cobalt Redox Mediator Electrolyte for Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys., vol. 15, p. 17419-17425, 2013.
[72]D. K. Lee, K. S. Ahn, S. Thogiti, and J. H. Kim, Mass Transport Effect on the Photovoltaic Performance of Ruthenium-Based Quasi-Solid Dye Sensitized Solar Cells Using Cobalt Based Redox Couples, Dyes and Pigments, vol. 117, p. 83-91, 2015.
[73]C. Wang, L. Wang, Y. Shi, H. Zhang, and T. Ma, Printable Electrolytes for Highly Efficient Quasi-Solid-State Dye-Sensitized Solar Cells, Electrochimica Acta, vol. 91, p. 302-306, 2013.
[74]S. J. Seo, H. J. Cha, Y. S. Kang, and M. S. Kang, Printable Ternary Component Polymer-Gel Electrolytes for Long-Term Stable Dye-Sensitized Solar Cells, Electrochimica Acta, vol. 145, p. 217-223, 2014.
[75]T. C. Wei, H. H. Chen, Y. H. Chang, and S. P. Feng, Hydrophobic Electrolyte Pastes for Highly Durable Dye-Sensitized Solar Cells, Journal of The Electrochemical Society, vol. 161, no. 4, p. H214-H219, 2014.
[76]S. Venkatesan, S. C. Su, W. N. Hung, I. P. Liu, H. Teng, and Y. L. Lee, Printable Electrolytes Based on Polyacrylonitrile and Gamma-Butyrolactone for Dye-Sensitized Solar Cell Application, Journal of Power Sources, vol. 298, p. 385-390, 2015.
[77]I. P. Liu, W. N. Hung, H. Teng, S. Venkatesan, J. C. Lin, and Y. L. Lee, High-Performance Printable Electrolytes for Dye-Sensitized Solar Cells, Journal of Materials Chemistry A, vol. 5, no. 19, p. 9190-9197, 2017.
[78]S. Venkatesan, I. P. Liu, J. C. Lin, M. H. Tsai, and Y. L. Lee, Highly Efficient Quasi-Solid-State Dye-Sensitized Solar Cells Using Polyethylene Oxide (PEO) and Poly(methyl methacrylate) (PMMA)-Based Printable Electrolytes, Journal of Materials Chemistry A, vol. 6, no. 21, p. 10085-10094, 2018.
[79]G. R. Peng, X. J. Zhao, Z. J. Zhan, S. Ci, Q. Wang, Y. j. Liang and M. Zhao, New Crystal Structure and Discharge Efficiency of Poly(vinylidene fluoride-hexafluoropropylene)/Poly(methyl methacrylate) Blend Films, RSC Adv., vol. 4, p. 16849-16854, 2014.
[80]S. Ito, S. M. Zakeeruddin, P. Comte, P. Liska, D. Kuang, and M. Grätzel, Bifacial Dye-Sensitized Solar Cells Based on an Ionic Liquid Electrolyte, Nature Photonics, vol. 2, p. 693-698, 2008.
[81]Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo, and X. Z. Zhao, In Situ Prepared Transparent Polyaniline Electrode and Its Application in Bifacial Dye-Sensitized Solar Cells, ACS Nano, vol. 5, no. 5, p. 3795-3799, 2011.
[82]D.K. Hwang, J. E. Nam, H. J. Jo, and S. J. Sung, Quasi-Solid State Electrolyte for Semi-Transparent Bifacial Dye-Sensitized Solar Cell with Over 10% Power Conversion Efficiency, Journal of Power Sources, vol. 361, p. 87-95, 2017.
[83]J. S. Kang, J. Kim, J. Y. Kim, M. J. Lee, J. H. Kang, Y. J. Son, J. O. Jeong, S. H. Park, M. J. Ko, and Y. E. Sung, Highly Efficient Bifacial Dye-Sensitized Solar Cells Employing Polymeric Counter Electrodes, ACS Appl. Mater. Interfaces, vol. 10, p. 8611-8620, 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
1. High Performance Quasi-solid-state Dye-sensitized Solar Cells
2. Gel-State Dye-Sensitized Solar Cells by Using Organic Dye Cocktails
3. Nano-composite Gel Electrolytes for Dye-sensitized Solar Cells
4. Development of Sandwich-Structured TiO2 Thin-Film Photoelectrodes for Dye-Sensitized Solar Cells
5. Preparations of dye-sensitized solar cells using novel gel- and solid- electrolytes based on poly(acrylonitrile-co-vinyl acetate) copolymer
6. Impact of liquid crystals and bis-benzimidazole derivative used as liquid and gel electrolyte additives on the performance and long-term stability of dye-sensitized solar cells
7. I. Preparation of Iodine-Free Nanocomposite Gel Electrolytes for Dye-Sensitized Solar Cells II. Nanosheet-based Zinc Oxide Microspheres for Dye-Sensitized Solar Cells
8. Fabrication and Application of High Performance Modules for Dye-sensitized Solar Cells
9. Zinc Oxide Nanocrystallite Aggregates as Photoelectrode and Gel Electrolyte Materials for Dye-Sensitized Solar Cells
10. Development of Gelled-type Electrolyte for Dye-sensitized Solar Cell
11. Gel State and Quasi-Solid State Electrolytes of PolydimethylbenzimidazoleApplied in Dye Sensitized Solar Cells
12. Performance Enhancement of Gel-State Dye-Sensitized Solar Cells by Composition Regulations of Gel-State Electrolytes
13. Organic Dye-Cocktails for Gel-State Dye-Sensitized Solar Cells
14. Application of Polymerizable Ionic Liquid and Its Carbon Nano- tube Composites on Electrolytes for Dye-sensitized Solar Cells
 
None related journal articles
 
system icon system icon