|
[1]P. C. Hallenbeck and J. R. Benemann, Biological hydrogen production; fundamentals and limiting processes, International Journal of Hydrogen Energy, vol. 27, no. 11-12, pp. 1185-1193, 2002. [2]S. N. Naik, V. V. Goud, P. K. Rout, and A. K. Dalai, Production of first and second generation biofuels: a comprehensive review, Renewable and sustainable energy reviews, vol. 14, no. 2, pp. 578-597, 2010. [3]C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresource technology, vol. 102, no. 1, pp. 71-81, 2011. [4]A. G. Silva et al., Life cycle assessment of biomass production in microalgae compact photobioreactors, Gcb Bioenergy, vol. 7, no. 2, pp. 184-194, 2015. [5]Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., ... & Chang, J. S. (2017). Microalgae biorefinery: high value products perspectives. Bioresource technology, 229, 53-62. [6]L. Brennan and P. Owende, Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products, Renewable and sustainable energy reviews, vol. 14, no. 2, pp. 557-577, 2010. [7]L. B. Brentner, M. J. Eckelman, and J. B. Zimmerman, Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel, Environmental science & technology, vol. 45, no. 16, pp. 7060-7067, 2011. [8]M. K. Weschler, W. J. Barr, W. F. Harper, and A. E. Landis, Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock, Bioresource technology, vol. 153, pp. 108-115, 2014. [9]J. R. McMillan, I. A. Watson, M. Ali, and W. Jaafar, Evaluation and comparison of algal cell disruption methods: microwave, waterbath, blender, ultrasonic and laser treatment, Applied energy, vol. 103, pp. 128-134, 2013. [10]R. Halim, B. Gladman, M. K. Danquah, and P. A. Webley, Oil extraction from microalgae for biodiesel production, Bioresource technology, vol. 102, no. 1, pp. 178-185, 2011. [11]A. Sathish and R. C. Sims, Biodiesel from mixed culture algae via a wet lipid extraction procedure, Bioresource technology, vol. 118, pp. 643-647, 2012. [12]S. H. Ho, S. W. Huang, C. Y. Chen, T. Hasunuma, A. Kondo, and J. S. Chang, Bioethanol production using carbohydrate-rich microalgae biomass as feedstock, Bioresour Technol, vol. 135, pp. 191-8, May 2013. [13]Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., González, J. M. D., Converti, A., & de Souza Oliveira, R. P. (2013). Lactic acid properties, applications and production: a review. Trends in food science & technology, 30(1), 70-83. [14]P. Dürre, Biobutanol: an attractive biofuel, Biotechnology journal, vol. 2, no. 12, pp. 1525-1534, 2007. [15]A. Srivastava and R. Prasad, Triglycerides-based diesel fuels, Renewable and sustainable energy reviews, vol. 4, no. 2, pp. 111-133, 2000. [16]B. Freedman, E. Pryde, and T. Mounts, Variables affecting the yields of fatty esters from transesterified vegetable oils, Journal of the American Oil Chemists Society, vol. 61, no. 10, pp. 1638-1643, 1984. [17]M. Nye et al., Conversion of used frying oil to diesel fuel by transesterification: preliminary tests, Journal of the American Oil Chemists’ Society, vol. 60, no. 8, pp. 1598-1601, 1983. [18]謝志誠, 生質柴油之技術與文獻探討, ed: 分享與跨越門檻與障礙, 2007. [19]A.-M. Cormos and C.-C. Cormos, Techno-economic and environmental performances of glycerol reforming for hydrogen and power production with low carbon dioxide emissions, International Journal of Hydrogen Energy, vol. 42, no. 12, pp. 7798-7810, 2017. [20]R. Turton, R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz, Analysis, synthesis and design of chemical processes. Pearson Education, 2008. [21]M. Marshall, Swift equipment cost index, ed, 2003. [22]D. Lozowski, G. Ondrey, S. Jenkins, and M. Bailey, Chemical engineering plant cost index (CEPCI), Chem Eng, vol. 119, p. 84, 2012. [23]Vardon, D. R., Sharma, B. K., Scott, J., Yu, G., Wang, Z., Schideman, L., ... & Strathmann, T. J. (2011). Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresource technology, 102(17), 8295-8303. [24]M. Finkbeiner, A. Inaba, R. Tan, K. Christiansen, and H.-J. Klüppel, The new international standards for life cycle assessment: ISO 14040 and ISO 14044, The international journal of life cycle assessment, vol. 11, no. 2, pp. 80-85, 2006. [25] Su, C. Y., Yu, C. C., Chien, I. L., & Ward, J. D. (2015). Control of highly interconnected reactive distillation processes: Purification of raw lactic acid by esterification and hydrolysis. Industrial & Engineering Chemistry Research, 54(27), 6932-6940. [26] Hanson, T. P., & Tsao, G. T. (1972). Kinetic studies of the lactic acid fermentation in batch and continuous cultures. Biotechnology and Bioengineering, 14(2), 233-252. [27] Datta, R., & Henry, M. (2006). Lactic acid: recent advances in products, processes and technologies—a review. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(7), 1119-1129. [28] Kumar, R., Nanavati, H., Noronha, S. B., & Mahajani, S. M. (2006). A continuous process for the recovery of lactic acid by reactive distillation. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(11), 1767-1777. [29] Asthana, N. S., Kolah, A. K., Vu, D. T., Lira, C. T., & Miller, D. J. (2006). A kinetic model for the esterification of lactic acid and its oligomers. Industrial & engineering chemistry research, 45(15), 5251-5257. [30] Bennion, E. P., Ginosar, D. M., Moses, J., Agblevor, F., & Quinn, J. C. (2015). Lifecycle assessment of microalgae to biofuel: comparison of thermochemical processing pathways. Applied energy, 154, 1062-1071. [31] 林耿賢,微藻生產生質燃料程序之經濟評估與生命週期分析,2017. [32] Yuan, J., Kendall, A., & Zhang, Y. (2015). Mass balance and life cycle assessment of biodiesel from microalgae incorporated with nutrient recycling options and technology uncertainties. Gcb Bioenergy, 7(6), 1245-1259. [33] 雷壹鈞,以微藻生產生質燃料製程之生命週期分析與經濟評估模型的建立與解析,2018. [34] Benemann, J. R., & Oswald, W. J. (1996). Systems and economic analysis of microalgae ponds for conversion of CO {sub 2} to biomass. Final report (No. DOE/PC/93204-T5). California Univ., Berkeley, CA (United States). Dept. of Civil Engineering. [35]J. M. Douglas, Conceptual design of chemical processes. McGraw-Hill New York, 1988. [36]W. Alkhayat and A. Gerrard, Estimating manning levels for process plants, AACE Transactions, I, 1984. [37]T. M. Mata, A. A. Martins, and N. S. Caetano, Microalgae for biodiesel production and other applications: A review, Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 217-232, 2010. [38]C.-Y. Chen et al., Microalgae-based carbohydrates for biofuel production, Biochemical Engineering Journal, vol. 78, pp. 1-10, 2013. [39]Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology advances, 25(2), 207-210. [40]Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306.
|