跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 21:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡宗翰
研究生(外文):Tsung-HanTsai
論文名稱:微藻精煉製程之經濟分析,生命週期評估與優化
論文名稱(外文):Economic Analysis, Life Cycle Assessment, and Optimization of Microalgal Biorefineries
指導教授:吳煒吳煒引用關係
指導教授(外文):Wei Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:126
中文關鍵詞:微藻乳酸經濟分析生命週期評估優化
外文關鍵詞:microalgaelactic acideconomic analysislife cycle assessmentoptimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於微藻富含脂質、醣類、以及蛋白質,其不管生產高質化產品亦或是生質燃料都非常具有潛力,故本論文探討各產品製程的經濟分析及生命週期分析,最後結合各產品的製程對其配比做優化。
本論文的第一部份為微藻精煉製程的建立,以微藻作為進料,經培養及前處理生產醣類或藻油,再經過生產各項產品的製程生產出乳酸、生質柴油、生物油、丙酮、丁醇及乙醇等化學品,最後將各產品製程結合整理出四個微藻精煉製程方法。
本論文的第二部份為對微藻精煉製程四個方法經濟分析及生命週期評估,利用Benemann與Oswald(1966年)的計算方法對微藻培養及前處理做經濟分析,乳酸發酵製程則採用J.M. Douglas(1988年)出版的化工程序設計書目中的係數估計法來做經濟分析。
生命週期評估部份則利用SiamPro®軟體對乳酸製程進行計算。結果顯示以微藻所生產之醣類來進行乳酸發酵獲得乳酸非常具有發展潛力,其總製程之環境衝擊低於傳統乳酸發酵製程,約下降26.4%。微藻精煉製程四個方法的經濟分析及生命週期評估為收集大量文獻數據結合乳酸發酵製程來進行分析,結果顯示藻類的含醣量及含油量越高,經濟利益和環境衝擊都會隨之提高。
本論文的第三部份為對微藻精煉製程的結合與優化,由於上述微藻精煉製程的四個方法都有其優缺點,無法兼顧經濟利益和環境衝擊,故結合各項產品製程利用GAMS®軟體做配比上的優化。此部份利用三種不同含量的微藻作為進料來探討其結果,分別為平均醣、油含量之微藻、最高含醣量之微藻以及最高含油量之微藻,經過製程配比上的優化後,結合方法一至方法四的微藻精煉製程在維持一定的經濟利益下,有效的降低環境衝擊。
本論文的研究結果可以了解到,以微藻所生產之醣類來進行乳酸發酵獲得乳酸不管在經濟利益上以及環境保護上都是非常具有潛力的,而在經過GAMS®軟體做優化後,微藻精煉製程不僅極具經濟利益,也能夠兼顧環境保護。
Because microalgae is rich in lipids, sugars, and proteins, it has great potential for producing high-quality products or biofuels. Therefore, this research discusses economic analysis and life cycle assessment of each product process. The first part of this thesis is the establishment of the microalgal biorefineries, including cultivation, pretreatment and each product process. The second part of this thesis is the economic analysis and life cycle assessment of the four methods of the microalgal biorefineries. In the life cycle assessment section, SiamPro® software is used to analysis the lactic acid process. The results show that using carbohydrate produced by microalgae in the lactic acid fermentation has great potential. The environmental impact of the total process is lower than that of the traditional lactic acid fermentation process, which is about 26.4%. The third part of this thesis is the combination and optimization of the microalgal biorefineries. GAMS® software is used to optimize the process for its ratio. The results show that the optimization can effectively reduce environmental impact. Due to the above result mentioned, the microalgae carbohydrates, as of the raw material of the lactic acid, were showed potential in the economy and environment. Also, after optimization by GAMS® software, the microalgal biorefineries not only have great economic benefits, but also balance environmental protection.
摘要 I
Extended Abstract III
誌謝 XI
目錄 XIII
表目錄 XVIII
圖目錄 XIX
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目標 2
1.3 研究架構 2
第2章 文獻回顧 5
2.1 微藻養殖以及前處理過程 5
2.1.1 簡介 5
2.1.2 培養 6
2.1.3 收穫 6
2.1.4 除水 7
2.1.5 破藻 7
2.1.6 萃取 8
2.1.7 水解 8
2.2 乳酸 10
2.2.1 簡介 10
2.2.2 乳酸發酵 11
2.3 生質丁醇 14
2.3.1 簡介 14
2.3.2 ABE發酵 15
2.4 生質柴油 17
2.4.1 簡介 17
2.4.2 轉酯化反應 17
2.4.3 製程設計 18
2.5 水熱液化法 19
2.6 經濟分析 19
2.6.1 設備成本 20
2.6.2 操作成本 21
2.6.3 折舊 22
2.7 生命週期評估 26
2.7.1 生命週期評估簡介 26
2.7.2 目標範疇界定 (Goal and Scope Definition) 26
2.7.3 盤查分析 (Life Cycle Inventory Analysis) 27
2.7.4 衝擊評估 (Life Cycle Impact Assessment) 28
2.7.5 闡釋 (Interpretation) 28
第3章 微藻精煉製程建立 29
3.1 方法一 29
3.1.1 預濃縮 31
3.1.2 脂化 31
3.1.3 水解 32
3.1.4 醇類回收 32
3.2 方法二 33
3.3 方法三 34
3.4 方法四 35
第4章 微藻精煉製程經濟分析及生命週期評估 36
4.1 乳酸製程經濟分析 36
4.1.1 微藻培養及前處理製程之總設備成本 37
4.1.2 微藻培養及前處理製程之總操作成本 39
4.1.3 乳酸發酵製程總設備成本 40
4.1.4 乳酸發酵製程總操作成本 42
4.2 乳酸製程生命週期評估 45
4.2.1 目標範疇界定 45
4.2.2 盤查分析 46
4.2.3 衝擊評估 48
4.2.6 闡釋 52
4.3 方法一經濟分析與生命週期評估 53
4.3.1 經濟分析 53
4.3.2 生命週期評估 57
4.4 方法二經濟分析與生命週期評估 61
4.4.1 經濟分析 61
4.4.2 生命週期評估 65
4.5 方法三經濟分析與生命週期評估 69
4.5.1 經濟分析 69
4.5.2 生命週期評估 73
4.6 方法四經濟分析與生命週期評估 77
4.6.1 經濟分析 77
4.6.2 生命週期評估 81
4.7 發酵製程比較 85
4.8 結論 87
第5章 微藻精煉製程優化 89
5.1 平均醣、油含量之微藻 91
5.1.1 經濟利益最大化 91
5.1.2 環境衝擊最小化 93
5.1.3 平衡經濟利益及環境衝擊 95
5.2 最高含醣量之微藻 99
5.2.1 經濟利益最大化 99
5.2.2 環境衝擊最小化 101
5.2.3 平衡經濟利益及環境衝擊 103
5.3 最高含油量之微藻 105
5.3.1 經濟利益最大化 105
5.3.2 環境衝擊最小化 107
5.3.3 平衡經濟利益及環境衝擊 109
第6章 結論與建議 113
第7章 參考文獻 115
附錄(A):優化微藻精煉製程最佳配比方法計算過程 120
[1]P. C. Hallenbeck and J. R. Benemann, Biological hydrogen production; fundamentals and limiting processes, International Journal of Hydrogen Energy, vol. 27, no. 11-12, pp. 1185-1193, 2002.
[2]S. N. Naik, V. V. Goud, P. K. Rout, and A. K. Dalai, Production of first and second generation biofuels: a comprehensive review, Renewable and sustainable energy reviews, vol. 14, no. 2, pp. 578-597, 2010.
[3]C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresource technology, vol. 102, no. 1, pp. 71-81, 2011.
[4]A. G. Silva et al., Life cycle assessment of biomass production in microalgae compact photobioreactors, Gcb Bioenergy, vol. 7, no. 2, pp. 184-194, 2015.
[5]Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., ... & Chang, J. S. (2017). Microalgae biorefinery: high value products perspectives. Bioresource technology, 229, 53-62.
[6]L. Brennan and P. Owende, Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products, Renewable and sustainable energy reviews, vol. 14, no. 2, pp. 557-577, 2010.
[7]L. B. Brentner, M. J. Eckelman, and J. B. Zimmerman, Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel, Environmental science & technology, vol. 45, no. 16, pp. 7060-7067, 2011.
[8]M. K. Weschler, W. J. Barr, W. F. Harper, and A. E. Landis, Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock, Bioresource technology, vol. 153, pp. 108-115, 2014.
[9]J. R. McMillan, I. A. Watson, M. Ali, and W. Jaafar, Evaluation and comparison of algal cell disruption methods: microwave, waterbath, blender, ultrasonic and laser treatment, Applied energy, vol. 103, pp. 128-134, 2013.
[10]R. Halim, B. Gladman, M. K. Danquah, and P. A. Webley, Oil extraction from microalgae for biodiesel production, Bioresource technology, vol. 102, no. 1, pp. 178-185, 2011.
[11]A. Sathish and R. C. Sims, Biodiesel from mixed culture algae via a wet lipid extraction procedure, Bioresource technology, vol. 118, pp. 643-647, 2012.
[12]S. H. Ho, S. W. Huang, C. Y. Chen, T. Hasunuma, A. Kondo, and J. S. Chang, Bioethanol production using carbohydrate-rich microalgae biomass as feedstock, Bioresour Technol, vol. 135, pp. 191-8, May 2013.
[13]Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., González, J. M. D., Converti, A., & de Souza Oliveira, R. P. (2013). Lactic acid properties, applications and production: a review. Trends in food science & technology, 30(1), 70-83.
[14]P. Dürre, Biobutanol: an attractive biofuel, Biotechnology journal, vol. 2, no. 12, pp. 1525-1534, 2007.
[15]A. Srivastava and R. Prasad, Triglycerides-based diesel fuels, Renewable and sustainable energy reviews, vol. 4, no. 2, pp. 111-133, 2000.
[16]B. Freedman, E. Pryde, and T. Mounts, Variables affecting the yields of fatty esters from transesterified vegetable oils, Journal of the American Oil Chemists Society, vol. 61, no. 10, pp. 1638-1643, 1984.
[17]M. Nye et al., Conversion of used frying oil to diesel fuel by transesterification: preliminary tests, Journal of the American Oil Chemists’ Society, vol. 60, no. 8, pp. 1598-1601, 1983.
[18]謝志誠, 生質柴油之技術與文獻探討, ed: 分享與跨越門檻與障礙, 2007.
[19]A.-M. Cormos and C.-C. Cormos, Techno-economic and environmental performances of glycerol reforming for hydrogen and power production with low carbon dioxide emissions, International Journal of Hydrogen Energy, vol. 42, no. 12, pp. 7798-7810, 2017.
[20]R. Turton, R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz, Analysis, synthesis and design of chemical processes. Pearson Education, 2008.
[21]M. Marshall, Swift equipment cost index, ed, 2003.
[22]D. Lozowski, G. Ondrey, S. Jenkins, and M. Bailey, Chemical engineering plant cost index (CEPCI), Chem Eng, vol. 119, p. 84, 2012.
[23]Vardon, D. R., Sharma, B. K., Scott, J., Yu, G., Wang, Z., Schideman, L., ... & Strathmann, T. J. (2011). Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresource technology, 102(17), 8295-8303.
[24]M. Finkbeiner, A. Inaba, R. Tan, K. Christiansen, and H.-J. Klüppel, The new international standards for life cycle assessment: ISO 14040 and ISO 14044, The international journal of life cycle assessment, vol. 11, no. 2, pp. 80-85, 2006.
[25] Su, C. Y., Yu, C. C., Chien, I. L., & Ward, J. D. (2015). Control of highly interconnected reactive distillation processes: Purification of raw lactic acid by esterification and hydrolysis. Industrial & Engineering Chemistry Research, 54(27), 6932-6940.
[26] Hanson, T. P., & Tsao, G. T. (1972). Kinetic studies of the lactic acid fermentation in batch and continuous cultures. Biotechnology and Bioengineering, 14(2), 233-252.
[27] Datta, R., & Henry, M. (2006). Lactic acid: recent advances in products, processes and technologies—a review. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(7), 1119-1129.
[28] Kumar, R., Nanavati, H., Noronha, S. B., & Mahajani, S. M. (2006). A continuous process for the recovery of lactic acid by reactive distillation. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(11), 1767-1777.
[29] Asthana, N. S., Kolah, A. K., Vu, D. T., Lira, C. T., & Miller, D. J. (2006). A kinetic model for the esterification of lactic acid and its oligomers. Industrial & engineering chemistry research, 45(15), 5251-5257.
[30] Bennion, E. P., Ginosar, D. M., Moses, J., Agblevor, F., & Quinn, J. C. (2015). Lifecycle assessment of microalgae to biofuel: comparison of thermochemical processing pathways. Applied energy, 154, 1062-1071.
[31] 林耿賢,微藻生產生質燃料程序之經濟評估與生命週期分析,2017.
[32] Yuan, J., Kendall, A., & Zhang, Y. (2015). Mass balance and life cycle assessment of biodiesel from microalgae incorporated with nutrient recycling options and technology uncertainties. Gcb Bioenergy, 7(6), 1245-1259.
[33] 雷壹鈞,以微藻生產生質燃料製程之生命週期分析與經濟評估模型的建立與解析,2018.
[34] Benemann, J. R., & Oswald, W. J. (1996). Systems and economic analysis of microalgae ponds for conversion of CO {sub 2} to biomass. Final report (No. DOE/PC/93204-T5). California Univ., Berkeley, CA (United States). Dept. of Civil Engineering.
[35]J. M. Douglas, Conceptual design of chemical processes. McGraw-Hill New York, 1988.
[36]W. Alkhayat and A. Gerrard, Estimating manning levels for process plants, AACE Transactions, I, 1984.
[37]T. M. Mata, A. A. Martins, and N. S. Caetano, Microalgae for biodiesel production and other applications: A review, Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 217-232, 2010.
[38]C.-Y. Chen et al., Microalgae-based carbohydrates for biofuel production, Biochemical Engineering Journal, vol. 78, pp. 1-10, 2013.
[39]Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology advances, 25(2), 207-210.
[40]Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊