跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 21:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾永澤
研究生(外文):Yong-ZeTzeng
論文名稱:以ZIF-8與CHU-212為硬模版製備含鋅HZSM-5觸媒與其於甲醇芳香化反應之研究
論文名稱(外文):Using Zn-based metal organic frameworks (ZIF-8 and CHU-212) as hard templates to synthesize Zn/HZSM-5 catalysts and their applications in methanol aromatization
指導教授:楊明長
指導教授(外文):Ming-Chang Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:89
中文關鍵詞:HZSM-5金屬有機骨架甲醇芳香族
外文關鍵詞:HZSM-5ZincMOFsMethanolAromatics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以含鋅的金屬有機骨架(CHU-212及ZIF-8)做為硬模板,並以蒸汽輔助結晶法(Steam-assisted crystallization, SAC)製備出Zn/HZSM-5,同時與傳統初濕含浸法製備的Zn/HZSM-5進行比較並探討於甲醇芳香化反應的差異。物化性鑑定顯示,所有含鋅觸媒的鋅皆良好地分散於HZSM-5的骨架中,而鋅物質可細分為ZnO及[Zn(OH)]+,其鋅物質組成的比例會受合成觸媒的方法與硬模板材料而有所差異,其中以ZIF-8為硬模板且使用蒸汽輔助結晶法製備的觸媒有最多的[Zn(OH)]+,而[Zn(OH)]+為具有脫氫的活性,因此於甲醇芳香化反應中有最好的觸媒反應性。一系列的觸媒物化性鑑定,例如: XRD、ICP、TEM、SEM、BET、TGA、NH3-TPD、IPA-TPD、Pyridine-IR、CO-IR、XPS、CO-TPSR及Methanol-TPSR等,將於本論文中詳細探討。
In this research, we used zinc-based MOFs (CHU-212 and ZIF-8) as hard templates and combined steam-assisted crystallization (SAC) to synthesize zinc-modified HZSM-5. These MOFs-derived catalysts were compared with conventional impregnation. Physicochemical characterization exhibited all zinc-modified catalysts had finely dispersed zinc species, including zinc oxide and [Zn(OH)]+ within HZSM-5; however, the relative ratio of zinc oxide and [Zn(OH)]+ varied depending on different synthesis strategies and hard templates. Using ZIF-8 as the hard template in combined with SAC strategy produced the highest concentration of [Zn(OH)]+ in all zinc-modified HZSM-5. The highest concentration of [Zn(OH)]+ of Zn/HZ-ZIF is related to its better performances in the aromatization of methanol due to the dehydrogenation activity of [Zn(OH)]+. All the tested catalysts were characterized by using various techniques, including XRD, ICP-AES, TEM, SEM, BET, TGA, NH3-TPD, IPA-TPD, Pyridine-IR, CO-IR, XPS, CO-TPSR and Methanol-TPSR.
摘要 I
英文延伸摘要 II
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XII
第一章、前言 1
第二章、文獻回顧 3
2.1金屬有機骨架(Metal-organic frameworks, MOFs) 3
2.2沸石觸媒的特性 9
2.3甲醇芳香化的反應機制 14
2.4沸石觸媒改質的研究 18
第三章、實驗 21
3.1 實驗藥品與設備 21
3.2儀器介紹和操作條件 25
3.2.1 X光繞射儀(X-ray diffraction, XRD) 25
3.2.2 X光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 26
3.2.3氮氣吸脫附(Nitrogen adsorption-desorption) 27
3.2.4高解析穿透式電子顯微鏡(High-resolution transmission electron microscopy, HR-TEM) 28
3.2.5高解析掃描式電子顯微鏡(High-resolution scanning electron microscopy, HR-SEM) 29
3.2.6感應耦合電漿原子放射光譜儀(Inductively coupled plasma atomic emission spectroscopy, ICP-AES) 30
3.2.7自動式化學吸脫附儀(AutoChem) 31
3.2.8傅里葉紅外光譜儀(Fourier-transform infrared spectroscopy, FTIR) 33
3.2.9熱重分析儀(Thermogravimetric analysis, TGA) 36
3.2.10氣相層析儀(Gas chromatography, GC) 36
3.3觸媒合成和命名 40
3.4甲醇芳香化反應和觸媒壽期測試 42
第四章、結果與討論 44
4.1觸媒結構和組成鑑定 44
4.1.1結晶性鑑定(XRD) 44
4.1.2觸媒組成鑑定(ICP-AES) 48
4.1.3觸媒高解析度穿透式電子顯微鏡圖像(HR-TEM) 48
4.1.4硬模板材料與觸媒表面形貌鑑定(HR-SEM) 50
4.1.5觸媒氮氣物理吸脱附結果(BET) 55
4.2觸媒酸性鑑定 58
4.2.1觸媒氨氣程溫脫附(NH3-TPD) 58
4.2.2觸媒異丙胺程溫脫附(IPA-TPD) 58
4.2.3吡啶化學吸附紅外光譜(Py-IR) 59
4.3觸媒中鋅物質的鑑定 65
4.3.1一氧化碳化學吸附紅外光譜(CO-IR) 65
4.3.2 X光電子能譜儀(XPS) 66
4.3.3一氧化碳程溫表面反應(CO-TPSR) 68
4.4觸媒於甲醇芳香化反應 70
4.4.1反應性探討 70
4.4.2觸媒壽期和積碳 74
第五章、結論 77
第六章、參考文獻 78
附錄 88
[1] M.A. Fahim, T.A. Alsahhaf, A. Elkilani (Eds.) Fundamentals of Petroleum Refining, Elsevier Science, 2010.
[2] G.A. Olah, Beyond Oil and Gas: The Methanol Economy, Angewandte Chemie International Edition, 44 (2005) 2636-2639.
[3] V.R. Choudhary, C. Sivadinarayana, P. Devadas, S.D. Sansare, P. Magnoux, M. Guisnet, Characterization of coke on H-gallosilicate (MFI) propane aromatization catalyst.: Influence of coking conditions on nature and removal of coke, Microporous and Mesoporous Materials, 21 (1998) 91-101.
[4] R. Obert, B.C. Dave, Enzymatic Conversion of Carbon Dioxide to Methanol:  Enhanced Methanol Production in Silica Sol−Gel Matrices, Journal of the American Chemical Society, 121 (1999) 12192-12193.
[5] C. Yao, W. Pan, A. Yao, Methanol fumigation in compression-ignition engines: A critical review of recent academic and technological developments, Fuel, 209 (2017) 713-732.
[6] M. Khanmohammadi, S. Amani, A.B. Garmarudi, A. Niaei, Methanol-to-propylene process: Perspective of the most important catalysts and their behavior, Chinese Journal of Catalysis, 37 (2016) 325-339.
[7] K. Wang, M. Dong, J. Li, P. Liu, K. Zhang, J. Wang, W. Fan, Facile fabrication of ZSM-5 zeolite hollow spheres for catalytic conversion of methanol to aromatics, Catalysis Science & Technology, 7 (2017) 560-564.
[8] X. Niu, J. Gao, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin, J. Wang, Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics, Microporous and Mesoporous Materials, 197 (2014) 252-261.
[9] G. Férey, Hybrid porous solids: past, present, future, Chemical Society Reviews, 37 (2008) 191-214.
[10] D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O’Keeffe, O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal–organic frameworks, Chemical Society Reviews, 38 (2009) 1257-1283.
[11] T.R. Cook, Y.-R. Zheng, P.J. Stang, Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials, Chemical Reviews, 113 (2013) 734-777.
[12] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341 (2013).
[13] A. Dhakshinamoorthy, H. Garcia, Catalysis by metal nanoparticles embedded on metal–organic frameworks, Chemical Society Reviews, 41 (2012) 5262-5284.
[14] H. Deng, S. Grunder, K.E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A.C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O'Keeffe, O. Terasaki, J.F. Stoddart, O.M. Yaghi, Large-pore apertures in a series of metal-organic frameworks, Science, 336 (2012) 1018-1023.
[15] A. Aijaz, Q. Xu, Catalysis with Metal Nanoparticles Immobilized within the Pores of Metal–Organic Frameworks, The Journal of Physical Chemistry Letters, 5 (2014) 1400-1411.
[16] S. Chaemchuen, N.A. Kabir, K. Zhou, F. Verpoort, Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy, Chemical Society Reviews, 42 (2013) 9304-9332.
[17] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences, 103 (2006) 10186-10191.
[18] S.B. Novaković, G.A. Bogdanović, C. Heering, G. Makhloufi, D. Francuski, C. Janiak, Charge-Density Distribution and Electrostatic Flexibility of ZIF-8 Based on High-Resolution X-ray Diffraction Data and Periodic Calculations, Inorganic Chemistry, 54 (2015) 2660-2670.
[19] Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system, Chemical Communications, 47 (2011) 2071-2073.
[20] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. Keeffe, O.M. Yaghi, High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture, Science, 319 (2008) 939-943.
[21] A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nature Reviews Materials, 1 (2016).
[22] K.O. Kongshaug, H. Fjellvåg, Synthesis and characterization of CPO-1; three-dimensional coordination polymers with 2,6-naphthalenedicarboxylate (ndc) ligands [M(ndc)(H2O)], M=Mn(II), Zn(II) or Cd(II), Solid State Sciences, 4 (2002) 443-447.
[23] D.W. Min, S.S. Yun, C.U. Lee, C.Y. Lee, M.G. Seo, Y.J. Hwang, W.S. Han, S. Lee, A Zinc (II)-Carboxylate Coordination Polymer Constructed from Zinc Nitrate and 2, 6-Naphthalenedicarboxylate, Bulletin of the Korean Chemical Society, 22 (2001) 531-533.
[24] K. Shen, X. Chen, J. Chen, Y. Li, Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis, ACS Catalysis, 6 (2016) 5887-5903.
[25] C.D. Malonzo, S.M. Shaker, L. Ren, S.D. Prinslow, A.E. Platero-Prats, L.C. Gallington, J. Borycz, A.B. Thompson, T.C. Wang, O.K. Farha, J.T. Hupp, C.C. Lu, K.W. Chapman, J.C. Myers, R.L. Penn, L. Gagliardi, M. Tsapatsis, A. Stein, Thermal Stabilization of Metal–Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting, Journal of the American Chemical Society, 138 (2016) 2739-2748.
[26] K.E. deKrafft, C. Wang, W. Lin, Metal-Organic Framework Templated Synthesis of Fe2O3/TiO2 Nanocomposite for Hydrogen Production, Advanced Materials, 24 (2012) 2014-2018.
[27] K. Nakatsuka, T. Yoshii, Y. Kuwahara, K. Mori, H. Yamashita, Controlled Pyrolysis of Ni-MOF-74 as a Promising Precursor for the Creation of Highly Active Ni Nanocatalysts in Size-Selective Hydrogenation, Chemistry – A European Journal, 24 (2018) 898-905.
[28] H. Wang, X. Li, X. Lan, T. Wang, Supported Ultrafine NiCo Bimetallic Alloy Nanoparticles Derived from Bimetal–Organic Frameworks: A Highly Active Catalyst for Furfuryl Alcohol Hydrogenation, ACS Catalysis, 8 (2018) 2121-2128.
[29] D. Pan, S. Xu, Y. Miao, N. Xu, H. Wang, X. Song, L. Gao, G. Xiao, A highly active and stable Zn@C/HZSM-5 catalyst using Zn@C derived from ZIF-8 as a template for conversion of glycerol to aromatics, Catalysis Science & Technology, 9 (2019) 739-752.
[30] H.R. Shahhosseini, D. Iranshahi, S. Saeidi, E. Pourazadi, J.J. Klemeš, Multi-objective optimisation of steam methane reforming considering stoichiometric ratio indicator for methanol production, Journal of Cleaner Production, 180 (2018) 655-665.
[31] J. Weitkamp, Zeolites and catalysis, Solid State Ionics, 131 (2000) 175-188.
[32] C. Vercaemst, Isomeric olefinic periodic mesoporous organosilicas: an emerging class of versatile nanomaterials, in, 2009.
[33] H. Wang, M. Frenklach, Transport properties of polycyclic aromatic hydrocarbons for flame modeling, Combustion and Flame, 96 (1994) 163-170.
[34] J. Jae, G.A. Tompsett, A.J. Foster, K.D. Hammond, S.M. Auerbach, R.F. Lobo, G.W. Huber, Investigation into the shape selectivity of zeolite catalysts for biomass conversion, Journal of Catalysis, 279 (2011) 257-268.
[35] S.M. Csicsery, Shape-selective catalysis in zeolites, Zeolites, 4 (1984) 202-213.
[36] M. Stöcker, Methanol-to-hydrocarbons: catalytic materials and their behavior, Microporous and Mesoporous Materials, 29 (1999) 3-48.
[37] Z. Zhu, Q. Chen, Z. Xie, W. Yang, D. Kong, C. Li, Shape-selective disproportionation of ethylbenzene to para-diethylbenzene over ZSM-5 modified by chemical liquid deposition and MgO, Journal of Molecular Catalysis A: Chemical, 248 (2006) 152-158.
[38] U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V.W. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity, Angewandte Chemie International Edition, 51 (2012) 5810-5831.
[39] S. Svelle, U. Olsbye, F. Joensen, M. Bjørgen, Conversion of Methanol to Alkenes over Medium- and Large-Pore Acidic Zeolites:  Steric Manipulation of the Reaction Intermediates Governs the Ethene/Propene Product Selectivity, The Journal of Physical Chemistry C, 111 (2007) 17981-17984.
[40] X. Sun, S. Mueller, Y. Liu, H. Shi, G.L. Haller, M. Sanchez-Sanchez, A.C. van Veen, J.A. Lercher, On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5, Journal of Catalysis, 317 (2014) 185-197.
[41] C.D. Chang, A.J. Silvestri, The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts, Journal of Catalysis, 47 (1977) 249-259.
[42] P. Dejaifve, J.C. Védrine, V. Bolis, E.G. Derouane, Reaction pathways for the conversion of methanol and olefins on H-ZSM-5 zeolite, Journal of Catalysis, 63 (1980) 331-345.
[43] Y. Inoue, K. Nakashiro, Y. Ono, Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites, Microporous Materials, 4 (1995) 379-383.
[44] L.M. Parker, D.M. Bibby, Synthesis and some properties of two novel zeolites, KZ-1 and KZ-2, Zeolites, 3 (1983) 8-11.
[45] K.-j. Chao, B.-H. Chiou, C.-C. Cho, S.-Y. Jeng, Temperature-programmed desorption studies on ZSM—5 zeolites, Zeolites, 4 (1984) 2-4.
[46] S. Cęckiewicz, Conversion of methanol into light hydrocarbons on erionite–offretite(T) zeolite, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 80 (1984) 2989-2998.
[47] H. Itoh, C.V. Hidalgo, T. Hattori, M. Niwa, Y. Murakami, Role of acid property of various zeolites in the methanol conversion to hydrocarbons, Journal of Catalysis, 85 (1984) 521-526.
[48] Y. Xu, C.P. Grey, J.M. Thomas, A.K. Cheetham, An investigation into the conversion of methanol to hydrocarbons over a SAPO-34 catalyst using magic-angle-spinning NMR and gas chromatography, Catalysis Letters, 4 (1990) 251-260.
[49] R. Ravishankar, D. Bhattacharya, N.E. Jacob, S. Sivasanker, Characterization and catalytic properties of zeolite MCM-22, Microporous Materials, 4 (1995) 83-93.
[50] Ø. Mikkelsen, S. Kolboe, The conversion of methanol to hydrocarbons over zeolite H-beta, Microporous and Mesoporous Materials, 29 (1999) 173-184.
[51] N. Viswanadham, G. Muralidhar, T.S.R.P. Rao, Cracking and aromatization properties of some metal modified ZSM-5 catalysts for light alkane conversions, Journal of Molecular Catalysis A: Chemical, 223 (2004) 269-274.
[52] M. Conte, J.A. Lopez-Sanchez, Q. He, D.J. Morgan, Y. Ryabenkova, J.K. Bartley, A.F. Carley, S.H. Taylor, C.J. Kiely, K. Khalid, G.J. Hutchings, Modified zeolite ZSM-5 for the methanol to aromatics reaction, Catalysis Science & Technology, 2 (2012) 105-112.
[53] C.-Y. Hsieh, Y.-Y. Chen, Y.-C. Lin, Ga-Substituted Nanoscale HZSM-5 in Methanol Aromatization: The Cooperative Action of the Brønsted Acid and the Extra-Framework Ga Species, Industrial & Engineering Chemistry Research, 57 (2018) 7742-7751.
[54] G.Q. Zhang, T. Bai, T.F. Chen, W.T. Fan, X. Zhang, Conversion of Methanol to Light Aromatics on Zn-Modified Nano-HZSM-5 Zeolite Catalysts, Industrial & Engineering Chemistry Research, 53 (2014) 14932-14940.
[55] H. Liu, S. Yang, J. Hu, F. Shang, Z. Li, C. Xu, J. Guan, Q. Kan, A comparison study of mesoporous Mo/H-ZSM-5 and conventional Mo/H-ZSM-5 catalysts in methane non-oxidative aromatization, Fuel Processing Technology, 96 (2012) 195-202.
[56] C. Xing, W. Shen, G. Yang, R. Yang, P. Lu, J. Sun, Y. Yoneyama, N. Tsubaki, Completed encapsulation of cobalt particles in mesoporous H-ZSM-5 zeolite catalyst for direct synthesis of middle isoparaffin from syngas, Catalysis Communications, 55 (2014) 53-56.
[57] C. Flores, N. Batalha, V.V. Ordomsky, V.L. Zholobenko, W. Baaziz, N.R. Marcilio, A.Y. Khodakov, Direct Production of Iso-Paraffins from Syngas over Hierarchical Cobalt-ZSM-5 Nanocomposites Synthetized by using Carbon Nanotubes as Sacrificial Templates, ChemCatChem, 10 (2018) 2291-2299.
[58] Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li, G. Li, The preparation of nano-sized H[Zn, Al]ZSM-5 zeolite and its application in the aromatization of methanol, Microporous and Mesoporous Materials, 143 (2011) 435-442.
[59] J. Zhang, W. Qian, C. Kong, F. Wei, Increasing para-Xylene Selectivity in Making Aromatics from Methanol with a Surface-Modified Zn/P/ZSM-5 Catalyst, ACS Catalysis, 5 (2015) 2982-2988.
[60] Y. Ono, H. Adachi, Y. Senoda, Selective conversion of methanol into aromatic hydrocarbons over zinc-exchanged ZSM-5 zeolites, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 84 (1988) 1091-1099.
[61] Y. Ono, K. Osako, G.J. Kim, Y. Inoue, Ag-ZSM-5 as a Catalyst for Aromatization of Alkanes, Alkenes, and Methanol, in: J. Weitkamp, H.G. Karge, H. Pfeifer, W. Hölderich (Eds.) Studies in Surface Science and Catalysis, Elsevier, 1994, pp. 1773-1780.
[62] D. Freeman, R.P.K. Wells, G.J. Hutchings, Methanol to hydrocarbons: enhanced aromatic formation using a composite GaO–H-ZSM-5 catalyst, Chemical Communications, (2001) 1754-1755.
[63] D. Freeman, R.P.K. Wells, G.J. Hutchings, Conversion of Methanol to Hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 Catalysts, Journal of Catalysis, 205 (2002) 358-365.
[64] R. Barthos, T. Bánsági, T. Süli Zakar, F. Solymosi, Aromatization of methanol and methylation of benzene over Mo2C/ZSM-5 catalysts, Journal of Catalysis, 247 (2007) 368-378.
[65] J.A. Lopez-Sanchez, M. Conte, P. Landon, W. Zhou, J.K. Bartley, S.H. Taylor, A.F. Carley, C.J. Kiely, K. Khalid, G.J. Hutchings, Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics, Catalysis Letters, 142 (2012) 1049-1056.
[66] T.J.G. Kofke, R.J. Gorte, G.T. Kokotailo, W.E. Farneth, Stoichiometric adsorption complexes in H-ZSM-5, H-ZSM-12, and H-mordenite zeolites, Journal of Catalysis, 115 (1989) 265-272.
[67] M. Mosher, Organic Chemistry. Sixth edition (Morrison, Robert Thornton; Boyd, Robert Neilson), Journal of Chemical Education, 69 (1992) A305.
[68] H. Berndt, G. Lietz, J. Völter, Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics II. Nature of the active sites and their activation, Applied Catalysis A: General, 146 (1996) 365-379.
[69] P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, Elsevier, 2011.
[70] Y.G. Kolyagin, V.V. Ordomsky, Y.Z. Khimyak, A.I. Rebrov, F. Fajula, I.I. Ivanova, Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques, Journal of Catalysis, 238 (2006) 122-133.
[71] S.R. Venna, J.B. Jasinski, M.A. Carreon, Structural Evolution of Zeolitic Imidazolate Framework-8, Journal of the American Chemical Society, 132 (2010) 18030-18033.
[72] Y. Zang, X. Dong, D. Ping, C. Dong, The direct synthesis of Zn-incorporated nanosized H-ZSM-5 zeolites using ZIF-8 as a template for enhanced catalytic performance, CrystEngComm, 19 (2017) 3156-3166.
[73] M. Drobek, J.-H. Kim, M. Bechelany, C. Vallicari, A. Julbe, S.S. Kim, MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity, ACS Applied Materials & Interfaces, 8 (2016) 8323-8328.
[74] K. Wang, X. Huang, D. Li, Hollow ZSM-5 zeolite grass ball catalyst in methane dehydroaromatization: One-step synthesis and the exceptional catalytic performance, Applied Catalysis A: General, 556 (2018) 10-19.
[75] Y.-Y. Chen, C.-J. Chang, H.V. Lee, J.C. Juan, Y.-C. Lin, Gallium-Immobilized Carbon Nanotubes as Solid Templates for the Synthesis of Hierarchical Ga/ZSM-5 in Methanol Aromatization, Industrial & Engineering Chemistry Research, 58 (2019) 7948-7956.
[76] D.P. Serrano, J. Aguado, G. Morales, J.M. Rodríguez, A. Peral, M. Thommes, J.D. Epping, B.F. Chmelka, Molecular and Meso- and Macroscopic Properties of Hierarchical Nanocrystalline ZSM-5 Zeolite Prepared by Seed Silanization, Chemistry of Materials, 21 (2009) 641-654.
[77] Y. Gao, G. Wu, F. Ma, C. Liu, F. Jiang, Y. Wang, A. Wang, Modified seeding method for preparing hierarchical nanocrystalline ZSM-5 catalysts for methanol aromatisation, Microporous and Mesoporous Materials, 226 (2016) 251-259.
[78] T. Xue, L. Chen, Y.M. Wang, M.-Y. He, Seed-induced synthesis of mesoporous ZSM-5 aggregates using tetrapropylammonium hydroxide as single template, Microporous and Mesoporous Materials, 156 (2012) 97-105.
[79] L.G. Possato, R.N. Diniz, T. Garetto, S.H. Pulcinelli, C.V. Santilli, L. Martins, A comparative study of glycerol dehydration catalyzed by micro/mesoporous MFI zeolites, Journal of Catalysis, 300 (2013) 102-112.
[80] M.S. Holm, E. Taarning, K. Egeblad, C.H. Christensen, Catalysis with hierarchical zeolites, Catalysis Today, 168 (2011) 3-16.
[81] T. Xue, H. Liu, Y. Zhang, H. Wu, P. Wu, M. He, Synthesis of ZSM-5 with hierarchical porosity: In-situ conversion of the mesoporous silica-alumina species to hierarchical zeolite, Microporous and Mesoporous Materials, 242 (2017) 190-199.
[82] X. Niu, J. Gao, K. Wang, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin, J. Wang, Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics, Fuel Processing Technology, 157 (2017) 99-107.
[83] K. Wang, M. Dong, X. Niu, J. Li, Z. Qin, W. Fan, J. Wang, Highly active and stable Zn/ZSM-5 zeolite catalyst for the conversion of methanol to aromatics: effect of support morphology, Catalysis Science & Technology, 8 (2018) 5646-5656.
[84] Y. Li, S. Liu, Z. Zhang, S. Xie, X. Zhu, L. Xu, Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites: Improved reaction stability, Applied Catalysis A: General, 338 (2008) 100-113.
[85] Y. Bi, Y. Wang, X. Chen, Z. Yu, L. Xu, Methanol aromatization over HZSM-5 catalysts modified with different zinc salts, Chinese Journal of Catalysis, 35 (2014) 1740-1751.
[86] X. Chen, M. Dong, X. Niu, K. Wang, G. Chen, W. Fan, J. Wang, Z. Qin, Influence of Zn species in HZSM-5 on ethylene aromatization, Chinese Journal of Catalysis, 36 (2015) 880-888.
[87] L.-E. Sandoval-Díaz, J.-A. González-Amaya, C.-A. Trujillo, General aspects of zeolite acidity characterization, Microporous and Mesoporous Materials, 215 (2015) 229-243.
[88] A. Ausavasukhi, T. Sooknoi, D.E. Resasco, Catalytic deoxygenation of benzaldehyde over gallium-modified ZSM-5 zeolite, Journal of Catalysis, 268 (2009) 68-78.
[89] S.-W. Choi, W.-G. Kim, J.-S. So, J.S. Moore, Y. Liu, R.S. Dixit, J.G. Pendergast, C. Sievers, D.S. Sholl, S. Nair, C.W. Jones, Propane dehydrogenation catalyzed by gallosilicate MFI zeolites with perturbed acidity, Journal of Catalysis, 345 (2017) 113-123.
[90] F. Jin, Y. Li, A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule, Catalysis Today, 145 (2009) 101-107.
[91] N.-Y. Topsøe, K. Pedersen, E.G. Derouane, Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites, Journal of Catalysis, 70 (1981) 41-52.
[92] C. Song, X. Li, X. Zhu, S. Liu, F. Chen, F. Liu, L. Xu, Influence of the state of Zn species over Zn-ZSM-5/ZSM-11 on the coupling effects of cofeeding n-butane with methanol, Applied Catalysis A: General, 519 (2016) 48-55.
[93] F. Schekler-Nahama, O. Clause, D. Commereuc, J. Saussey, Influence of Lewis acidity of rhenium heptoxide supported on alumina catalyst on the catalytic performances in olefin metathesis, Applied Catalysis A: General, 167 (1998) 237-245.
[94] X. Li, Q. Xia, V.C. Nguyen, K. Peng, X. Liu, N. Essayem, Y. Wang, High yield production of HMF from carbohydrates over silica–alumina composite catalysts, Catalysis Science & Technology, 6 (2016) 7586-7596.
[95] C.A. Emeis, Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts, Journal of Catalysis, 141 (1993) 347-354.
[96] M. Kanezashi, A. Yamamoto, T. Yoshioka, T. Tsuru, Characteristics of ammonia permeation through porous silica membranes, AIChE Journal, 56 (2010) 1204-1212.
[97] F.M. Bobonich, Crystallization of zeolites as formation of inclusion compounds, Theoretical and Experimental Chemistry, 30 (1994) 106-116.
[98] K. Segawa, T. Hiroyasu, Highly selective methylamine synthesis over modified mordenite catalysts, Journal of Catalysis, 131 (1991) 482-490.
[99] I. Pinilla-Herrero, E. Borfecchia, J. Holzinger, U.V. Mentzel, F. Joensen, K.A. Lomachenko, S. Bordiga, C. Lamberti, G. Berlier, U. Olsbye, S. Svelle, J. Skibsted, P. Beato, High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics, Journal of Catalysis, 362 (2018) 146-163.
[100] J. Chen, Z. Feng, P. Ying, C. Li, ZnO Clusters Encapsulated inside Micropores of Zeolites Studied by UV Raman and Laser-Induced Luminescence Spectroscopies, The Journal of Physical Chemistry B, 108 (2004) 12669-12676.
[101] J. Chen, L. Chang, H. Rang, F. Ding, Characterization of Zn promoter in ZnO/HZSM-5 catalyst for propane aromatization, Chinese Journal of Catalysis, 22 (2001) 229-232.
[102] J. Chen, H. Kang, Stability of Zn promoter in Zn/HZSM-5 catalyst for C3H8 aromatization, Chinese Journal of Catalysis, 21 (2000) 125-128.
[103] A. Mehdad, R.F. Lobo, Ethane and ethylene aromatization on zinc-containing zeolites, Catalysis Science & Technology, 7 (2017) 3562-3572.
[104] W. Qian, F. Wei, RECTOR TECHNOLOGY FOR METHANOL TO AROMATICS, Multiphase Reactor Engineering for Clean and Low‐Carbon Energy Applications, (2017) 295-311.
[105] S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K.-P. Lillerud, S. Kolboe, M. Bjørgen, Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5:  Ethene Formation Is Mechanistically Separated from the Formation of Higher Alkenes, Journal of the American Chemical Society, 128 (2006) 14770-14771.
[106] Y. Ono, Transformation of Lower Alkanes into Aromatic Hydrocarbons over ZSM-5 Zeolites, Catalysis Reviews, 34 (1992) 179-226.
[107] L. Yu, S. Huang, S. Zhang, Z. Liu, W. Xin, S. Xie, L. Xu, Transformation of Isobutyl Alcohol to Aromatics over Zeolite-Based Catalysts, ACS Catalysis, 2 (2012) 1203-1210.
[108] E.A. Pidko, R.A. van Santen, Activation of Light Alkanes over Zinc Species Stabilized in ZSM-5 Zeolite:  A Comprehensive DFT Study, The Journal of Physical Chemistry C, 111 (2007) 2643-2655.
[109] H. Berndt, G. Lietz, B. Lücke, J. Völter, Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics I. Acidity and activity, Applied Catalysis A: General, 146 (1996) 351-363.
[110] A. Smiešková, E. Rojasová, P. Hudec, L. Šabo, Z. ſidek, Influence of the amount and the type of Zn species in ZSM-5 on the aromatisation of n-hexane, in: R. Aiello, G. Giordano, F. Testa (Eds.) Studies in Surface Science and Catalysis, Elsevier, 2002, pp. 855-862.
[111] H. Schulz, “Coking of zeolites during methanol conversion: Basic reactions of the MTO-, MTP- and MTG processes, Catalysis Today, 154 (2010) 183-194.
[112] J. Zhang, X. Zhu, S. Zhang, M. Cheng, M. Yu, G. Wang, C. Li, Selective production of para-xylene and light olefins from methanol over the mesostructured Zn–Mg–P/ZSM-5 catalyst, Catalysis Science & Technology, 9 (2019) 316-326.
[113] Y.-T. Cheng, G.W. Huber, Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction, ACS Catalysis, 1 (2011) 611-628.
[114] A.A. Rownaghi, J. Hedlund, Methanol to Gasoline-Range Hydrocarbons: Influence of Nanocrystal Size and Mesoporosity on Catalytic Performance and Product Distribution of ZSM-5, Industrial & Engineering Chemistry Research, 50 (2011) 11872-11878.
[115] K. Shen, W. Qian, N. Wang, C. Su, F. Wei, Centrifugation-free and high yield synthesis of nanosized H-ZSM-5 and its structure-guided aromatization of methanol to 1,2,4-trimethylbenzene, Journal of Materials Chemistry A, 2 (2014) 19797-19808.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊