|
[1] M.A. Fahim, T.A. Alsahhaf, A. Elkilani (Eds.) Fundamentals of Petroleum Refining, Elsevier Science, 2010. [2] G.A. Olah, Beyond Oil and Gas: The Methanol Economy, Angewandte Chemie International Edition, 44 (2005) 2636-2639. [3] V.R. Choudhary, C. Sivadinarayana, P. Devadas, S.D. Sansare, P. Magnoux, M. Guisnet, Characterization of coke on H-gallosilicate (MFI) propane aromatization catalyst.: Influence of coking conditions on nature and removal of coke, Microporous and Mesoporous Materials, 21 (1998) 91-101. [4] R. Obert, B.C. Dave, Enzymatic Conversion of Carbon Dioxide to Methanol: Enhanced Methanol Production in Silica Sol−Gel Matrices, Journal of the American Chemical Society, 121 (1999) 12192-12193. [5] C. Yao, W. Pan, A. Yao, Methanol fumigation in compression-ignition engines: A critical review of recent academic and technological developments, Fuel, 209 (2017) 713-732. [6] M. Khanmohammadi, S. Amani, A.B. Garmarudi, A. Niaei, Methanol-to-propylene process: Perspective of the most important catalysts and their behavior, Chinese Journal of Catalysis, 37 (2016) 325-339. [7] K. Wang, M. Dong, J. Li, P. Liu, K. Zhang, J. Wang, W. Fan, Facile fabrication of ZSM-5 zeolite hollow spheres for catalytic conversion of methanol to aromatics, Catalysis Science & Technology, 7 (2017) 560-564. [8] X. Niu, J. Gao, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin, J. Wang, Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics, Microporous and Mesoporous Materials, 197 (2014) 252-261. [9] G. Férey, Hybrid porous solids: past, present, future, Chemical Society Reviews, 37 (2008) 191-214. [10] D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O’Keeffe, O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal–organic frameworks, Chemical Society Reviews, 38 (2009) 1257-1283. [11] T.R. Cook, Y.-R. Zheng, P.J. Stang, Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials, Chemical Reviews, 113 (2013) 734-777. [12] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341 (2013). [13] A. Dhakshinamoorthy, H. Garcia, Catalysis by metal nanoparticles embedded on metal–organic frameworks, Chemical Society Reviews, 41 (2012) 5262-5284. [14] H. Deng, S. Grunder, K.E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A.C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O'Keeffe, O. Terasaki, J.F. Stoddart, O.M. Yaghi, Large-pore apertures in a series of metal-organic frameworks, Science, 336 (2012) 1018-1023. [15] A. Aijaz, Q. Xu, Catalysis with Metal Nanoparticles Immobilized within the Pores of Metal–Organic Frameworks, The Journal of Physical Chemistry Letters, 5 (2014) 1400-1411. [16] S. Chaemchuen, N.A. Kabir, K. Zhou, F. Verpoort, Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy, Chemical Society Reviews, 42 (2013) 9304-9332. [17] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences, 103 (2006) 10186-10191. [18] S.B. Novaković, G.A. Bogdanović, C. Heering, G. Makhloufi, D. Francuski, C. Janiak, Charge-Density Distribution and Electrostatic Flexibility of ZIF-8 Based on High-Resolution X-ray Diffraction Data and Periodic Calculations, Inorganic Chemistry, 54 (2015) 2660-2670. [19] Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system, Chemical Communications, 47 (2011) 2071-2073. [20] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. Keeffe, O.M. Yaghi, High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture, Science, 319 (2008) 939-943. [21] A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nature Reviews Materials, 1 (2016). [22] K.O. Kongshaug, H. Fjellvåg, Synthesis and characterization of CPO-1; three-dimensional coordination polymers with 2,6-naphthalenedicarboxylate (ndc) ligands [M(ndc)(H2O)], M=Mn(II), Zn(II) or Cd(II), Solid State Sciences, 4 (2002) 443-447. [23] D.W. Min, S.S. Yun, C.U. Lee, C.Y. Lee, M.G. Seo, Y.J. Hwang, W.S. Han, S. Lee, A Zinc (II)-Carboxylate Coordination Polymer Constructed from Zinc Nitrate and 2, 6-Naphthalenedicarboxylate, Bulletin of the Korean Chemical Society, 22 (2001) 531-533. [24] K. Shen, X. Chen, J. Chen, Y. Li, Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis, ACS Catalysis, 6 (2016) 5887-5903. [25] C.D. Malonzo, S.M. Shaker, L. Ren, S.D. Prinslow, A.E. Platero-Prats, L.C. Gallington, J. Borycz, A.B. Thompson, T.C. Wang, O.K. Farha, J.T. Hupp, C.C. Lu, K.W. Chapman, J.C. Myers, R.L. Penn, L. Gagliardi, M. Tsapatsis, A. Stein, Thermal Stabilization of Metal–Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting, Journal of the American Chemical Society, 138 (2016) 2739-2748. [26] K.E. deKrafft, C. Wang, W. Lin, Metal-Organic Framework Templated Synthesis of Fe2O3/TiO2 Nanocomposite for Hydrogen Production, Advanced Materials, 24 (2012) 2014-2018. [27] K. Nakatsuka, T. Yoshii, Y. Kuwahara, K. Mori, H. Yamashita, Controlled Pyrolysis of Ni-MOF-74 as a Promising Precursor for the Creation of Highly Active Ni Nanocatalysts in Size-Selective Hydrogenation, Chemistry – A European Journal, 24 (2018) 898-905. [28] H. Wang, X. Li, X. Lan, T. Wang, Supported Ultrafine NiCo Bimetallic Alloy Nanoparticles Derived from Bimetal–Organic Frameworks: A Highly Active Catalyst for Furfuryl Alcohol Hydrogenation, ACS Catalysis, 8 (2018) 2121-2128. [29] D. Pan, S. Xu, Y. Miao, N. Xu, H. Wang, X. Song, L. Gao, G. Xiao, A highly active and stable Zn@C/HZSM-5 catalyst using Zn@C derived from ZIF-8 as a template for conversion of glycerol to aromatics, Catalysis Science & Technology, 9 (2019) 739-752. [30] H.R. Shahhosseini, D. Iranshahi, S. Saeidi, E. Pourazadi, J.J. Klemeš, Multi-objective optimisation of steam methane reforming considering stoichiometric ratio indicator for methanol production, Journal of Cleaner Production, 180 (2018) 655-665. [31] J. Weitkamp, Zeolites and catalysis, Solid State Ionics, 131 (2000) 175-188. [32] C. Vercaemst, Isomeric olefinic periodic mesoporous organosilicas: an emerging class of versatile nanomaterials, in, 2009. [33] H. Wang, M. Frenklach, Transport properties of polycyclic aromatic hydrocarbons for flame modeling, Combustion and Flame, 96 (1994) 163-170. [34] J. Jae, G.A. Tompsett, A.J. Foster, K.D. Hammond, S.M. Auerbach, R.F. Lobo, G.W. Huber, Investigation into the shape selectivity of zeolite catalysts for biomass conversion, Journal of Catalysis, 279 (2011) 257-268. [35] S.M. Csicsery, Shape-selective catalysis in zeolites, Zeolites, 4 (1984) 202-213. [36] M. Stöcker, Methanol-to-hydrocarbons: catalytic materials and their behavior, Microporous and Mesoporous Materials, 29 (1999) 3-48. [37] Z. Zhu, Q. Chen, Z. Xie, W. Yang, D. Kong, C. Li, Shape-selective disproportionation of ethylbenzene to para-diethylbenzene over ZSM-5 modified by chemical liquid deposition and MgO, Journal of Molecular Catalysis A: Chemical, 248 (2006) 152-158. [38] U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V.W. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity, Angewandte Chemie International Edition, 51 (2012) 5810-5831. [39] S. Svelle, U. Olsbye, F. Joensen, M. Bjørgen, Conversion of Methanol to Alkenes over Medium- and Large-Pore Acidic Zeolites: Steric Manipulation of the Reaction Intermediates Governs the Ethene/Propene Product Selectivity, The Journal of Physical Chemistry C, 111 (2007) 17981-17984. [40] X. Sun, S. Mueller, Y. Liu, H. Shi, G.L. Haller, M. Sanchez-Sanchez, A.C. van Veen, J.A. Lercher, On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5, Journal of Catalysis, 317 (2014) 185-197. [41] C.D. Chang, A.J. Silvestri, The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts, Journal of Catalysis, 47 (1977) 249-259. [42] P. Dejaifve, J.C. Védrine, V. Bolis, E.G. Derouane, Reaction pathways for the conversion of methanol and olefins on H-ZSM-5 zeolite, Journal of Catalysis, 63 (1980) 331-345. [43] Y. Inoue, K. Nakashiro, Y. Ono, Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites, Microporous Materials, 4 (1995) 379-383. [44] L.M. Parker, D.M. Bibby, Synthesis and some properties of two novel zeolites, KZ-1 and KZ-2, Zeolites, 3 (1983) 8-11. [45] K.-j. Chao, B.-H. Chiou, C.-C. Cho, S.-Y. Jeng, Temperature-programmed desorption studies on ZSM—5 zeolites, Zeolites, 4 (1984) 2-4. [46] S. Cęckiewicz, Conversion of methanol into light hydrocarbons on erionite–offretite(T) zeolite, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 80 (1984) 2989-2998. [47] H. Itoh, C.V. Hidalgo, T. Hattori, M. Niwa, Y. Murakami, Role of acid property of various zeolites in the methanol conversion to hydrocarbons, Journal of Catalysis, 85 (1984) 521-526. [48] Y. Xu, C.P. Grey, J.M. Thomas, A.K. Cheetham, An investigation into the conversion of methanol to hydrocarbons over a SAPO-34 catalyst using magic-angle-spinning NMR and gas chromatography, Catalysis Letters, 4 (1990) 251-260. [49] R. Ravishankar, D. Bhattacharya, N.E. Jacob, S. Sivasanker, Characterization and catalytic properties of zeolite MCM-22, Microporous Materials, 4 (1995) 83-93. [50] Ø. Mikkelsen, S. Kolboe, The conversion of methanol to hydrocarbons over zeolite H-beta, Microporous and Mesoporous Materials, 29 (1999) 173-184. [51] N. Viswanadham, G. Muralidhar, T.S.R.P. Rao, Cracking and aromatization properties of some metal modified ZSM-5 catalysts for light alkane conversions, Journal of Molecular Catalysis A: Chemical, 223 (2004) 269-274. [52] M. Conte, J.A. Lopez-Sanchez, Q. He, D.J. Morgan, Y. Ryabenkova, J.K. Bartley, A.F. Carley, S.H. Taylor, C.J. Kiely, K. Khalid, G.J. Hutchings, Modified zeolite ZSM-5 for the methanol to aromatics reaction, Catalysis Science & Technology, 2 (2012) 105-112. [53] C.-Y. Hsieh, Y.-Y. Chen, Y.-C. Lin, Ga-Substituted Nanoscale HZSM-5 in Methanol Aromatization: The Cooperative Action of the Brønsted Acid and the Extra-Framework Ga Species, Industrial & Engineering Chemistry Research, 57 (2018) 7742-7751. [54] G.Q. Zhang, T. Bai, T.F. Chen, W.T. Fan, X. Zhang, Conversion of Methanol to Light Aromatics on Zn-Modified Nano-HZSM-5 Zeolite Catalysts, Industrial & Engineering Chemistry Research, 53 (2014) 14932-14940. [55] H. Liu, S. Yang, J. Hu, F. Shang, Z. Li, C. Xu, J. Guan, Q. Kan, A comparison study of mesoporous Mo/H-ZSM-5 and conventional Mo/H-ZSM-5 catalysts in methane non-oxidative aromatization, Fuel Processing Technology, 96 (2012) 195-202. [56] C. Xing, W. Shen, G. Yang, R. Yang, P. Lu, J. Sun, Y. Yoneyama, N. Tsubaki, Completed encapsulation of cobalt particles in mesoporous H-ZSM-5 zeolite catalyst for direct synthesis of middle isoparaffin from syngas, Catalysis Communications, 55 (2014) 53-56. [57] C. Flores, N. Batalha, V.V. Ordomsky, V.L. Zholobenko, W. Baaziz, N.R. Marcilio, A.Y. Khodakov, Direct Production of Iso-Paraffins from Syngas over Hierarchical Cobalt-ZSM-5 Nanocomposites Synthetized by using Carbon Nanotubes as Sacrificial Templates, ChemCatChem, 10 (2018) 2291-2299. [58] Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li, G. Li, The preparation of nano-sized H[Zn, Al]ZSM-5 zeolite and its application in the aromatization of methanol, Microporous and Mesoporous Materials, 143 (2011) 435-442. [59] J. Zhang, W. Qian, C. Kong, F. Wei, Increasing para-Xylene Selectivity in Making Aromatics from Methanol with a Surface-Modified Zn/P/ZSM-5 Catalyst, ACS Catalysis, 5 (2015) 2982-2988. [60] Y. Ono, H. Adachi, Y. Senoda, Selective conversion of methanol into aromatic hydrocarbons over zinc-exchanged ZSM-5 zeolites, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 84 (1988) 1091-1099. [61] Y. Ono, K. Osako, G.J. Kim, Y. Inoue, Ag-ZSM-5 as a Catalyst for Aromatization of Alkanes, Alkenes, and Methanol, in: J. Weitkamp, H.G. Karge, H. Pfeifer, W. Hölderich (Eds.) Studies in Surface Science and Catalysis, Elsevier, 1994, pp. 1773-1780. [62] D. Freeman, R.P.K. Wells, G.J. Hutchings, Methanol to hydrocarbons: enhanced aromatic formation using a composite GaO–H-ZSM-5 catalyst, Chemical Communications, (2001) 1754-1755. [63] D. Freeman, R.P.K. Wells, G.J. Hutchings, Conversion of Methanol to Hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 Catalysts, Journal of Catalysis, 205 (2002) 358-365. [64] R. Barthos, T. Bánsági, T. Süli Zakar, F. Solymosi, Aromatization of methanol and methylation of benzene over Mo2C/ZSM-5 catalysts, Journal of Catalysis, 247 (2007) 368-378. [65] J.A. Lopez-Sanchez, M. Conte, P. Landon, W. Zhou, J.K. Bartley, S.H. Taylor, A.F. Carley, C.J. Kiely, K. Khalid, G.J. Hutchings, Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics, Catalysis Letters, 142 (2012) 1049-1056. [66] T.J.G. Kofke, R.J. Gorte, G.T. Kokotailo, W.E. Farneth, Stoichiometric adsorption complexes in H-ZSM-5, H-ZSM-12, and H-mordenite zeolites, Journal of Catalysis, 115 (1989) 265-272. [67] M. Mosher, Organic Chemistry. Sixth edition (Morrison, Robert Thornton; Boyd, Robert Neilson), Journal of Chemical Education, 69 (1992) A305. [68] H. Berndt, G. Lietz, J. Völter, Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics II. Nature of the active sites and their activation, Applied Catalysis A: General, 146 (1996) 365-379. [69] P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, Elsevier, 2011. [70] Y.G. Kolyagin, V.V. Ordomsky, Y.Z. Khimyak, A.I. Rebrov, F. Fajula, I.I. Ivanova, Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques, Journal of Catalysis, 238 (2006) 122-133. [71] S.R. Venna, J.B. Jasinski, M.A. Carreon, Structural Evolution of Zeolitic Imidazolate Framework-8, Journal of the American Chemical Society, 132 (2010) 18030-18033. [72] Y. Zang, X. Dong, D. Ping, C. Dong, The direct synthesis of Zn-incorporated nanosized H-ZSM-5 zeolites using ZIF-8 as a template for enhanced catalytic performance, CrystEngComm, 19 (2017) 3156-3166. [73] M. Drobek, J.-H. Kim, M. Bechelany, C. Vallicari, A. Julbe, S.S. Kim, MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity, ACS Applied Materials & Interfaces, 8 (2016) 8323-8328. [74] K. Wang, X. Huang, D. Li, Hollow ZSM-5 zeolite grass ball catalyst in methane dehydroaromatization: One-step synthesis and the exceptional catalytic performance, Applied Catalysis A: General, 556 (2018) 10-19. [75] Y.-Y. Chen, C.-J. Chang, H.V. Lee, J.C. Juan, Y.-C. Lin, Gallium-Immobilized Carbon Nanotubes as Solid Templates for the Synthesis of Hierarchical Ga/ZSM-5 in Methanol Aromatization, Industrial & Engineering Chemistry Research, 58 (2019) 7948-7956. [76] D.P. Serrano, J. Aguado, G. Morales, J.M. Rodríguez, A. Peral, M. Thommes, J.D. Epping, B.F. Chmelka, Molecular and Meso- and Macroscopic Properties of Hierarchical Nanocrystalline ZSM-5 Zeolite Prepared by Seed Silanization, Chemistry of Materials, 21 (2009) 641-654. [77] Y. Gao, G. Wu, F. Ma, C. Liu, F. Jiang, Y. Wang, A. Wang, Modified seeding method for preparing hierarchical nanocrystalline ZSM-5 catalysts for methanol aromatisation, Microporous and Mesoporous Materials, 226 (2016) 251-259. [78] T. Xue, L. Chen, Y.M. Wang, M.-Y. He, Seed-induced synthesis of mesoporous ZSM-5 aggregates using tetrapropylammonium hydroxide as single template, Microporous and Mesoporous Materials, 156 (2012) 97-105. [79] L.G. Possato, R.N. Diniz, T. Garetto, S.H. Pulcinelli, C.V. Santilli, L. Martins, A comparative study of glycerol dehydration catalyzed by micro/mesoporous MFI zeolites, Journal of Catalysis, 300 (2013) 102-112. [80] M.S. Holm, E. Taarning, K. Egeblad, C.H. Christensen, Catalysis with hierarchical zeolites, Catalysis Today, 168 (2011) 3-16. [81] T. Xue, H. Liu, Y. Zhang, H. Wu, P. Wu, M. He, Synthesis of ZSM-5 with hierarchical porosity: In-situ conversion of the mesoporous silica-alumina species to hierarchical zeolite, Microporous and Mesoporous Materials, 242 (2017) 190-199. [82] X. Niu, J. Gao, K. Wang, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin, J. Wang, Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics, Fuel Processing Technology, 157 (2017) 99-107. [83] K. Wang, M. Dong, X. Niu, J. Li, Z. Qin, W. Fan, J. Wang, Highly active and stable Zn/ZSM-5 zeolite catalyst for the conversion of methanol to aromatics: effect of support morphology, Catalysis Science & Technology, 8 (2018) 5646-5656. [84] Y. Li, S. Liu, Z. Zhang, S. Xie, X. Zhu, L. Xu, Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites: Improved reaction stability, Applied Catalysis A: General, 338 (2008) 100-113. [85] Y. Bi, Y. Wang, X. Chen, Z. Yu, L. Xu, Methanol aromatization over HZSM-5 catalysts modified with different zinc salts, Chinese Journal of Catalysis, 35 (2014) 1740-1751. [86] X. Chen, M. Dong, X. Niu, K. Wang, G. Chen, W. Fan, J. Wang, Z. Qin, Influence of Zn species in HZSM-5 on ethylene aromatization, Chinese Journal of Catalysis, 36 (2015) 880-888. [87] L.-E. Sandoval-Díaz, J.-A. González-Amaya, C.-A. Trujillo, General aspects of zeolite acidity characterization, Microporous and Mesoporous Materials, 215 (2015) 229-243. [88] A. Ausavasukhi, T. Sooknoi, D.E. Resasco, Catalytic deoxygenation of benzaldehyde over gallium-modified ZSM-5 zeolite, Journal of Catalysis, 268 (2009) 68-78. [89] S.-W. Choi, W.-G. Kim, J.-S. So, J.S. Moore, Y. Liu, R.S. Dixit, J.G. Pendergast, C. Sievers, D.S. Sholl, S. Nair, C.W. Jones, Propane dehydrogenation catalyzed by gallosilicate MFI zeolites with perturbed acidity, Journal of Catalysis, 345 (2017) 113-123. [90] F. Jin, Y. Li, A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule, Catalysis Today, 145 (2009) 101-107. [91] N.-Y. Topsøe, K. Pedersen, E.G. Derouane, Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites, Journal of Catalysis, 70 (1981) 41-52. [92] C. Song, X. Li, X. Zhu, S. Liu, F. Chen, F. Liu, L. Xu, Influence of the state of Zn species over Zn-ZSM-5/ZSM-11 on the coupling effects of cofeeding n-butane with methanol, Applied Catalysis A: General, 519 (2016) 48-55. [93] F. Schekler-Nahama, O. Clause, D. Commereuc, J. Saussey, Influence of Lewis acidity of rhenium heptoxide supported on alumina catalyst on the catalytic performances in olefin metathesis, Applied Catalysis A: General, 167 (1998) 237-245. [94] X. Li, Q. Xia, V.C. Nguyen, K. Peng, X. Liu, N. Essayem, Y. Wang, High yield production of HMF from carbohydrates over silica–alumina composite catalysts, Catalysis Science & Technology, 6 (2016) 7586-7596. [95] C.A. Emeis, Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts, Journal of Catalysis, 141 (1993) 347-354. [96] M. Kanezashi, A. Yamamoto, T. Yoshioka, T. Tsuru, Characteristics of ammonia permeation through porous silica membranes, AIChE Journal, 56 (2010) 1204-1212. [97] F.M. Bobonich, Crystallization of zeolites as formation of inclusion compounds, Theoretical and Experimental Chemistry, 30 (1994) 106-116. [98] K. Segawa, T. Hiroyasu, Highly selective methylamine synthesis over modified mordenite catalysts, Journal of Catalysis, 131 (1991) 482-490. [99] I. Pinilla-Herrero, E. Borfecchia, J. Holzinger, U.V. Mentzel, F. Joensen, K.A. Lomachenko, S. Bordiga, C. Lamberti, G. Berlier, U. Olsbye, S. Svelle, J. Skibsted, P. Beato, High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics, Journal of Catalysis, 362 (2018) 146-163. [100] J. Chen, Z. Feng, P. Ying, C. Li, ZnO Clusters Encapsulated inside Micropores of Zeolites Studied by UV Raman and Laser-Induced Luminescence Spectroscopies, The Journal of Physical Chemistry B, 108 (2004) 12669-12676. [101] J. Chen, L. Chang, H. Rang, F. Ding, Characterization of Zn promoter in ZnO/HZSM-5 catalyst for propane aromatization, Chinese Journal of Catalysis, 22 (2001) 229-232. [102] J. Chen, H. Kang, Stability of Zn promoter in Zn/HZSM-5 catalyst for C3H8 aromatization, Chinese Journal of Catalysis, 21 (2000) 125-128. [103] A. Mehdad, R.F. Lobo, Ethane and ethylene aromatization on zinc-containing zeolites, Catalysis Science & Technology, 7 (2017) 3562-3572. [104] W. Qian, F. Wei, RECTOR TECHNOLOGY FOR METHANOL TO AROMATICS, Multiphase Reactor Engineering for Clean and Low‐Carbon Energy Applications, (2017) 295-311. [105] S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K.-P. Lillerud, S. Kolboe, M. Bjørgen, Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5: Ethene Formation Is Mechanistically Separated from the Formation of Higher Alkenes, Journal of the American Chemical Society, 128 (2006) 14770-14771. [106] Y. Ono, Transformation of Lower Alkanes into Aromatic Hydrocarbons over ZSM-5 Zeolites, Catalysis Reviews, 34 (1992) 179-226. [107] L. Yu, S. Huang, S. Zhang, Z. Liu, W. Xin, S. Xie, L. Xu, Transformation of Isobutyl Alcohol to Aromatics over Zeolite-Based Catalysts, ACS Catalysis, 2 (2012) 1203-1210. [108] E.A. Pidko, R.A. van Santen, Activation of Light Alkanes over Zinc Species Stabilized in ZSM-5 Zeolite: A Comprehensive DFT Study, The Journal of Physical Chemistry C, 111 (2007) 2643-2655. [109] H. Berndt, G. Lietz, B. Lücke, J. Völter, Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics I. Acidity and activity, Applied Catalysis A: General, 146 (1996) 351-363. [110] A. Smiešková, E. Rojasová, P. Hudec, L. Šabo, Z. ſidek, Influence of the amount and the type of Zn species in ZSM-5 on the aromatisation of n-hexane, in: R. Aiello, G. Giordano, F. Testa (Eds.) Studies in Surface Science and Catalysis, Elsevier, 2002, pp. 855-862. [111] H. Schulz, “Coking of zeolites during methanol conversion: Basic reactions of the MTO-, MTP- and MTG processes, Catalysis Today, 154 (2010) 183-194. [112] J. Zhang, X. Zhu, S. Zhang, M. Cheng, M. Yu, G. Wang, C. Li, Selective production of para-xylene and light olefins from methanol over the mesostructured Zn–Mg–P/ZSM-5 catalyst, Catalysis Science & Technology, 9 (2019) 316-326. [113] Y.-T. Cheng, G.W. Huber, Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction, ACS Catalysis, 1 (2011) 611-628. [114] A.A. Rownaghi, J. Hedlund, Methanol to Gasoline-Range Hydrocarbons: Influence of Nanocrystal Size and Mesoporosity on Catalytic Performance and Product Distribution of ZSM-5, Industrial & Engineering Chemistry Research, 50 (2011) 11872-11878. [115] K. Shen, W. Qian, N. Wang, C. Su, F. Wei, Centrifugation-free and high yield synthesis of nanosized H-ZSM-5 and its structure-guided aromatization of methanol to 1,2,4-trimethylbenzene, Journal of Materials Chemistry A, 2 (2014) 19797-19808.
|