|
1.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669. 2.Geim, A. K.; Novoselov, K. S., The rise of graphene. In J. Nanosci. Nanotechnol., World Scientific: 2010; pp 11-19. 3.Boehm, H. P.; Clauss, A.; Fischer, G. O.; Hofmann, U., Dünnste kohlenstoff-folien. Z. Naturforsch. B 1962, 17, 150-153. 4.Malard, L. M.; Pimenta, M. A. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51-87. 5.Wallace, P. R., The band structure of graphite. Phys. Rev. 1947, 71, 622-634. 6.McClure, J. W., Diamagnetism of graphite. Phys. Rev. 1956, 104, 666. 7.Semenoff, G. W., Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 1984, 53, 2449. 8.Novoselov, S., The Nobel Prize in Physics 2010 honours two scientists, who have made the decisive contributions to this development. They are Andre K. Geim and Konstantin S. Novoselov, both at the University of Manchester, UK. They have succeeded in producing, isolating, identifying and characterizing graphene. 2010. 9.Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S., The structure of suspended graphene sheets. Nature 2007, 446, 60. 10.Stolyarova, E.; Rim, K. T.; Ryu, S.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen, M. S.; Flynn, G. W., High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. 2007, 104, 9209-9212. 11.Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388. 12.Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P. h.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355. 13.Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308-1308. 14.Abergel, D. S. L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T., Properties of graphene: a theoretical perspective. Adv. Phys. 2010, 59, 261-482. 15.Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. 16.Novoselov, K. S.; Neto, A. H. C., Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scr. 2012, 2012, 014006. 17.De Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M. L., Epitaxial graphene. Solid State Commun. 2007, 143, 92-100. 18.Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C., Production and processing of graphene and 2d crystals. Mater. Today 2012, 15, 564-589. 19.Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25. 20.Brodie, B. C., Hydration behavior and dynamics of water molecules in graphite oxide. Ann. Chim. Phys. 1860, 59, 466-472. 21.Staudenmaier, L., Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481-1487. 22.Hummers, J.; William, S.; Offeman; Richard, E., Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339. 23.Moholkar, V. S.; Kumar, P. S.; Pandit, A. B., Hydrodynamic cavitation for sonochemical effects. Ultrason. Sonochem. 1999, 6, 53-65. 24.He, H.; Klinowski, J.; Forster, M.; Lerf, A., A new structural model for graphite oxide. Chem. Phys. Lett. 1998, 287, 53-56. 25.Su, C. Y.; Lu, A. Y.; Xu, Y.; Chen, F. R.; Khlobystov, A. N.; Li, L. J., High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 2011, 5, 2332-2339. 26.Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2008, 9, 30-35. 27.Somani, P. R.; Somani, S. P.; Umeno, M., Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56-59. 28.Bhaviripudi, S.; Jia, X.; Dresselhaus, M. S.; Kong, J., Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 2010, 10, 4128-4133. 29.Li, G.; Huang, S. H.; Li, Z., Gas-phase dynamics in graphene growth by chemical vapour deposition. Phys. Chem. Chem. Phys. 2015, 17, 22832-22836. 30.Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina, A. V.; Zolotukhin, A. A., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45, 2017-2021. 31.Hsu, C. J.; Nayak, P. K.; Wang, S. C.; Sung, J. C.; Wang, C. L.; Wu, C. L.; Huang, J. L., Spinodal decomposition of mono-to few-layer graphene on Ni substrates at low temperature. J. Nanosci. Nanotechnol. 2012, 12, 2442-2447. 32.Karu, A. E.; Beer, M., Pyrolytic formation of highly crystalline graphite films. J. Appl. Phys. 1966, 37, 2179-2181. 33.Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S., Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103. 34.Sutter, P. W.; Flege, J. I.; Sutter, E. A., Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406-11. 35.Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T., Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565-70. 36.Li, X.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B.; Borysiak, M.; Cai, W.; Velamakanni, A.; Zhu, Y.; Fu, L.; Vogel, E. M.; Voelkl, E.; Colombo, L.; Ruoff, R. S., Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328-34. 37.Batzill, M., The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 2012, 67, 83-115. 38.Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314. 39.Mattevi, C.; Kim, H.; Chhowalla, M., A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324-3334. 40.Muñoz, R.; Gómez‐Aleixandre, C., Review of CVD synthesis of graphene. Chem. Vap. Depos. 2013, 19, 297-322. 41.Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359-4363. 42.Liang, X.; Sperling, B. A.; Calizo, I.; Cheng, G.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H.; Li, Q., Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144-9153. 43.Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C.; Suenaga, K.; Chiu, P. W., Graphene annealing: how clean can it be? Nano Lett. 2011, 12, 414-419. 44.Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M., The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108. 45.Srivastava, A.; Galande, C.; Ci, L.; Song, L.; Rai, C.; Jariwala, D.; Kelly, K. F.; Ajayan, P. M., Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films. Chem. Mater. 2010, 22, 3457-3461. 46.Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706. 47.Kim, H. H.; Lee, S. K.; Lee, S. G.; Lee, E.; Cho, K., Wetting‐Assisted Crack‐and Wrinkle‐Free Transfer of Wafer‐Scale Graphene onto Arbitrary Substrates over a Wide Range of Surface Energies. Adv. Funct. Mater. 2016, 26, 2070-2077. 48.Kim, S.; Shin, S.; Kim, T.; Du, H.; Song, M.; Lee, C.; Kim, K.; Cho, S.; Seo, D. H.; Seo, S., Robust graphene wet transfer process through low molecular weight polymethylmethacrylate. Carbon 2016, 98, 352-357. 49.Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K. P., Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 2011, 5, 9927-9933. 50.Gorantla, S.; Bachmatiuk, A.; Hwang, J.; Alsalman, H. A.; Kwak, J. Y.; Seyller, T.; Eckert, J.; Spencer, M. G.; Rümmeli, M. H., A universal transfer route for graphene. Nanoscale 2014, 6, 889-896. 51.Ohtomo, M.; Sekine, Y.; Wang, S.; Hibino, H.; Yamamoto, H., Etchant-free graphene transfer using facile intercalation of alkanethiol self-assembled molecules at graphene/metal interfaces. Nanoscale 2016, 8, 11503-11510. 52.Cheng, Z.; Zhou, Q.; Wang, C.; Li, Q.; Wang, C.; Fang, Y., Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 2011, 11, 767-771. 53.Jia, Y.; Gong, X.; Peng, P.; Wang, Z.; Tian, Z.; Ren, L.; Fu, Y.; Zhang, H., Toward high carrier mobility and low contact resistance: laser cleaning of PMMA residues on graphene surfaces. Nano-micro Lett. 2016, 8, 336-346. 54.Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574. 55.Kang, J.; Hwang, S.; Kim, J. H.; Kim, M. H.; Ryu, J.; Seo, S. J.; Hong, B. H.; Kim, M. K.; Choi, J.-B., Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS nano 2012, 6, 5360-5365. 56.Wang, B.; Huang, M.; Tao, L.; Lee, S. H.; Jang, A. R.; Li, B. W.; Shin, H. S.; Akinwande, D.; Ruoff, R. S., Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns. ACS Nano 2016, 10, 1404-1410. 57.Chen, M.; Stekovic, D.; Li, W.; Arkook, B.; Haddon, R. C.; Bekyarova, E., Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons. Nanotechnology 2017, 28, 255701. 58.Zhang, G.; Güell, A. G.; Kirkman, P. M.; Lazenby, R. A.; Miller, T. S.; Unwin, P. R., Versatile polymer-free graphene transfer method and applications. ACS Appl. Mater. Inter. 2016, 8, 8008-8016. 59.Wang, D. Y.; Huang, I. S.; Ho, P. H.; Li, S. S.; Yeh, Y. C.; Wang, D. W.; Chen, W. L.; Lee, Y. Y.; Chang, Y. M.; Chen, C. C., Clean‐lifting transfer of large‐area residual‐free graphene films. Adv. Mater. 2013, 25, 4521-4526. 60.Lin, W. H.; Chen, T. H.; Chang, J. K.; Taur, J. I.; Lo, Y. Y.; Lee, W. L.; Chang, C. S.; Su, W. B.; Wu, C. I., A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 2014, 8, 1784-1791. 61.Oznuluer, T.; Pince, E.; Polat, E. O.; Balci, O.; Salihoglu, O.; Kocabas, C., Synthesis of graphene on gold. Appl. Phys. Lett. 2011, 98, 183101. 62.Xue, Y.; Wu, B.; Guo, Y.; Huang, L.; Jiang, L.; Chen, J.; Geng, D.; Liu, Y.; Hu, W.; Yu, G., Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res. 2011, 4, 1208-1214. 63.Eizenberg, M.; Blakely, J. M., Carbon monolayer phase condensation on Ni (111). Surf. Sci. 1979, 82, 228-236. 64.Kwak, J.; Chu, J. H.; Choi, J. K.; Park, S. D.; Go, H.; Kim, S. Y.; Park, K.; Kim, S. D.; Kim, Y. W.; Yoon, E., Near room-temperature synthesis of transfer-free graphene films. Nat. Commun. 2012, 3, 645. 65.Xiong, W.; Zhou, Y. S.; Jiang, L. J.; Sarkar, A.; Mahjouri‐Samani, M.; Xie, Z. Q.; Gao, Y.; Ianno, N. J.; Jiang, L.; Lu, Y. F., Single‐Step Formation of Graphene on Dielectric Surfaces. Adv. Mater. 2013, 25, 630-634. 66.Levendorf, M. P.; Ruiz-Vargas, C. S.; Garg, S.; Park, J., Transfer-free batch fabrication of single layer graphene transistors. Nano Lett. 2009, 9, 4479-4483. 67.Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; Bokor, J.; Zhang, Y., Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 2010, 10, 1542-1548. 68.Cortes, A.; Celedon, C.; Zarate, R., CVD synthesis of graphene from acetylene catalyzed by a reduced CuO thin film deposited on SiO2 substrates. J. Chil. Chem. Soc. 2015, 60, 2911-2913. 69.Su, C. Y.; Lu, A. Y.; Wu, C. Y.; Li, Y. T.; Liu, K. K.; Zhang, W.; Lin, S. Y.; Juang, Z. Y.; Zhong, Y. L.; Chen, F. R., Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett. 2011, 11, 3612-3616. 70.Wu, Z.; Guo, Y.; Guo, Y.; Huang, R.; Xu, S.; Song, J.; Lu, H.; Lin, Z.; Han, Y.; Li, H., A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment. Nanoscale 2016, 8, 2594-2600. 71.Sojoudi, H.; Graham, S., Transfer-free selective area synthesis of graphene using solid-state self-segregation of carbon in Cu/Ni bilayers. ECS J. Solid State Sci. Technol. 2013, 2, M17-M21. 72.Kaplas, T.; Svirko, Y., Self-assembled graphene on dielectric micro-and nanostructures. Carbon 2014, 70, 273-278. 73.Teng, P. Y.; Lu, C. C.; Akiyama Hasegawa, K.; Lin, Y. C.; Yeh, C. H.; Suenaga, K.; Chiu, P. W., Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett. 2012, 12, 1379-1384. 74.Kim, H.; Song, I.; Park, C.; Son, M.; Hong, M.; Kim, Y.; Kim, J. S.; Shin, H. J.; Baik, J.; Choi, H. C., Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 2013, 7, 6575-6582. 75.Chen, Y. Z.; Medina, H.; Lin, H. C.; Tsai, H. W.; Su, T. Y.; Chueh, Y. L., Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices. Nanoscale 2015, 7, 1678-1687. 76.Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M. J.; Weiland, B. E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C., Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition. ACS Nano 2011, 5, 8062-8069. 77.Chen, J.; Wen, Y.; Guo, Y.; Wu, B.; Huang, L.; Xue, Y.; Geng, D.; Wang, D.; Yu, G.; Liu, Y., Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548-17551. 78.Lin, M. Y.; Su, C. F.; Lee, S. C.; Lin, S. Y., The growth mechanisms of graphene directly on sapphire substrates by using the chemical vapor deposition. J. Appl. Phys. 2014, 115, 223510. 79.Zhang, L.; Shi, Z.; Wang, Y.; Yang, R.; Shi, D.; Zhang, G., Catalyst-free growth of nanographene films on various substrates. Nano Res. 2011, 4, 315-321. 80.Song, H. J.; Son, M.; Park, C.; Lim, H.; Levendorf, M. P.; Tsen, A. W.; Park, J.; Choi, H. C., Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication. Nanoscale 2012, 4, 3050-3054. 81.Jing, H.; Min, M.; Seo, S.; Lu, B.; Yoon, Y.; Lee, S. M.; Hwang, E.; Lee, H., Non-metal catalytic synthesis of graphene from a polythiophene monolayer on silicon dioxide. Carbon 2015, 86, 272-278. 82.Geim, A. K.; Novoselov, K. S., The rise of graphene. In J. Nanosci. Nanotechnol., World Scientific: 2010; pp 11-19. 83.Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K., Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124. 84.Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene: the new two‐dimensional nanomaterial. Angew. Chem. 2009, 48, 7752-7777. 85.Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. 86.Wang, Y. Y.; Ni, Z. H.; Yu, T.; Shen, Z. X.; Wang, H. M.; Wu, Y. H.; Chen, W.; Shen Wee, A. T., Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 2008, 112, 10637-10640. 87.Ferrari, A. C., Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47-57. 88.Cooper, D. R.; D’Anjou, B.; Ghattamaneni, N.; Harack, B.; Hilke, M.; Horth, A.; Majlis, N.; Massicotte, M.; Vandsburger, L.; Whiteway, E., Experimental review of graphene. ISRN Condens. Matter Phys. 2012, 2012. 89.Ruiz, I.; Wang, W.; George, A.; Ozkan, C. S.; Ozkan, M., Silicon oxide contamination of graphene sheets synthesized on copper substrates via chemical vapor deposition. Adv. Sci. Eng. 2014, 6, 1070-1075. 90.Lisi, N.; Dikonimos, T.; Buonocore, F.; Pittori, M.; Mazzaro, R.; Rizzoli, R.; Marras, S.; Capasso, A., Contamination-free graphene by chemical vapor deposition in quartz furnaces. Sci. Rep. 2017, 7, 9927. 91.Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S., Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069-6076. 92.Ding, D.; Solís-Fernández, P.; Hibino, H.; Ago, H., Spatially controlled nucleation of single-crystal graphene on Cu assisted by stacked Ni. ACS Nano 2016, 10, 11196-11204.
|