跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/20 18:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴呈宇
研究生(外文):Cheng-YuDai
論文名稱:利用空間限縮輔助法合成高品質免轉置石墨烯
論文名稱(外文):Growth of High-Quality Transfer-Free Graphene on SiO2 Substrate Assisted by Spatially Confined Reactors
指導教授:陳巧貞
指導教授(外文):Chiao-Chen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:120
中文關鍵詞:免轉置石墨烯化學氣相沉積法
外文關鍵詞:transfer-free graphenechemical vapor deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了改善傳統轉置方法對石墨烯品質所帶來的影響,本研究目標於二氧化矽基板上濺鍍銅薄膜作為化學氣相沉積製程中的催化金屬,並將此鍍有銅膜的矽基板置於一具有狹縫的石英載具中,利用狹縫所提供的侷限空間進行免轉置石墨烯的成長。透過調控成長溫度、腔體壓力、退火時間、製程氣體比例、成長時間等合成參數,再以鎳片覆蓋銅膜做為吸收多餘碳源的儲存槽(carbon sink)合成出高品質的免轉置石墨烯。本研究於反應溫度1000 ℃與腔體壓力為90 torr的環境下,以厚度700 nm的銅膜作為催化基材,並置於具有0.55 mm凹槽深度的石英狹縫中,以鎳片覆蓋銅膜,成功的不需透過轉置步驟直接成長高品質的雙層石墨烯於矽基板上。
此外,免轉置石墨烯在蝕刻過程中發現因無支撐層保護溶液產生石墨烯薄膜破損問題導致後續無法正確評估合成參數對於石墨烯品質與層數的影響,因此也開發了微流道蝕刻系統以層流的方式進行蝕刻成功避免了石墨烯薄膜破損的問題。此外,在實驗過程中發現因使用石英管作為化學氣象沈積腔體,導致成長過程中有大量矽奈米球沉積在銅膜基板上進而汙染所合成的石墨烯薄膜,,為了解決矽球污染問題,稀釋的KOH溶液被使於微流道的系統中,於去除銅膜前,先對銅膜上沈積的矽奈米球進行清洗蝕刻,解決了石墨烯受矽球汙染的問題。
Conventional processes to transfer chemical vapor deposited graphene from catalytic metal surface to dielectric substrates are typically involved in introduction of defects and contaminations onto the as-grown graphene, resulting in deteriorated graphene quality. To solve this problem, it is inevitable to develop a practical transfer-free process to directly grow graphene on target substrates. In this study, we propose to synthesize graphene using a deposited Cu film on the silica substrate to enable transfer-free growth of graphene film via CVD method. The key of our strategy is to utilize a quartz slit as a confined space where the Cu/Si substrate is located and a Ni sheet as the slit cover on top of the Cu/Si substrate to locally control the carbon source supply. To prepare high-quality transfer-free graphene we systematically studied the effects of the following parameters, including growth temperature, chamber pressure, annealing time, reaction gas ratio, growth time, gap size of the quartz slit to optimize the synthesis process. Consequently, we successfully synthesized patterned transfer-free graphene at 1000 ℃ under a chamber pressure of 90 torr by covering the Ni sheet on a Cu metal film with a total thickness of 700 nm in a 0.55 mm quartz slit. According to the statistical analysis of Raman measurements recorded from the synthesized graphene films, we demonstrated that the produced transfer-free graphene composed of ~2 layered graphene films. In addition, we have developed a microchannel etching system to remove the deposited Cu film in a laminar flow to prevent breakage of graphene film during the etching process. Furthermore, dilute KOH solution was applied before the Cu etching process to remove the contamination of SiO2 nanospheres deposited on the Cu film, a problem frequently encountered in conventional CVD process using quartz tube as the reaction chamber, to further improve the quality of synthesized graphene.
摘要 I
Extended Abstract II
誌謝 XI
目錄 XII
圖目錄 XV
表目錄 XXI
第一章 緒論 1
第二章 文獻回顧 2
2.1 石墨烯簡介 2
2.1.1 基本性質 2
2.1.2 發展背景 4
2.2 石墨烯結構與特性 6
2.2.1 物理特性 6
2.2.2 晶格結構14-15 7
2.2.3 能帶結構 8
2.3 石墨烯製備方法 9
2.3.1 機械剝離法 9
2.3.2 碳化矽磊晶成長法 10
2.3.3 氧化石墨(烯)還原法 11
2.3.4 液相剝離法 13
2.3.5 電化學剝離法 14
2.3.6 化學氣相沉積法 15
2.4 化學氣相沉積製備石墨烯 17
2.4.1 化學氣相沉積種類 17
2.4.2 石墨烯成長於過渡金屬上 21
2.4.3 石墨烯成長於鎳基板上 22
2.4.4 石墨烯成長於銅基板上 23
2.5 石墨烯轉置方法 26
2.5.1 聚合物支撐層轉置法 26
2.5.2 熱解膠帶轉置法 34
2.5.3 無聚合物轉置法 37
2.6 免轉置石墨烯方法 41
2.7 石墨烯檢測方法 56
2.7.1 光學散射 56
2.7.2 拉曼光譜 58
2.8 研究動機與目標 64
第三章 實驗方法與材料 65
3.1 實驗流程設計 65
3.2 濺鍍銅薄膜於矽基板實驗步驟 66
3.2.1 光罩設計 66
3.2.2 光阻製程 67
3.2.3 濺鍍金屬基材 68
3.2.4 舉離光阻 68
3.3 化學氣相沉積製備石墨烯 69
3.3.1 銅鍍膜基板處理 69
3.3.2 化學氣相沉積系統架構 69
3.3.3 化學氣相沉積製程參數 70
3.4 免轉置石墨烯方法 71
3.5 檢測儀器 72
3.5.1 光學顯微鏡 (optical microscopy, OM) 72
3.5.2 拉曼顯微鏡 (Raman microscopy) 72
3.5.3 掃描式電子顯微鏡 (scanning electron microscopy, SEM) 73
3.5.4 原子力顯微鏡(atomic force microscopes, AFM) 73
第四章 結果與討論 74
4.1 銅膜厚度鑑定 77
4.2 腔體壓力控制 77
4.3 成長溫度影響 80
4.4 退火時間影響 82
4.5 甲烷流量對成長的影響 84
4.6 氫氣流量對成長影響 86
4.7 氬氣流量對成長影響 88
4.8 成長時間之影響 90
4.9 反應腔體總壓影響 92
4.10 銅膜厚度影響 94
4.11 狹縫載具限縮空間影響 97
4.12 鎳金屬催化劑對石墨烯成長影響 99
4.13 圖案化石墨烯的成長 106
4.14 微流道蝕刻改良 107
4.15 矽球汙染改善 110
第五章 總結與未來展望 112
第六章 參考文獻 113
1.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
2.Geim, A. K.; Novoselov, K. S., The rise of graphene. In ‎J. Nanosci. Nanotechnol., World Scientific: 2010; pp 11-19.
3.Boehm, H. P.; Clauss, A.; Fischer, G. O.; Hofmann, U., Dünnste kohlenstoff-folien. Z. Naturforsch. B 1962, 17, 150-153.
4.Malard, L. M.; Pimenta, M. A. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51-87.
5.Wallace, P. R., The band structure of graphite. Phys. Rev. 1947, 71, 622-634.
6.McClure, J. W., Diamagnetism of graphite. Phys. Rev. 1956, 104, 666.
7.Semenoff, G. W., Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 1984, 53, 2449.
8.Novoselov, S., The Nobel Prize in Physics 2010 honours two scientists, who have made the decisive contributions to this development. They are Andre K. Geim and Konstantin S. Novoselov, both at the University of Manchester, UK. They have succeeded in producing, isolating, identifying and characterizing graphene. 2010.
9.Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S., The structure of suspended graphene sheets. Nature 2007, 446, 60.
10.Stolyarova, E.; Rim, K. T.; Ryu, S.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen, M. S.; Flynn, G. W., High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. 2007, 104, 9209-9212.
11.Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.
12.Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P. h.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355.
13.Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308-1308.
14.Abergel, D. S. L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T., Properties of graphene: a theoretical perspective. Adv. Phys. 2010, 59, 261-482.
15.Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109.
16.Novoselov, K. S.; Neto, A. H. C., Two-dimensional crystals-based heterostructures: materials with tailored properties. ‎Phys. Scr. 2012, 2012, 014006.
17.De Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M. L., Epitaxial graphene. Solid State Commun. 2007, 143, 92-100.
18.Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C., Production and processing of graphene and 2d crystals. Mater. Today 2012, 15, 564-589.
19.Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25.
20.Brodie, B. C., Hydration behavior and dynamics of water molecules in graphite oxide. Ann. Chim. Phys. 1860, 59, 466-472.
21.Staudenmaier, L., Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481-1487.
22.Hummers, J.; William, S.; Offeman; Richard, E., Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.
23.Moholkar, V. S.; Kumar, P. S.; Pandit, A. B., Hydrodynamic cavitation for sonochemical effects. Ultrason. Sonochem. 1999, 6, 53-65.
24.He, H.; Klinowski, J.; Forster, M.; Lerf, A., A new structural model for graphite oxide. Chem. Phys. Lett. 1998, 287, 53-56.
25.Su, C. Y.; Lu, A. Y.; Xu, Y.; Chen, F. R.; Khlobystov, A. N.; Li, L. J., High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 2011, 5, 2332-2339.
26.Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2008, 9, 30-35.
27.Somani, P. R.; Somani, S. P.; Umeno, M., Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56-59.
28.Bhaviripudi, S.; Jia, X.; Dresselhaus, M. S.; Kong, J., Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 2010, 10, 4128-4133.
29.Li, G.; Huang, S. H.; Li, Z., Gas-phase dynamics in graphene growth by chemical vapour deposition. Phys. Chem. Chem. Phys. 2015, 17, 22832-22836.
30.Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina, A. V.; Zolotukhin, A. A., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45, 2017-2021.
31.Hsu, C. J.; Nayak, P. K.; Wang, S. C.; Sung, J. C.; Wang, C. L.; Wu, C. L.; Huang, J. L., Spinodal decomposition of mono-to few-layer graphene on Ni substrates at low temperature. J. Nanosci. Nanotechnol. 2012, 12, 2442-2447.
32.Karu, A. E.; Beer, M., Pyrolytic formation of highly crystalline graphite films. ‎J. Appl. Phys. 1966, 37, 2179-2181.
33.Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S., Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.
34.Sutter, P. W.; Flege, J. I.; Sutter, E. A., Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406-11.
35.Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T., Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565-70.
36.Li, X.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B.; Borysiak, M.; Cai, W.; Velamakanni, A.; Zhu, Y.; Fu, L.; Vogel, E. M.; Voelkl, E.; Colombo, L.; Ruoff, R. S., Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328-34.
37.Batzill, M., The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 2012, 67, 83-115.
38.Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.
39.Mattevi, C.; Kim, H.; Chhowalla, M., A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324-3334.
40.Muñoz, R.; Gómez‐Aleixandre, C., Review of CVD synthesis of graphene. Chem. Vap. Depos. 2013, 19, 297-322.
41.Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359-4363.
42.Liang, X.; Sperling, B. A.; Calizo, I.; Cheng, G.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H.; Li, Q., Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144-9153.
43.Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C.; Suenaga, K.; Chiu, P. W., Graphene annealing: how clean can it be? Nano Lett. 2011, 12, 414-419.
44.Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M., The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.
45.Srivastava, A.; Galande, C.; Ci, L.; Song, L.; Rai, C.; Jariwala, D.; Kelly, K. F.; Ajayan, P. M., Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films. Chem. Mater. 2010, 22, 3457-3461.
46.Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706.
47.Kim, H. H.; Lee, S. K.; Lee, S. G.; Lee, E.; Cho, K., Wetting‐Assisted Crack‐and Wrinkle‐Free Transfer of Wafer‐Scale Graphene onto Arbitrary Substrates over a Wide Range of Surface Energies. Adv. Funct. Mater. 2016, 26, 2070-2077.
48.Kim, S.; Shin, S.; Kim, T.; Du, H.; Song, M.; Lee, C.; Kim, K.; Cho, S.; Seo, D. H.; Seo, S., Robust graphene wet transfer process through low molecular weight polymethylmethacrylate. Carbon 2016, 98, 352-357.
49.Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K. P., Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 2011, 5, 9927-9933.
50.Gorantla, S.; Bachmatiuk, A.; Hwang, J.; Alsalman, H. A.; Kwak, J. Y.; Seyller, T.; Eckert, J.; Spencer, M. G.; Rümmeli, M. H., A universal transfer route for graphene. Nanoscale 2014, 6, 889-896.
51.Ohtomo, M.; Sekine, Y.; Wang, S.; Hibino, H.; Yamamoto, H., Etchant-free graphene transfer using facile intercalation of alkanethiol self-assembled molecules at graphene/metal interfaces. Nanoscale 2016, 8, 11503-11510.
52.Cheng, Z.; Zhou, Q.; Wang, C.; Li, Q.; Wang, C.; Fang, Y., Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 2011, 11, 767-771.
53.Jia, Y.; Gong, X.; Peng, P.; Wang, Z.; Tian, Z.; Ren, L.; Fu, Y.; Zhang, H., Toward high carrier mobility and low contact resistance: laser cleaning of PMMA residues on graphene surfaces. Nano-micro Lett. 2016, 8, 336-346.
54.Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574.
55.Kang, J.; Hwang, S.; Kim, J. H.; Kim, M. H.; Ryu, J.; Seo, S. J.; Hong, B. H.; Kim, M. K.; Choi, J.-B., Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS nano 2012, 6, 5360-5365.
56.Wang, B.; Huang, M.; Tao, L.; Lee, S. H.; Jang, A. R.; Li, B. W.; Shin, H. S.; Akinwande, D.; Ruoff, R. S., Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns. ACS Nano 2016, 10, 1404-1410.
57.Chen, M.; Stekovic, D.; Li, W.; Arkook, B.; Haddon, R. C.; Bekyarova, E., Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons. Nanotechnology 2017, 28, 255701.
58.Zhang, G.; Güell, A. G.; Kirkman, P. M.; Lazenby, R. A.; Miller, T. S.; Unwin, P. R., Versatile polymer-free graphene transfer method and applications. ‎ACS Appl. Mater. Inter. 2016, 8, 8008-8016.
59.Wang, D. Y.; Huang, I. S.; Ho, P. H.; Li, S. S.; Yeh, Y. C.; Wang, D. W.; Chen, W. L.; Lee, Y. Y.; Chang, Y. M.; Chen, C. C., Clean‐lifting transfer of large‐area residual‐free graphene films. Adv. Mater. 2013, 25, 4521-4526.
60.Lin, W. H.; Chen, T. H.; Chang, J. K.; Taur, J. I.; Lo, Y. Y.; Lee, W. L.; Chang, C. S.; Su, W. B.; Wu, C. I., A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 2014, 8, 1784-1791.
61.Oznuluer, T.; Pince, E.; Polat, E. O.; Balci, O.; Salihoglu, O.; Kocabas, C., Synthesis of graphene on gold. Appl. Phys. Lett. 2011, 98, 183101.
62.Xue, Y.; Wu, B.; Guo, Y.; Huang, L.; Jiang, L.; Chen, J.; Geng, D.; Liu, Y.; Hu, W.; Yu, G., Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res. 2011, 4, 1208-1214.
63.Eizenberg, M.; Blakely, J. M., Carbon monolayer phase condensation on Ni (111). Surf. Sci. 1979, 82, 228-236.
64.Kwak, J.; Chu, J. H.; Choi, J. K.; Park, S. D.; Go, H.; Kim, S. Y.; Park, K.; Kim, S. D.; Kim, Y. W.; Yoon, E., Near room-temperature synthesis of transfer-free graphene films. Nat. Commun. 2012, 3, 645.
65.Xiong, W.; Zhou, Y. S.; Jiang, L. J.; Sarkar, A.; Mahjouri‐Samani, M.; Xie, Z. Q.; Gao, Y.; Ianno, N. J.; Jiang, L.; Lu, Y. F., Single‐Step Formation of Graphene on Dielectric Surfaces. Adv. Mater. 2013, 25, 630-634.
66.Levendorf, M. P.; Ruiz-Vargas, C. S.; Garg, S.; Park, J., Transfer-free batch fabrication of single layer graphene transistors. Nano Lett. 2009, 9, 4479-4483.
67.Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; Bokor, J.; Zhang, Y., Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 2010, 10, 1542-1548.
68.Cortes, A.; Celedon, C.; Zarate, R., CVD synthesis of graphene from acetylene catalyzed by a reduced CuO thin film deposited on SiO2 substrates. J. Chil. Chem. Soc. 2015, 60, 2911-2913.
69.Su, C. Y.; Lu, A. Y.; Wu, C. Y.; Li, Y. T.; Liu, K. K.; Zhang, W.; Lin, S. Y.; Juang, Z. Y.; Zhong, Y. L.; Chen, F. R., Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett. 2011, 11, 3612-3616.
70.Wu, Z.; Guo, Y.; Guo, Y.; Huang, R.; Xu, S.; Song, J.; Lu, H.; Lin, Z.; Han, Y.; Li, H., A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment. Nanoscale 2016, 8, 2594-2600.
71.Sojoudi, H.; Graham, S., Transfer-free selective area synthesis of graphene using solid-state self-segregation of carbon in Cu/Ni bilayers. ‎ECS J. Solid State Sci. Technol. 2013, 2, M17-M21.
72.Kaplas, T.; Svirko, Y., Self-assembled graphene on dielectric micro-and nanostructures. Carbon 2014, 70, 273-278.
73.Teng, P. Y.; Lu, C. C.; Akiyama Hasegawa, K.; Lin, Y. C.; Yeh, C. H.; Suenaga, K.; Chiu, P. W., Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett. 2012, 12, 1379-1384.
74.Kim, H.; Song, I.; Park, C.; Son, M.; Hong, M.; Kim, Y.; Kim, J. S.; Shin, H. J.; Baik, J.; Choi, H. C., Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 2013, 7, 6575-6582.
75.Chen, Y. Z.; Medina, H.; Lin, H. C.; Tsai, H. W.; Su, T. Y.; Chueh, Y. L., Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices. Nanoscale 2015, 7, 1678-1687.
76.Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M. J.; Weiland, B. E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C., Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition. ACS Nano 2011, 5, 8062-8069.
77.Chen, J.; Wen, Y.; Guo, Y.; Wu, B.; Huang, L.; Xue, Y.; Geng, D.; Wang, D.; Yu, G.; Liu, Y., Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548-17551.
78.Lin, M. Y.; Su, C. F.; Lee, S. C.; Lin, S. Y., The growth mechanisms of graphene directly on sapphire substrates by using the chemical vapor deposition. ‎J. Appl. Phys. 2014, 115, 223510.
79.Zhang, L.; Shi, Z.; Wang, Y.; Yang, R.; Shi, D.; Zhang, G., Catalyst-free growth of nanographene films on various substrates. Nano Res. 2011, 4, 315-321.
80.Song, H. J.; Son, M.; Park, C.; Lim, H.; Levendorf, M. P.; Tsen, A. W.; Park, J.; Choi, H. C., Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication. Nanoscale 2012, 4, 3050-3054.
81.Jing, H.; Min, M.; Seo, S.; Lu, B.; Yoon, Y.; Lee, S. M.; Hwang, E.; Lee, H., Non-metal catalytic synthesis of graphene from a polythiophene monolayer on silicon dioxide. Carbon 2015, 86, 272-278.
82.Geim, A. K.; Novoselov, K. S., The rise of graphene. In ‎J. Nanosci. Nanotechnol., World Scientific: 2010; pp 11-19.
83.Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K., Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.
84.Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene: the new two‐dimensional nanomaterial. ‎Angew. Chem. 2009, 48, 7752-7777.
85.Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
86.Wang, Y. Y.; Ni, Z. H.; Yu, T.; Shen, Z. X.; Wang, H. M.; Wu, Y. H.; Chen, W.; Shen Wee, A. T., Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 2008, 112, 10637-10640.
87.Ferrari, A. C., Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47-57.
88.Cooper, D. R.; D’Anjou, B.; Ghattamaneni, N.; Harack, B.; Hilke, M.; Horth, A.; Majlis, N.; Massicotte, M.; Vandsburger, L.; Whiteway, E., Experimental review of graphene. ISRN Condens. Matter Phys. 2012, 2012.
89.Ruiz, I.; Wang, W.; George, A.; Ozkan, C. S.; Ozkan, M., Silicon oxide contamination of graphene sheets synthesized on copper substrates via chemical vapor deposition. Adv. Sci. Eng. 2014, 6, 1070-1075.
90.Lisi, N.; Dikonimos, T.; Buonocore, F.; Pittori, M.; Mazzaro, R.; Rizzoli, R.; Marras, S.; Capasso, A., Contamination-free graphene by chemical vapor deposition in quartz furnaces. Sci. Rep. 2017, 7, 9927.
91.Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S., Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069-6076.
92.Ding, D.; Solís-Fernández, P.; Hibino, H.; Ago, H., Spatially controlled nucleation of single-crystal graphene on Cu assisted by stacked Ni. ACS Nano 2016, 10, 11196-11204.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top