|
1.Rowe, R.G. and S.J. Weiss, Breaching the basement membrane: who, when and how? Trends Cell Biol, 2008. 18(11): p. 560-74. 2.Shen, L.C., et al., Anti-invasion and anti-tumor growth effect of doxycycline treatment for human oral squamous-cell carcinoma--in vitro and in vivo studies. Oral Oncol, 2010. 46(3): p. 178-84. 3.林志強, The study of suppression mechanism of MMP-9 expression level in oral squamous carcinoma cells by doxycycline. National Cheng Kung University, 2013. 4.張文馨, Expression and characterization of recombinant human Smad4. National Cheng Kung University, 2015. 5.Golub, L.M., et al., Tetracyclines Inhibit Connective Tissue Breakdown: New Therapeutic Implications for an Old Family of Drugs. Critical Reviews in Oral Biology & Medicine, 1991. 2(3): p. 297-321. 6.廖靜洳, The study of the inhibition of Matrix-metalloproteinase-9 in oral squamous cell carcinoma by tetracycline analogs. National Cheng Kung University, 2017. 7.Warnakulasuriya, S., G. Sutherland, and C. Scully, Tobacco, oral cancer, and treatment of dependence. Oral Oncol, 2005. 41(3): p. 244-60. 8.Lacy, P.D., J. Edward L. Spitznagel, and J.F. Piccirillo, Development of a New Staging System for Recurrent Oral Cavity and Oropharyngeal Squamous Cell Carcinoma. Cancer, 1999. 9.Choi, S. and J. Myers, Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. Journal of dental research, 2008. 87(1): p. 14-32. 10.Clark, A.G. and D.M. Vignjevic, Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol, 2015. 36: p. 13-22. 11.Mishev, G., et al., Prognostic value of matrix metalloproteinases in oral squamous cell carcinoma. Biotechnol Biotechnol Equip, 2014. 28(6): p. 1138-1149. 12.Page-McCaw, A., A.J. Ewald, and Z. Werb, Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol, 2007. 8(3): p. 221-33. 13.Mooren, F.C., Encyclopedia of Exercise Medicine in Health and Disease. 2012. 14.Sorsa, T., L. Tjäderhane, and T. Salo, Matrix metalloproteinases (MMPs) in oral diseases. Oral diseases, 2004. 10(6): p. 311-318. 15.Bourboulia, D. and W.G. Stetler-Stevenson. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. in Seminars in cancer biology. 2010. Elsevier. 16.Stetler-Stevenson, W.G., The tumor microenvironment: regulation by MMP-independent effects of tissue inhibitor of metalloproteinases-2. Cancer and Metastasis Reviews, 2008. 27(1): p. 57-66. 17.Gialeli, C., A.D. Theocharis, and N.K. Karamanos, Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. The FEBS journal, 2011. 278(1): p. 16-27. 18.Chopra, I. and M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 2001. 65(2): p. 232-260. 19.Fuoco, D., Classification framework and chemical biology of tetracycline-structure-based drugs. Antibiotics, 2012. 1(1): p. 1. 20.Pioletti, M., et al., Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. The EMBO journal, 2001. 20(8): p. 1829-1839. 21.Sapadin, A.N. and R. Fleischmajer, Tetracyclines: nonantibiotic properties and their clinical implications. Journal of the American Academy of Dermatology, 2006. 54(2): p. 258-265. 22.Ramamurthy, N., E. Zebrowski, and L. Golub, The effect of alloxan diabetes on gingival collagen metabolism in rats. Archives of oral biology, 1972. 17(11): p. 1551-1560. 23.Golub, L., et al., Minocycline reduces gingival collagenolytic activity during diabetes: preliminary observations and a proposed new mechanism of action. Journal of periodontal research, 1983. 18(5): p. 516-526. 24.Wennström, J.L., et al., Utilisation of locally delivered doxycycline in non‐surgical treatment of chronic periodontitis: A comparative multi‐centre trial of 2 treatment approaches. Journal of clinical periodontology, 2001. 28(8): p. 753-761. 25.Devulapalli Narasimha Swamy, S.S., S. Moogla, and V. Kapalavai, Chemically modified tetracyclines: The novel host modulating agents. Journal of Indian Society of Periodontology, 2015. 19(4): p. 370. 26.Chang, K., et al., Tetracyclines inhibit Porphyromonas gingivalis‐induced alveolar bone loss in rats by a non‐antimicrobial mechanism. Journal of periodontal research, 1994. 29(4): p. 242-249. 27.Syed, S., et al., A phase I and pharmacokinetic study of Col-3 (Metastat), an oral tetracycline derivative with potent matrix metalloproteinase and antitumor properties. Clinical cancer research, 2004. 10(19): p. 6512-6521. 28.Chu, Q.S., et al., A phase II and pharmacological study of the matrix metalloproteinase inhibitor (MMPI) COL-3 in patients with advanced soft tissue sarcomas. Investigational new drugs, 2007. 25(4): p. 359. 29.Sporn, M.B. and A.B. Roberts, Peptide growth factors and their receptors. Handbook of experimental pharmacology, 1990. 95: p. 3-15. 30.Ebner, R., et al., Determination of type I receptor specificity by the type II receptors for TGF-beta or activin. Science, 1993. 262(5135): p. 900-902. 31.López-Casillas, F., et al., Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. The Journal of cell biology, 1994. 124(4): p. 557-568. 32.Border, W.A. and N.A. Noble, Transforming growth factor β in tissue fibrosis. New England journal of medicine, 1994. 331(19): p. 1286-1292. 33.Flaumenhaft, R., et al., Basic fibroblast growth factor-induced activation of latent transforming growth factor beta in endothelial cells: regulation of plasminogen activator activity. The Journal of cell biology, 1992. 118(4): p. 901-909. 34.Sun, L., et al., Transforming growth factor-β1 promotes matrix metalloproteinase-9–mediated oral cancer invasion through snail expression. Molecular Cancer Research, 2008. 6(1): p. 10-20. 35.Xie, H., et al., Infiltrated pre-adipocytes increase prostate cancer metastasis via modulation of the miR-301a/androgen receptor (AR)/TGF-β1/Smad/MMP9 signals. Oncotarget, 2015. 6(14): p. 12326. 36.Villar, V., J. Kocic, and J.F. Santibanez, Skip regulates TGF-β1-induced extracellular matrix degrading proteases expression in human PC-3 prostate cancer cells. Prostate cancer, 2013. 2013. 37.Lei, H., et al., The effects of genistein on transforming growth factor-β1-induced invasion and metastasis in human pancreatic cancer cell line Panc-1in vitro. Chinese medical journal, 2012. 125(11): p. 2032-2040. 38.Wiercinska, E., et al., The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast cancer research and treatment, 2011. 128(3): p. 657-666. 39.Schmierer, B. and C.S. Hill, TGFβ–SMAD signal transduction: molecular specificity and functional flexibility. Nature reviews Molecular cell biology, 2007. 8(12): p. 970. 40.Massagué, J., J. Seoane, and D. Wotton, Smad transcription factors. Genes & development, 2005. 19(23): p. 2783-2810. 41.Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature, 2003. 425(6958): p. 577. 42.Zhang, Y.E., Non-Smad pathways in TGF-β signaling. Cell research, 2009. 19(1): p. 128. 43.Li, H.-Y., et al., TGF-β signaling regulates p-Akt levels via PP2A during diapause entry in the cotton bollworm, Helicoverpa armigera. Insect biochemistry and molecular biology, 2017. 87: p. 165-173.
|