|
1.Hansma, P.; Drake, B.; Marti, O.; Gould, S.; Prater, C., The Scanning Ion-Conductance Microscope. Science 1989, 243, 641-643. 2.Rheinlaender, J.; Schaffer, T. E., Lateral Resolution and Image Formation in Scanning Ion Conductance Microscopy. Anal. Chem. 2015, 87, 7117-24. 3.Sanchez, D.; Anand, U.; Gorelik, J.; Benham, C. D.; Bountra, C.; Lab, M.; Klenerman, D.; Birch, R.; Anand, P.; Korchev, Y., Localized and Non-Contact Mechanical Stimulation of Dorsal Root Ganglion Sensory Neurons Using Scanning Ion Conductance Microscopy. J. Neurosci. Methods. 2007, 159, 26-34. 4.Perry, D.; Paulose Nadappuram, B.; Momotenko, D.; Voyias, P. D.; Page, A.; Tripathi, G.; Frenguelli, B. G.; Unwin, P. R., Surface Charge Visualization at Viable Living Cells. J. Am. Chem. Soc. 2016, 138, 3152-60. 5.Babakinejad, B.; Jonsson, P.; Lopez Cordoba, A.; Actis, P.; Novak, P.; Takahashi, Y.; Shevchuk, A.; Anand, U.; Anand, P.; Drews, A.; Ferrer-Montiel, A.; Klenerman, D.; Korchev, Y. E., Local Delivery of Molecules from a Nanopipette for Quantitative Receptor Mapping on Live Cells. Anal. Chem. 2013, 85, 9333-42. 6.Ying, Y. L.; Hu, Y. X.; Gao, R.; Yu, R. J.; Gu, Z.; Lee, L. P.; Long, Y. T., Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells. J. Am. Chem. Soc. 2018, 140, 5385-5392. 7.Page, A.; Kang, M.; Armitstead, A.; Perry, D.; Unwin, P. R., Quantitative Visualization of Molecular Delivery and Uptake at Living Cells with Self-Referencing Scanning Ion Conductance Microscopy-Scanning Electrochemical Microscopy. Anal. Chem. 2017, 89, 3021-3028. 8.Chen, C. C.; Zhou, Y.; Morris, C. A.; Hou, J.; Baker, L. A., Scanning Ion Conductance Microscopy Measurement of Paracellular Channel Conductance in Tight Junctions. Anal. Chem. 2013, 85, 3621-8. 9.McKelvey, K.; Kinnear, S. L.; Perry, D.; Momotenko, D.; Unwin, P. R., Surface Charge Mapping with a Nanopipette. J. Am. Chem. Soc. 2014, 136, 13735-44. 10.Michalak, M.; Kurel, M.; Jedraszko, J.; Toczydlowska, D.; Wittstock, G.; Opallo, M.; Nogala, W., Voltammetric pH Nanosensor. Anal. Chem. 2015, 87, 11641-5. 11.Zhou, L.; Gong, Y.; Hou, J.; Baker, L. A., Quantitative Visualization of Nanoscale Ion Transport. Anal. Chem. 2017, 89, 13603-13609. 12.Zhou, L.; Gong, Y.; Sunq, A.; Hou, J.; Baker, L. A., Capturing Rare Conductance in Epithelia with Potentiometric-Scanning Ion Conductance Microscopy. Anal. Chem. 2016, 88, 9630-9637. 13.Bard, A. J.; Fan, F. R. F.; Kwak, J.; Lev, O., Scanning Electrochemical Microscopy. Introduction and Principles. Anal. Chem. 1989, 61, 132-138. 14.Takahashi, Y.; Shevchuk, A.; Novak, P.; Murakami, Y.; Shiku, H.; Korchev, Y.; Matsue, T., Simultaneous Noncontact Topography and Electrochemical Imaging by SECM SICM Featuring Ion Current Feedback Regulation. J. Am. Chem. Soc. 2010, 132, 10118-10126. 15.Morris, C. A.; Chen, C. C.; Baker, L. A., Transport of Redox Probes through Single Pores Measured by Scanning Electrochemical-Scanning Ion Conductance Microscopy (SECM-SICM). Analyst 2012, 137, 2933-8. 16.O'Connell, M. A.; Wain, A. J., Mapping Electroactivity at Individual Catalytic Nanostructures using High-Resolution Scanning Electrochemical-Scanning Ion Conductance Microcopy. Anal. Chem. 2014, 86, 12100-7. 17.O'Connell, M. A.; Lewis, J. R.; Wain, A. J., Electrochemical Imaging of Hydrogen Peroxide Generation at Individual Gold Nanoparticles. Chem. Commun. 2015, 51, 10314-7. 18.Amemiya, S.; Chen, R.; Nioradze, N.; Kim, J., Scanning Electrochemical Microscopy of Carbon Nanomaterials and Graphite. Acc. Chem. Res. 2016, 49, 2007-14. 19.Schorr, N. B.; Jiang, A. G.; Rodriguez-Lopez, J., Probing Graphene Interfacial Reactivity via Simultaneous and Colocalized Raman-Scanning Electrochemical Microscopy Imaging and Interrogation. Anal. Chem. 2018, 90, 7848-7854. 20.Joshi, V. S.; Sheet, P. S.; Cullin, N.; Kreth, J.; Koley, D., Real-Time Metabolic Interactions between Two Bacterial Species Using a Carbon-Based pH Microsensor as a Scanning Electrochemical Microscopy Probe. Anal. Chem. 2017, 89, 11044-11052. 21.Williams, C. G.; Edwards, M. A.; Colley, A. L.; Macpherson, J. V.; Unwin, P. R., Scanning Micropipet Contact Method for High-Resolution Imaging of Electrode Surface Redox Activity. Anal. Chem. 2009, 81, 2486-2495. 22.Anderson, S. E.; Bau, H. H., Electrical Detection of Cellular Penetration During Microinjection with Carbon Nanopipettes. Nanotechnology 2014, 25, 245102. 23.Schrlau, M. G.; Falls, E. M.; Ziober, B. L.; Bau, H. H., Carbon Nanopipettes for Cell Probes and Intracellular Injection. Nanotechnology 2008, 19, 015101. 24.Seifert, J.; Rheinlaender, J.; Novak, P.; Korchev, Y. E.; Schaffer, T. E., Comparison of Atomic Force Microscopy and Scanning Ion Conductance Microscopy for Live Cell Imaging. Langmuir 2015, 31, 6807-13. 25.McKelvey, K.; Nadappuram, B. P.; Actis, P.; Takahashi, Y.; Korchev, Y. E.; Matsue, T.; Robinson, C.; Unwin, P. R., Fabrication, Characterization, and Functionalization of Dual Carbon Electrodes as Probes for Scanning Electrochemical Microscopy (SECM). Anal. Chem. 2013, 85, 7519-26. 26.Kim, B. M.; Murray, T.; Bau, H. H., The Fabrication of Integrated Carbon Pipes with Sub-Micron Diameters. Nanotechnology 2005, 16, 1317-1320. 27.Sen, M.; Takahashi, Y.; Matsumae, Y.; Horiguchi, Y.; Kumatani, A.; Ino, K.; Shiku, H.; Matsue, T., Improving the Electrochemical Imaging Sensitivity of Scanning Electrochemical Microscopy-Scanning Ion Conductance Microscopy by Using Electrochemical Pt Deposition. Anal. Chem. 2015, 87, 3484-9. 28.Kang, M.; Momotenko, D.; Page, A.; Perry, D.; Unwin, P. R., Frontiers in Nanoscale Electrochemical Imaging: Faster, Multifunctional, and Ultrasensitive. Langmuir 2016, 32, 7993-8008. 29.Perry, D.; Botros, R. A.; Momotenko, D.; Kinnear, S. L.; Unwin, P. R., Simultaneous Nanoscale Surface Charge and Topographical Mapping. ACS. Nano. 2015, 9, 7266-7276. 30.Page, A.; Perry, D.; Young, P.; Mitchell, D.; Frenguelli, B. G.; Unwin, P. R., Fast Nanoscale Surface Charge Mapping with Pulsed-Potential Scanning Ion Conductance Microscopy. Anal. Chem. 2016, 88, 10854-10859. 31.Zhu, C.; Zhou, L.; Choi, M.; Baker, L. A., Mapping Surface Charge of Individual Microdomains with Scanning Ion Conductance Microscopy. ChemElectroChem 2018, 5, 2986-2990. 32.Fu, Y.; Tokuhisa, H.; Baker, L. A., Nanopore DNA Sensors Based on Dendrimer-Modified Nanopipettes. Chem. Commun. 2009, 4877-9. 33.Wang, Y.; Kececi, K.; Mirkin, M. V.; Mani, V.; Sardesai, N.; Rusling, J. F., Resistive-Pulse Measurements with Nanopipettes: Detection of Au Nanoparticles and Nanoparticle-Bound Anti-Peanut IgY. Chem. Sci. 2013, 4, 655-663. 34.Li, B. R.; Chen, C. C.; Kumar, U. R.; Chen, Y. T., Advances in Nanowire Transistors for Biological Analysis and Cellular Investigation. Analyst 2014, 139, 1589-608. 35.Qin, M.; Hou, S.; Wang, L.; Feng, X.; Wang, R.; Yang, Y.; Wang, C.; Yu, L.; Shao, B.; Qiao, M., Two Methods for Glass Surface Modification and Their Application in Protein Immobilization. Colloids. Surf. B. 2007, 60, 243-9. 36.Yu, Y.; Noel, J. M.; Mirkin, M. V.; Gao, Y.; Mashtalir, O.; Friedman, G.; Gogotsi, Y., Carbon Pipette-Based Electrochemical Nanosampler. Anal. Chem. 2014, 86, 3365-72. 37.Umehara, S.; Karhaneka, M.; Davisb, R. W.; Pourmand, N., Label-Free Biosensing with Functionalized Nanopipette Probes. Proc. Natl. Acad. Sci. U.S.A. 2008, 106, 4611-4616. 38.Son, D.; Park, S. Y.; Kim, B.; Koh, J. T.; Kim, T. H.; An, S.; Jang, D.; Kim, G. T.; Jhe, W.; Hong, S., Nanoneedle Transistor-Based Sensors for the Selective Detection of Intracellular Calcium Ions. ACS. Nano. 2011, 5, 3888-3895. 39.Liming, Y.; Andreas, B.; R., A. M.; K., Y. E.; David, K., Programmable Delivery of DNA through a Nanopipet. Anal. Chem. 2002, 74, 1380-1385. 40.Andreas, B.; Dejian, Z.; Liming, Y.; Chris, A.; David, K., A Simple Voltage Controlled Enzymatic Nanoreactor Produced in the Tip of a Nanopipet. Nano. Lett. 2004, 4. 41.Liang, Y.; Huang, J.; Zang, P.; Kim, J.; Hu, W., Molecular Layer Deposition of APTES on Silicon Nanowire Biosensors: Surface Characterization, Stability and pH Response. Appl. Surf. Sci. 2014, 322, 202-208. 42.Wei, C.; Bard, A. J., Current Rectification at Quartz Nanopipet Electrodes. Anal. Chem. 1997, 69, 4627-4633. 43.Liu, J.; Kvetny, M.; Feng, J.; Wang, D.; Wu, B.; Brown, W.; Wang, G., Surface Charge Density Determination of Single Conical Nanopores Based on Normalized Ion Current Rectification. Langmuir 2012, 28, 1588-95. 44.Liu, S.; Dong, Y.; Zhao, W.; Xie, X.; Ji, T.; Yin, X.; Liu, Y.; Liang, Z.; Momotenko, D.; Liang, D.; Girault, H. H.; Shao, Y., Studies of Ionic Current Rectification Using Polyethyleneimines Coated Glass Nanopipettes. Anal. Chem. 2012, 84, 5565-73. 45.Shi, W.; Sa, N.; Thakar, R.; Baker, L. A., Nanopipette Delivery: Influence of Surface Charge. Analyst 2015, 140, 4835-42. 46.Wu, J.; Risalvato, F. G.; Ke, F.-S.; Pellechia, P. J.; Zhou, X.-D., Electrochemical Reduction of Carbon Dioxide I. Effects of the Electrolyte on the Selectivity and Activity with Sn Electrode. J. Electrochem. Soc. 2012, 159, F353-F359. 47.Sulpizi, M.; Gaigeot, M.-P.; Sprik, M., The Silica–Water Interface: How the Silanols Determine the Surface Acidity and Modulate the Water Properties. J. Chem. Theory Comput. 2012, 8, 1037-1047. 48.Siwy, Z. S., Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Funct. Mater. 2006, 16, 735-746. 49.Aissaoui, N.; Bergaoui, L.; Landoulsi, J.; Lambert, J. F.; Boujday, S., Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption. Langmuir 2012, 28, 656-65. 50.Kubeil, C.; Bund, A., The Role of Nanopore Geometry for the Rectification of Ionic Currents. J. Phys. Chem. 2011, 115, 7866-7873. 51.White, H. S.; Bund, A., Ion Current Rectification at Nanopores in Glass Membranes. Langmuir 2008, 24, 2212-2218. 52.Cervera, J.; Schiedt, B.; Neumann, R.; Mafe, S.; Ramirez, P., Ionic Conduction, Rectification, and Selectivity in Single Conical Nanopores. J. Chem. Phys. 2006, 124, 104706. 53.Lan, W. J.; Edwards, M. A.; Luo, L.; Perera, R. T.; Wu, X.; Martin, C. R.; White, H. S., Voltage-Rectified Current and Fluid Flow in Conical Nanopores. Acc. Chem. Res. 2016, 49, 2605-2613. 54.Kovarik, M. L.; Zhou, K.; Jacobson, S. C., Effect of Conical Nanopore Diameter on Ion Current Rectification. J. Phys. Chem. 2009, 113, 15960-15966. 55.Sa, N.; Lan, W. J.; Shi, W.; Baker, L. A., Rectification of Ion Current in Nanopipettes by External Substrates. ACS. Nano. 2013, 7, 11272-11282. 56.Chen, C. C.; Zhou, Y.; Baker, L. A., Scanning Ion Conductance Microscopy. Annu. Rev. Anal. Chem. 2012, 5, 207-28. 57.Polcari, D.; Dauphin-Ducharme, P.; Mauzeroll, J., Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015. Chem. Rev. 2016, 116, 13234-13278. 58.Souto, R.; Lamaka, S. V.; González, S., Uses of Scanning Electrochemical Microscopy in Corrosion Research. Badajoz : Formatex Research Center: 2010; Vol. 3, p 1769-1780. 59.Molina, J.; Fernández, J.; Cases, F., Scanning Electrochemical Microscopy for the Analysis and Patterning of Graphene Materials: A Review. Synth. Met. 2016, 222, 145-161. 60.Clausmeyer, J.; Masa, J.; Ventosa, E.; Ohl, D.; Schuhmann, W., Nanoelectrodes Reveal the Electrochemistry of Single Nickelhydroxide Nanoparticles. Chem. Commun. 2016, 52, 2408-11. 61.Takahashi, Y.; Shevchuk, A. I.; Novak, P.; Zhang, Y.; Ebejer, N.; Macpherson, J. V.; Unwin, P. R.; Pollard, A. J.; Roy, D.; Clifford, C. A.; Shiku, H.; Matsue, T.; Klenerman, D.; Korchev, Y. E., Multifunctional Nanoprobes for Nanoscale Chemical Imaging and Localized Chemical Delivery at Surfaces and Interfaces. Angew. Chem. Int. Ed. 2011, 50, 9638-42. 62.Xiong, J.; Chen, Q.; Edwards, M. A.; White, H. S., Ion Transport within High Electric Fields in Nanogap Electrochemical Cells. ACS. Nano. 2015, 9, 8520-9. 63.吳文馨. 功能性奈米滴管探針之製備於電化學分析之應用. 國立成功大學, 化學所, 2019. 64.Bishop, G. W.; Ahiadu, B. K.; Smith, J. L.; Patterson, J. D., Use of Redox Probes for Characterization of Layer-by-Layer Gold Nanoparticle-Modified Screen-Printed Carbon Electrodes. J. Electrochem. Soc. 2016, 164, B23-B28. 65.Cannes, C.; Kanoufi, F.; Bard, A. J., Cyclic Voltammetry and Scanning Electrochemical Microscopy of Ferrocenemethanol at Monolayer and Bilayer-Modified Gold Electrodes. J. Electroanal. Chem. 2003, 547, 83-91. 66.Bard, A. J.; Faulkner, L. R., Electrochemical methods: Fundamentals and Applications. 2nd ed.; 2000.
|