|
1. Roy, X. et al., Prussian Blue Nanocontainers: Selectively Permeable Hollow Metal–Organic Capsules from Block Ionomer Emulsion-Induced Assembly., J. Am. Chem. Soc., 2011, 133, 8420-8423
2. Risset, O. N. et al., RbjMk[Fe(CN)6]l (M = Co, Ni) Prussian Blue Analogue Hollow Nanocubes: a New Example of a Multilevel Pore System., Chem. Mater., 2013, 25, 42-47
3. Hu, M. et al., Synthesis of Prussian Blue Nanoparticles with a Hollow Interior by Controlled Chemical Etching., Angew. Chem., 2012, 4, 1008-1012
4. Hu, M. et al., Preparation of Various Prussian Blue Analogue Hollow Nanocubes with Single Crystalline Shells., Eur. J. Inorg. Chem., 2012, 30, 4795-4799
5. Wang, J. G. et al., Cation Exchange Formation of Prussian Blue Analogue Submicroboxes for High-Performance Na-ion Hybrid Supercapacitors., Nano Energy, 2017, 39, 647-653
6. Cai, X. et al., A Prussian Blue‐Based Core–Shell Hollow‐Structured Mesoporous Nanoparticle as a Smart Theranostic Agent with Ultrahigh pH‐Responsive Longitudinal Relaxivity., Adv. Mater., 2015, 41, 6382-6389
7. Kandanapitiye, M. S. et al., Selective Ion Exchange Governed by the Irving–Williams Series in K2Zn3[Fe(CN)6]2 Nanoparticles: Toward a Designer Prodrug for Wilson’s Disease., Inorg. Chem., 2015, 54, 1212-1214
8. Mukherjee S. et al., Biocompatible Nickel-Prussian Blue@Silver Nanocomposites Show Potent Antibacterial Activities., Future Sci. OA, 2017, 4, 233
9. Hung, C. H., Prussian Blue Analogues Structure Conversion from Solid to Frame., Unpublished master dissertation, Department of Chemistry, National Cheng Kung University, Taiwan
10. Sjöstrand, T., Endogenous Formation of Carbon Monoxide in Man., Nature, 1949, 164, 580-581
11. McCoubrey, W. K. Jr. et al., Isolation and Characterization of A cDNA from The Rat Brain That Encodes Hemoprotein Heme oxygenase-3., Eur. J. Biochem., 1997, 247, 725-732
12. Otterbein, L. E. et al., Heme Oxygenase-1 and Carbon Monoxide in The Heart: The Balancing Act Between Danger Signaling and Pro-Survival., Circ. Res., 2016, 12, 1940-1959.
13. Rose, J. J. et al., Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy., Am. J. Respir. Crit. Care Med., 2017, 5, 596-606.
14. Li, W. P. et al., Controllable CO Release Following Near-Infrared Light-Induced Cleavage of Iron Carbonyl Derivatized Prussian Blue Nanoparticles for CO-Assisted Synergistic Treatment., ACS Nano, 2016, 10, 11027-11036
15. Jin, Z. et al., Intratumoral H2O2-Triggered Release of CO from A Metal Carbonylbased Nanomedicine for Efficient CO Therapy., Chem. Commun., 2017, 53, 5557-5560
16. Fan, W. et al., Generic Synthesis of Small-Sized Hollow Mesoporous Organosilica Nanoparticles for Oxygen-Independent X-Ray-Activated Synergistic Therapy., Nat. Commun., 2019, 10, 1241
17. Zhao, C. et al., A Co–Fe Prussian Blue Analogue for Efficient Fenton-Like Catalysis: The Effect of High-Spin Cobalt., Chem. Commun., 2019, 55, 7151-7154
18. Nai, J. et al., Oriented Assembly of Anisotropic Nanoparticles into Frame-Like Superstructures., Sci. Adv., 2017, 3, e1700732
19. Ghosh, S. N., Infrared Spectra of The Prussian Blue Analogs., J. Inorg. Nucl. Chem., 1974, 36, 2465-2466
20. Wu, Z. C. et al., Rattle‐Type Fe3O4@CuS Developed to Conduct Magnetically Guided Photoinduced Hyperthermia at First and Second NIR Biological Windows., Adv. Func. Mater., 2015, 41, 6527-6537
|