跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡佑鑫
研究生(外文):Yu-HsinTsai
論文名稱:從光熱惰性奈米立方體轉為光熱活性奈米籠於癌症治療:光熱誘發磁振造影、熱療與一氧化碳治療
論文名稱(外文):A Photothermally Inactive Nanocube Converted to Photothermally Active Nanocage for 3-in-1 Thernostics of Photothermal Induced-MR Imaging, -Hyperthermia, and -CO Therapy
指導教授:葉晨聖
指導教授(外文):Chen-Sheng Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:28
中文關鍵詞:鈷鐵普魯士藍金屬置換反應一氧化碳釋放分子
外文關鍵詞:cobalt Prussian bluemetal replacement reactioncarbon monoxide releasing molecules(CORMs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一氧化碳可抑制細胞內粒線體活性,使其發生細胞凋亡。本篇研究選擇以高生物相容性之鈷鐵普魯士藍奈米立方體,於酸性環境下發生金屬置換反應,而產生出近紅外光波段吸收。接著,將乙二胺分子與材料表面之鐵離子進行配位螯合,使其表面帶有胺基用於將帶有羧基之一氧化碳釋放分子401修飾於表面上。合成出攜帶一氧化碳之鈷鐵普魯士藍奈米籠後,利用材料於近紅外光波段有明顯吸收之特性,材料以808 nm近紅外光雷射照射進行光熱轉換達到升溫效果,進而調控一氧化碳分子的釋放。材料結合一氧化碳氣體與光熱治療消滅癌細胞,在釋放一氧化碳的同時,原本於一氧化碳釋放分子401當中之一價錳離子會被氧化形成二價,用於增強磁振造影可做為腫瘤診斷之用途。
Carbon monoxide (CO) can inhibit the activity of mitochondria causing cell apoptosis. Herein, we design a controllable carbon monoxide releasing platform, a CO releasing molecules conjugated cobalt Prussian blue nanocages (hCPB). First, we synthesize the cobalt Prussian blue nanocubes and further treat with acid for metal replacement reaction. After the acidic corrosion, it shows the increase of near infrared (600-900 nm) absorbance as prolonged reaction time. The Fe sites on surface was chelated with ethylenediamine to yield amine-functionalized hCPB NPs followed by conjugation with CORM-401 by means of amide formation. The CORM-401 derivatized cobalt Prussian blue nanoacage exhibits NIR-responsive hyperthermia effect giving the release of CO. In our expectation, the combination of CO and photothermal therapy displays synergistic effect against cancer cells. Moreover, the Mn1+ may oxidized to Mn2+ concomitant of CO release and provide the T1-weighted MR imaging for tumor diagnosis.
目錄
摘要 i
英文延伸摘要(Extend Abstract) ii
致謝 ix
目錄 x
圖目錄 xii
第一章 緒論 1
1.1 普魯士藍類似物(Prussian Blue Analogues, PBAs) 1
1.1.1中空普魯士藍類似物之製備 2
1.1.2普魯士藍類似物於生醫上應用 4
1.2 一氧化碳(Carbon Monoxide, CO) 7
1.2.1一氧化碳於人體內產生機制 7
1.2.2一氧化碳於癌症治療機制與應用 8
第二章 實驗藥品與儀器備 11
2.1 實驗藥品 11
2.1.1合成hCPB-CORM之化學藥品 11
2.1.2細胞實驗 11
2.1.3實驗細胞株 12
2.2儀器設備 12
第三章 研究動機與實驗步驟 13
3.1 實驗動機與目的 13
3.2 實驗步驟 14
3.2.1鈷鐵普魯士藍奈米立方體(CPB)之合成 14
3.2.2鈷鐵普魯士藍奈米籠(hCPB)之合成 15
3.2.3表面修飾帶有胺基之鈷鐵普魯士藍奈米籠(hCPB-NH2) 15
3.2.4將CORM-401修飾於鈷鐵普魯士藍奈米籠表面(hCPB-CORM) 16
3.2.5鈷鐵普魯士藍奈米籠照射808 nm近紅外光雷射進行光熱轉換之升溫曲線 16
3.2.6細胞毒性測試 16
第四章 結果與討論 18
4.1鈷鐵普魯士藍奈米立方體材料結構鑑定 18
4.2鈷鐵普魯士藍奈米立方體進行酸蝕反應 20
4.3表面帶有胺基之鈷鐵普魯士藍奈米籠(hCPB-NH2) 22
4.4鈷鐵普魯士藍奈米籠表面修飾CORM-401(hCPB-CORM) 23
4.5鈷鐵普魯士藍奈米籠照射808 nm近紅外光雷射之升溫曲線 24
4.6細胞毒性測試 25
第五章 結論 26
參考文獻 27

圖目錄
圖1-1普魯士藍結構示意圖 1
圖1-2以軟模板(乳化)製備鋅鐵普魯士藍 2
圖1-3以硬模板合成中空鈷(鎳)鐵普魯士藍 2
圖1-4以酸蝕方法製備中空普魯士藍類似物 3
圖1-5透過離子交換合成中空鈷鐵普魯士藍 3
圖1-6普魯士藍類似物之光熱與化學治療,並釋放錳離子用於MRI顯影 4
圖1-7以Irving-Williams series治療威爾森氏症 5
圖1-8鋅鐵普魯士藍複合材料用於抗菌實驗 5
圖1-9酸蝕過程產生近紅外光吸收之機制 6
圖1-10血紅素代謝產生一氧化碳 8
圖1-11以近紅外光照射普魯士藍進行光熱治療與一氧化碳釋放 9
圖1-12以過氧化氫誘發釋放一氧化碳之中孔洞二氧化矽奈米空球 9
圖1-13以X射線照射進行癌症協同治療 10
圖3-1 hCPB-CORM 材料製備與應用流程圖 14
圖3-2鈷鐵普魯士藍奈米立方體合成步驟 14
圖3-3鈷鐵普魯士藍奈米籠(hCPB)合成步驟 15
圖3-4 hCPB-NH2合成步驟 15
圖3-5 hCPB-CORM合成步驟 16
圖3-6 MTT assay 17
圖4-1鈷鐵普魯士藍奈米立方體之TEM影像 18
圖4-2鈷鐵普魯士藍奈米立方體之FTIR圖譜 18
圖4-4普魯士藍奈米立方體酸蝕過程之TEM影像(比例尺皆為500 nm) 20
圖4-5不同酸蝕時間之UV-vis吸收光譜 (內圖為CPB於酸蝕過程顏色變化:紅棕→褐→藍綠→藍) 20
圖4-6酸蝕反應前後之FTIR圖譜 21
圖4-7鈷鐵普魯士藍奈米籠之XRD圖譜 21
圖4-8 (a)hCPB-NH2之TEM影像(b)hCPB加入不同體積乙二胺之表面電位 22
圖4-9鈷鐵普魯士藍奈米籠修飾乙二胺前後與乙二胺之FTIR圖譜 23
圖4-10 hCPB-CORM之TEM影像 23
圖4-11鈷鐵普魯士藍奈米籠修飾CORM-401之吸收光譜 24
圖4-12不同濃度CORM-401之吸收光譜(內圖為CORM-401於383 nm波長之檢量線) 24
圖4-13 (a)不同濃度之hCPB材料照射0.5 W/cm2的808 nm雷射 (b)50 ppm hCPB材料以不同雷射功率密度之升溫曲線 25
圖4-14不同鐵離子濃度之hCPB細胞毒性測試 25
1. Roy, X. et al., Prussian Blue Nanocontainers: Selectively Permeable Hollow Metal–Organic Capsules from Block Ionomer Emulsion-Induced Assembly., J. Am. Chem. Soc., 2011, 133, 8420-8423

2. Risset, O. N. et al., RbjMk[Fe(CN)6]l (M = Co, Ni) Prussian Blue Analogue Hollow Nanocubes: a New Example of a Multilevel Pore System., Chem. Mater., 2013, 25, 42-47

3. Hu, M. et al., Synthesis of Prussian Blue Nanoparticles with a Hollow Interior by Controlled Chemical Etching., Angew. Chem., 2012, 4, 1008-1012

4. Hu, M. et al., Preparation of Various Prussian Blue Analogue Hollow Nanocubes with Single Crystalline Shells., Eur. J. Inorg. Chem., 2012, 30, 4795-4799

5. Wang, J. G. et al., Cation Exchange Formation of Prussian Blue Analogue Submicroboxes for High-Performance Na-ion Hybrid Supercapacitors., Nano Energy,
2017, 39, 647-653

6. Cai, X. et al., A Prussian Blue‐Based Core–Shell Hollow‐Structured Mesoporous Nanoparticle as a Smart Theranostic Agent with Ultrahigh pH‐Responsive Longitudinal Relaxivity., Adv. Mater., 2015, 41, 6382-6389

7. Kandanapitiye, M. S. et al., Selective Ion Exchange Governed by the Irving–Williams Series in K2Zn3[Fe(CN)6]2 Nanoparticles: Toward a Designer Prodrug for Wilson’s Disease., Inorg. Chem., 2015, 54, 1212-1214

8. Mukherjee S. et al., Biocompatible Nickel-Prussian Blue@Silver Nanocomposites Show Potent Antibacterial Activities., Future Sci. OA, 2017, 4, 233

9. Hung, C. H., Prussian Blue Analogues Structure Conversion from Solid to Frame., Unpublished master dissertation, Department of Chemistry, National Cheng Kung University, Taiwan

10. Sjöstrand, T., Endogenous Formation of Carbon Monoxide in Man., Nature, 1949, 164, 580-581


11. McCoubrey, W. K. Jr. et al., Isolation and Characterization of A cDNA from The Rat Brain That Encodes Hemoprotein Heme oxygenase-3., Eur. J. Biochem., 1997, 247, 725-732

12. Otterbein, L. E. et al., Heme Oxygenase-1 and Carbon Monoxide in The Heart: The Balancing Act Between Danger Signaling and Pro-Survival., Circ. Res., 2016, 12, 1940-1959.

13. Rose, J. J. et al., Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy., Am. J. Respir. Crit. Care Med., 2017, 5, 596-606.

14. Li, W. P. et al., Controllable CO Release Following Near-Infrared Light-Induced Cleavage of Iron Carbonyl Derivatized Prussian Blue Nanoparticles for CO-Assisted Synergistic Treatment., ACS Nano, 2016, 10, 11027-11036

15. Jin, Z. et al., Intratumoral H2O2-Triggered Release of CO from A Metal Carbonylbased Nanomedicine for Efficient CO Therapy., Chem. Commun., 2017, 53, 5557-5560

16. Fan, W. et al., Generic Synthesis of Small-Sized Hollow Mesoporous Organosilica Nanoparticles for Oxygen-Independent X-Ray-Activated Synergistic Therapy., Nat. Commun., 2019, 10, 1241

17. Zhao, C. et al., A Co–Fe Prussian Blue Analogue for Efficient Fenton-Like Catalysis: The Effect of High-Spin Cobalt., Chem. Commun., 2019, 55, 7151-7154

18. Nai, J. et al., Oriented Assembly of Anisotropic Nanoparticles into Frame-Like Superstructures., Sci. Adv., 2017, 3, e1700732

19. Ghosh, S. N., Infrared Spectra of The Prussian Blue Analogs., J. Inorg. Nucl. Chem., 1974, 36, 2465-2466

20. Wu, Z. C. et al., Rattle‐Type Fe3O4@CuS Developed to Conduct Magnetically Guided Photoinduced Hyperthermia at First and Second NIR Biological Windows., Adv. Func. Mater., 2015, 41, 6527-6537
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top