跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 03:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:巫佩勳
研究生(外文):Pei-SyunWu
論文名稱:以GAMLSS探討台灣地區年降雨指標機率分佈之非定常特性
論文名稱(外文):Exploring nonstationary characteristics of distributions of annual rainfall indices in Taiwan using GAMLSS
指導教授:蕭政宗蕭政宗引用關係
指導教授(外文):Jenq-Tzong Shiau
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:110
中文關鍵詞:非定常性年降雨指標GAMLSS
外文關鍵詞:NonstationaryAnnual rainfall indicesGAMLSS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全球氣候變遷會改變水文循環的速率,增強水文極端事件的發生頻率及強度,降雨特性的改變使得用於傳統水文分析的定常性假設不再適用,因此本研究旨在探討台灣地區降雨特性是否存在非定常性,以及若存在非定常性時降雨特性隨時間的變化情形。
本研究使用位置、尺度和形狀的廣義附加模式 (generalized additive models for location, scale, and shape,GAMLSS)進行台灣地區年降雨指標非定常性分析,探討降雨量、延時及極端值等特性之變化情形,選用北、中、南、東等四區域各兩站,共八個雨量站(台北、宜蘭、日月潭、台中、高雄、恆春、大武、成功)不同觀測長度之日雨量資料,分析十種年降雨指標,包括年總雨量、濕季(5-10月)雨量佔年雨量比例、年最大一日雨量、年最大二日雨量、年最大連續降雨日數、年最大連續降雨量、年大雨日數(日雨量≧80mm)、降雨日降雨強度(年總雨量/年降雨日數)、年不降雨日數及年最大連續不降雨日數,藉由機率分佈隨時間的變化觀察各區域八個測站年降雨指標的變化趨勢。分析結果顯示大多數年降雨指標之變化情形在北、中、南、東部並無明顯區域特性,年最大一日雨量及年最大二日雨量有相似之變化,在台北、恆春及大武站於1990年後之近30年來均有上升之趨勢;年最大連續降雨日數在北部呈現定常性,南部及東部則有下降的變化情形;降雨日降雨強度除日月潭及成功站為定常性之外,其餘測站皆在1980年後之近40年來皆有上升趨勢;年不降雨日數在台北、恆春及大武站均有上升的趨勢,宜蘭、台中及成功站則在近年來有下降的情形。此外,本文亦探討不同時間長度之分析是否會影響結果,在本研究中時間長度縮短較多之測站更容易產生不同之模擬結果,且顯現在長時期雨量紀錄的非定常性可能因時間縮短而呈現定常性。
Global climate change would induce changes of the rate of hydrologic cycles and intensify the frequency and intensity of hydrologic extreme events. Changes in rainfall characteristics lead to the hypothesis of stationary in traditional hydrologic analysis no longer applicable. Nonstationary analysis of rainfall characteristics thus becomes one of the important issues in water resources management. In this study, the generalized additive models for location, scale, and shape (GAMLSS) is adopted for the nonstationary analysis of the annual rainfall indices in Taiwan. Ten annual rainfall indices are used to detect alterations of the magnitude, duration, and extreme of annual rainfall regime at eight rainfall stations in the north, central, south, and east regions of Taiwan. The results indicate that 55% of the annual rainfall indices are nonstationary, and the characteristics of regional similarities are not found in most of the annual rainfall indices. Trends of some annual rainfall indices are observed at different stations. Annual 1-day maximum rainfall and annual 2-day maximum rainfall have upward trend in the past 30 years at Taipei, Hengchun, and Dawu stations. Annual maximum consecutive rain days has downward changes in the south and east regions. Daily rainfall intensity has rising trend in the past 40 years at most stations except for Sun Moon Lake and Chengkung stations. Annual dry days has increasing trend at Taipei, Hengchun, and Dawu stations, while the downward trend in recent years has been observed at Yilan, Taichung, and Chengkung stations in recent years.
摘要 I
Extended Abstract II
誌謝 VIII
目錄 IX
表目錄 XI
圖目錄 XII
第一章 緒論 1
1-1 研究動機與目的 1
1-2 相關文獻回顧 2
1-2-1 非定常性相關研究 2
1-2-2 以GAMLSS模擬非定常性相關研究 6
1-3 本文組織架構 9
第二章 研究方法 10
2-1 Mann-Kendall趨勢檢定法 11
2-2 位置,尺度和形狀的廣義附加模式(GAMLSS) 12
2-2-1 模式架構與計算 12
2-2-2 機率分佈 14
2-2-3 附加項 16
2-2-4 優選模式評鑑標準–AIC信息準則 17
2-2-5 優選模式診斷 17
2-3 年降雨指標 18
第三章 研究區域與資料概述 20
3-1 研究區域介紹 20
3-2 雨量站基本資料 21
3-3 年降雨指標統計特性 23
第四章 年降雨指標非定常性分析結果與討論 28
4-1 Mann-Kendall檢定 28
4-2 以GAMLSS模擬年降雨指標之分析結果與討論 33
4-2-1 年降雨指標之最佳模式 33
4-2-2 蠕蟲圖 38
4-2-3 年降雨指標模擬結果 42
4-2-4 年降雨指標隨時間變化型態之分類 72
4-2-5 年降雨指標分析時間長度之探討 75
4-3 Mann-Kendall檢定結果與GAMLSS模擬成果之比較 78
4-4 小結 78
第五章 結論與建議 80
5-1 結論 80
5-2 建議 82
參考文獻 83
附錄一 平均值及變異數隨時間變化圖 91
附錄二 模擬時間為1946~2017年之分位數曲線圖 101
1. 許晃雄、陳正達、盧孟明、陳永明、周佳、吳宜昭等,臺灣氣候變遷科學報告2011。行政院國家科學委員會,362頁,2011。
2. Akaike, H., A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19, 716–723, 1974.
3. Chen P.C., Wang Y.H., You J.Y., Wei C.C., Comparison of methods for non-stationary hydrologic frequency analysis: Case study using annual maximum daily precipitation in Taiwan, Journal of Hydrology, 545 ,197–211, 2017.
4. Coulibaly P., Baldwin C.K., Nonstationarity hydrological time series forecasting using nonlinear dynamic methods. Journal of Hydrology, 307, 164–174, 2005.
5. Cunderlik J.M., Burn D.H., Non-stationary pooled flood frequency analysis. Journal of Hydrology, 276 (1), 210-223, 2003.
6. Cunderlik J.M., Ouarda T., Regional flood-duration-frequency modeling in the changing environment. Journal of Hydrology, 318 (1–4), 276-291, 2006.
7. de Boor C., A Practical Guide to Splines. Springer-Verlag, New York, 1978.
8. Eckstein D., Künzel V., Schäfer L., Global Climate Risk Index 2018, ISBN: 978-3-943704-60-0, Pages36, 2017.
9. Gado T.A., Nguyen V.T.V., An at-site flood estimation method in the context of nonstationarity I. A simulation study. Journal of Hydrology, 535, 710-721, 2016a.
10. Gado T.A., Nguyen V.T.V., An at-site flood estimation method in the context of nonstationarity II. Statistical analysis of floods in Quebec. Journal of Hydrology, 535, 722-736, 2016b.
11. Gao M., Mo D., Wu X., Nonstationary modeling of extreme precipitation in China. Atmospheric Research, 182, 1–9, 2016.
12. Garcia Galiano S.G., Gimenez P.O., Giraldo-Osorio J.D., Assessing nonstationary spatial patterns of extreme droughts from long-term high-resolution observational dataset on a semiarid basin (Spain). Water, 7, 5458–5473, 2015.
13. Gilroy K.L., McCuen R.H., A nonstationary flood frequency analysis method to adjust forfuture climate change and urbanization. Journal of Hydrology, 414–415, 40-48, 2012.
14. Green P.J., Silverman B.W., Nonparametric Regression and Generalized Linear Models. Chapman and Hall, London, 1994.
15. Gu X., Zhang Q., Singh V.P., Chen X., Liu L., Nonstationarity in the occurrence rate of floods in the Tarim River basin, China, and related impacts of climate indices, Global and Planetary Change, 142, 1-13, 2016.
16. Hastie T.J., Tibshirani R.J., Generalized Additive Models. Chapman and Hall, London, 1990.
17. Hirsch, R.M., Slack, J.R. and Smith, R.A., Techniques of trend analysis for monthly water quality data, Water Resources Research 18(1), 107-121, 1982.
18. Hui R, Herman J, Lund J, Madani K, Adaptive water infrastructure planning for nonstationary hydrology. Advances in Water Resources, 118, 83–94, 2018.
19. Jain S., Lall U., Floods in a changing climate: does the past represent the future? Water Resources Research, 37 (12), 3193-3205, 2001.
20. Jiang C., Xiong L., Xu C.Y., Guo S., Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula, Hydrological Processes 29, 1521–1534, 2015.
21. Kendall, M.G., Rank correlation methods, Charles Griffin, London, 1975.
22. Kullback S., Leibler R.A., On information and sufficiency, Annals of Mathematical Statistics, 22, 79-86, 1951.
23. Kwon H.H., and Lall U, A copula-based nonstationary frequency analysis for the 2012-2015 drought in California, Advances in Water Resources, 52, doi:10.1002/2016WR018959, 2016.
24. Leclerc M., Ouarda T.B.M.J., Non-stationarity regional flood frequency analysis at ungauged sites. Journal of Hydrology, 343, 254-265, 2007.
25. Li H., Zhang Q., Singh V.P., Shi P., Sun P., Hydrological effects of cropland and climate change in arid and semi-arid river basins: A case study from the Yellow River basin, China. Journal of Hydrology, 549, 547−557, 2017.
26. Li J., Lei Y., Tan S., Bell C.D., Engel B.A., Wang Y, Nonstationary flood frequency analysis for annual flood peak and volume series in Both univariate and bivariate domain. Water Resources Management, 32 (13), 4239–4252, 2018.
27. Li J., Tan S., Nonstationary flood frequency analysis for annual flood peak series, adopting climate indices and check dam index as covariates. Water Resources Management, 29(15), 5533–5550, 2015.
28. Li J.Z., Wang Y.X., Li S.F., Hu R., A nonstationary standardized precipitation index incorporating climate indices as covariates. Journal of Geophysical Research: Atmospheres, 120, 12082–12095, 2015.
29. López J., Francés F., Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydrology and Earth System Sciences, 17(8), 3189−3203, 2013.
30. Machado M.J., Botero B.A., López J., Francés F., Díez-Herrero A., Benito G., Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrology and Earth System Sciences, 19, 2561–2576, 2015.
31. Mann H.B., Nonparametric tests against trend, Econometrica, 13, 245–259, 1945.
32. Milly P.C.D., Wetherald R.T., Dunne K.A., Delworth T.L., Increasing risk of great floods in a changing climate, Nature, 415 (6871), 514-517, 2002.
33. Milly P.C.D., Betancourt J., Falkenmark M., Hirsch R.M., Kundzewicz Z.W., Lettenmaier D.P., Stouffer R.J., Climate change - stationarity is dead: whither water management? Science, 319(5863), 573–574, 2008.
34. Petrow T., Merz B., Trends inflood magnitude, frequency andseasonality in Germany in the period 1951-2002. Journal of Hydrology, 371, 129–141, 2009..
35. Reinsch C., Smoothing by Spline Functions. Numerische Mathematik, 10, 177-183, 1967.
36. Rigby R.A., Stasinopoulos D.M., Generalized additive models for location, scale and shape, Journal of Applied Statistics, 54, 507–554, 2005.
37. Salas J.D., Obeysekera J., Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events, Journal of Hydrologic Engineering, 19(3), 554-568, 2014.
38. Sarhadi A., Ausín M.C., Wiper M.P., A new time-varying concept of risk in a changing climate. Scientific Reports, 6, 35755; doi: 10.1038/srep35755 , 2016.
39. Serago J.M., Vogel R.M., Parsimonious nonstationary flood frequency analysis. Advances in Water Resources, 112, 1–16, 2018.
40. Serinaldi, F., Kilsby, C.G., A modular class of multisite monthly rainfall generators for water resource management and impact studies. Journal of Hydrology, 464, 528–540, 2012.
41. Shiau J.T., Huang W.H., Detecting distributional changes of annual rainfall indices in Taiwan using quantile regression, Journal of Hydro-environment Research, 9(3), 368-380, 2015.
42. Silva A.T., Portela M.M., Naghettini M., Nonstationarities in the occurrence rates of flood events in Portuguese watersheds. Hydrology and Earth System Sciences, 16, 241–254, 2012.
43. Strupczewski W.G., Singh V.P., Feluch W., Non-stationary approach to at-site flood frequency modeling I. Maximum likelihood estimation. Journal of Hydrology, 248, 123–142, 2001a.
44. Strupczewski W.G., Kaczmarek Z., Non-stationary approach to at-site flood frequency modeling II. Weighted least squares estimation. Journal of Hydrology, 248, 143–151, 2001b.
45. Strupczewski W.G., Singh V.P., Mitosek H.T., Non-stationary approach to at-site flood frequency modelling. III. Flood analysis of polish rivers, Journal of Hydrology, 248, 152–167, 2001c.
46. Sun P., Wen Q., Zhang Q., Singh V.P., Sun Y., Li J., Nonstationarity-based evaluation of flood frequency and flood risk in the Huai River basin, China. Journal of Hydrology, 567, 393-404, 2018a.
47. Sun P., Zhang Q., Gu X., Shi P., Singh V.P., Song C., Zhang X., Nonstationarities and At-site Probabilistic Forecasts of Seasonal Precipitation in the East River Basin, China. International Journal of Disaster Risk Science, 9 (1), 100–115, 2018b.
48. Um M.J., Kim Y., Markus M., Wuebbles D.J., Modeling nonstationary extreme value distributions with nonlinear functions: an application using multiple precipitation projections for U.S. cities. Journal of Hydrology, 552, 396-406, 2017.
49. van Buuren S., Fredriks M., Worm plot: a simple diagnostic device for modeling growth reference curves, Statistics in Medicine, 20, 1259–77, 2001.
50. Villarini G., Smith J.A., Napolitano F., Nonstationary modeling of a long record of rainfall and temperature over Rome, Advances in Water Resources, 33(10), 1256–1267, 2010.
51. Villarini G., Smith J.A., Serinaldi F., Bales J., Bates P.D., Krajewski W.F., Flood frequency analysis for nonstationary annual peak records in an urban drainage basin, Advances in Water Resources, 32, 1255–1266, 2009.
52. Wang H., Killick R., Fu X., Distributional change of monthly precipitation due to climate change: comprehensive examination of dataset in southeastern United States, Hydrological Processes, 28, 5212–5219, 2013.
53. Wang Y., Li J., Feng P., Hu R., A time-dependent drought index for nonstationarity precipitation series. Water Resources Management, 29, 5631–5647, 2015.
54. Wang, H., Fu R., Kumar A., Li W., Intensification of summer rainfall variability in the southeastern United States during recent decades. Journal of Hydrometeorology, 11(4), 1007–1018, 2010.
55. Westra S., Alexander L.V., Zwiers F.W., Global increasing trends in annual maximum daily precipitation. Journal of Climate, 26, 3904–3918, 2013.
56. Westra S., Sisson S.A., Detection of non‐stationarity in precipitation extremes using a max‐stable process model. Journal of Hydrology, 406, 119–128, 2011.
57. Yan L., Xiong L., Guo S., Xu C.Y., Xia J., Du T. Comparison of four nonstationary hydrologic design methods for changing environment. Journal of Hydrology, 551, 132-150, 2017.
58. Yang P., Xia J., Zhang Y., Hong S., Temporal and spatial variations of precipitation in northwest China during 1960–2013. Atmospheric Research, 183, 283-295, 2017.
59. Zhang D.D., Yan D.H., Wang Y.C., Lu F., Liu S.H., GAMLSS-based nonstationary modeling of extreme precipitation in Beijing–Tianjin–Hebei region of China, Natural Hazards, 77, 1037–1053, 2015.
60. Zhang Q., Gu X., Singh V.P., Xiao M., Xu C.Y., Stationarity of annual flood peaks during 1951-2010 in the Pearl River basin, China. Journal of Hydrology, 519, 3263−3274, 2014.
61. Zhang T., Wang Y., Wang B., Tan S., Feng P., Nonstationary flood frequency analysis using univariate and bivariate time-varying models based on GAMLSS. Water, 10(7), 819, 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top