|
Bell, K., Bent, R., Meese‐Tamuri, S., Ali, A., Forder, J., & Aarts, M. Calmodulin Kinase IV–dependent CREB activation is required for neuroprotection via NMDA receptor‐PSD95 disruption. J. Neuro- chem 2013; 126:274–287. Chen, H., Hung, Y., Chen, T., Huang, S., Wang, Y., Lee, W., Lee, E. Melatonin improves presynaptic protein, SNAP‐25, expression and dendritic spine density and enhances functional and electrophysiological recovery following transient focal cerebral ischemia in rats. J. Pineal Res 2009; 47:260–270. Fan, J., Vasuta, O., Zhang, L., Wang, L., George, A., & Raymond, L. N‐Methyl‐d‐aspartate receptor subunit‐ and neuronal‐type dependence of excitotoxic signaling through post‐synaptic density 95. J. Neurochem 2010; 115:1045–1056. Fujita, R., & Ueda, H. Prothymosin-alpha1 prevents necrosis and apoptosis following stroke. Cell Death Differ. 2007; 14, 1839–1842. Fujita, R., Ueda, M., Fujiwara, K., & Ueda, H. Prothymosin-alpha plays a defensive role in retinal ischemia through necrosis and apoptosis inhibition. Cell Death Differ. 2009; 16, 349–358. Haggt, T. From neurotransmitters to neurotrophic factors to neurogenesis. Neuroscientist 2009; 15:20–27. Halder, S. K., Matsunaga, H., Ishii, K. J., & Ueda, H. Prothymosin- alpha preconditioning activates TLR4-TRIF signaling to induce protection of ischemic retina. J. Neurochem 2015; 135:1161-1177. Giacobbo, B., Doorduin, J., Klein, H., Dierckx, R., Bromberg, E., & Vries, E. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol Neurobiol. 2018; 1-18 Maeda, S., Sasaki K., Halder S., Fujita W. and Ueda H. Neuroprotective DAMPs member prothymosin alpha has additional beneficial actions against cerebral ischemia-induced vascular damages. J. Pharmacol. Sci. 2016; 132: 100–104. Ramic, M., Emerick A., Bollnow, M., O’Brien, T., Tsai, S., Kartje, G. Axonal plasticity is associated with motor recovery following amphetamine treatment combined with rehabilitation after brain injury in the adult rat. Brain Res. 2006; 1111:176–186. Shiau, A., Chen, S., Chang, M., Su, C., Chung, S., YO, Y., Wang, C., Wu, C. Prothymosin alpha lacking the nuclear locali- zation signal as an effective gene therapeutic strategy in collagen- induced arthritis. J. Immunol 2007; 178(7):4688–4694. Shiau, A., Lin, P., Chang, M., & Wu, C. Retrovirus-mediated transfer of prothymosin gene inhibits tumor growth and prolongs survival in murine bladder cancer. Gene Ther. 2001; 8(21):1609–1617. Sun, H., Doucette, T., Liu, Y., Fang, Y., Teves, L., Aarts, M., Ryan, C., Bernard, P., Lau, A., Forder, J., Salter, M., Wang, Y., Tasker, R., Tymianski, M. Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke 2008; 39:2544–2553. Sun, M., Nelson, T., Alkon, D. Towards universal therapeutics for memory disorders. Trends Pharmacol Sci. 2015; 36: 384-394. Ueda, H. Prothymosin α and cell death mode switch, a novel target for the prevention of cerebral ischemia-induced damage. Pharmacology &Therapeutics 2009; 123(3):323–333. Ueda, H., Fujita, R. Prothymosin-α1 prevents necrosis and apoptosis following stroke. Cell Death Differ 2007; 14(10):1839–1842. Ueda, H., Fujita, R., Yoshida, A., Matsunaga, H., and Ueda, M. Identification of prothymosin-alpha1, the necrosis-apoptosis switch molecule in cortical neuronal cultures. J. Cell Biol. 2007; 176, 853–862. Zhou, L., Li, F., Xu, H., Luo, C., Wu, H., Zhu, M., Zhu, D. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat. Med. 2010; 16:1439–1443.
|