|
1. Keefe, D.M., Intestinal mucositis: mechanisms and management. Curr Opin Oncol, 2007. 19(4): p. 323-7. 2. Peterson, D.E., et al., Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up. Ann Oncol, 2015. 26 Suppl 5: p. v139-51. 3. Sonis, S.T., The pathobiology of mucositis. Nat Rev Cancer, 2004. 4(4): p. 277-84. 4. Jenkins, T.A., Perinatal complications and schizophrenia: involvement of the immune system. Front Neurosci, 2013. 7: p. 110. 5. Hombach, A.A. and H. Abken, Targeting two co-operating cytokines efficiently shapes immune responses. Oncoimmunology, 2013. 2(3): p. e23205. 6. Osburn, W.O., et al., Anti-inflammatory cytokines, pro-fibrogenic chemokines and persistence of acute HCV infection. J Viral Hepat, 2013. 20(6): p. 404-13. 7. Chen, Y., et al., 1,3-beta-glucan affects the balance of Th1/Th2 cytokines by promoting secretion of anti-inflammatory cytokines in vitro. Mol Med Rep, 2013. 8(2): p. 708-12. 8. Bossaller, L. and A. Rothe, Monoclonal antibody treatments for rheumatoid arthritis. Expert Opin Biol Ther, 2013. 13(9): p. 1257-72. 9. Halwani, R., et al., A novel anti-IL4Ralpha nanoparticle efficiently controls lung inflammation during asthma. Exp Mol Med, 2016. 48(10): p. e262. 10. Mizutani, H., et al., Lipopolysaccharide of Aggregatibacter actinomycetemcomitans up-regulates inflammatory cytokines, prostaglandin E2 synthesis and osteoclast formation in interleukin-1 receptor antagonistdeficient mice. J Periodontal Res, 2013. 48(6): p. 748-56. 11. Jordan, W.J., et al., Human IL-19 regulates immunity through auto-induction of IL-19 and production of IL-10. Eur J Immunol, 2005. 35(5): p. 1576-82. 12. Liao, Y.C., et al., IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol, 2002. 169(8): p. 4288-97. 13. Kunz, S., et al., Interleukin (IL)-19, IL-20 and IL-24 are produced by and act on keratinocytes and are distinct from classical ILs. Exp Dermatol, 2006. 15(12): p. 991-1004. 14. Leng, R.X., et al., IL-19, IL-20 and IL-24: potential therapeutic targets for autoimmune diseases. Expert Opin Ther Targets, 2011. 15(2): p. 119-26. 15. Oral, H.B., et al., Regulation of T cells and cytokines by the interleukin-10 (IL- 10)-family cytokines IL-19, IL-20, IL-22, IL-24 and IL-26. Eur J Immunol, 2006. 36(2): p. 380-8. 16. Commins, S., J.W. Steinke, and L. Borish, The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J Allergy Clin Immunol, 2008. 121(5): p. 1108-11. 17. Steinert, A., et al., The Stimulation of Macrophages with TLR Ligands Supports Increased IL-19 Expression in Inflammatory Bowel Disease Patients and in Colitis Models. J Immunol, 2017. 199(7): p. 2570-2584. 18. Niess, J.H., P. Hruz, and T. Kaymak, The Interleukin-20 Cytokines in Intestinal Diseases. Front Immunol, 2018. 9: p. 1373. 19. Blumberg, H., et al., Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell, 2001. 104(1): p. 9-19. 20. Hsu, Y.H. and M.S. Chang, The therapeutic potential of anti-interleukin-20 monoclonal antibody. Cell Transplant, 2014. 23(4-5): p. 631-9. 21. Zdanov, A., Structural features of the interleukin-10 family of cytokines. Curr Pharm Des, 2004. 10(31): p. 3873-84. 22. Rutz, S., X. Wang, and W. Ouyang, The IL-20 subfamily of cytokines--from host defence to tissue homeostasis. Nat Rev Immunol, 2014. 14(12): p. 783- 95. 23. Sabat, R., et al., Immunopathogenesis of psoriasis. Exp Dermatol, 2007. 16(10): p. 779-98. 24. Stenderup, K., et al., Interleukin-20 as a target in psoriasis treatment. Ann N Y Acad Sci, 2007. 1110: p. 368-81. 25. Michalak-Stoma, A., et al., Cytokine network in psoriasis revisited. Eur Cytokine Netw, 2011. 22(4): p. 160-8. 26. Kleemann, R., S. Zadelaar, and T. Kooistra, Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc Res, 2008. 79(3): p. 360- 76. 27. Brennan, F. and J. Beech, Update on cytokines in rheumatoid arthritis. Curr Opin Rheumatol, 2007. 19(3): p. 296-301. 28. Soares, P.M., et al., Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution. Cancer Chemother Pharmacol, 2008. 63(1): p. 91-8. 29. Logan, R.M., et al., Is the pathobiology of chemotherapy-induced alimentary tract mucositis influenced by the type of mucotoxic drug administered? Cancer Chemother Pharmacol, 2009. 63(2): p. 239-51. 30. Ribeiro, R.A., et al., Irinotecan- and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives. Cancer Chemother Pharmacol, 2016. 78(5): p. 881-893. 31. Wu, Z.Q., et al., Interleukin-1 receptor antagonist reduced apoptosis and attenuated intestinal mucositis in a 5-fluorouracil chemotherapy model in mice. Cancer Chemother Pharmacol, 2011. 68(1): p. 87-96. 32. Inomata, A., I. Horii, and K. Suzuki, 5-Fluorouracil-induced intestinal toxicity: what determines the severity of damage to murine intestinal crypt epithelia? Toxicol Lett, 2002. 133(2-3): p. 231-40. 33. Nita, M.E., et al., 5-Fluorouracil induces apoptosis in human colon cancer cell lines with modulation of Bcl-2 family proteins. Br J Cancer, 1998. 78(8): p. 986-92. 34. Bowen, J.M., et al., Cytotoxic chemotherapy upregulates pro-apoptotic Bax and Bak in the small intestine of rats and humans. Pathology, 2005. 37(1): p. 56-62. 35. Barnes, P.J. and M. Karin, Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med, 1997. 336(15): p. 1066-71. 36. Bonizzi, G. and M. Karin, The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004. 25(6): p. 280-8. 37. Chang, C.T., et al., 5-Fluorouracil induced intestinal mucositis via nuclear factor-kappaB activation by transcriptomic analysis and in vivo bioluminescence imaging. PLoS One, 2012. 7(3): p. e31808. 38. Mahr, S., et al., IL-1beta-induced apoptosis in rat gastric enterochromaffinlike cells is mediated by iNOS, NF-kappaB, and Bax protein. Gastroenterology, 2000. 118(3): p. 515-24. 39. Yip, K.H., et al., Induction of nitric oxide synthases in primary human cultured mast cells by IgE and proinflammatory cytokines. Int Immunopharmacol, 2008. 8(5): p. 764-8. 40. Lima-Junior, R.C., et al., Involvement of nitric oxide on the pathogenesis of irinotecan-induced intestinal mucositis: role of cytokines on inducible nitric oxide synthase activation. Cancer Chemother Pharmacol, 2012. 69(4): p. 931- 42. 41. Li, H.L., et al., Alteration of Gut Microbiota and Inflammatory Cytokine/Chemokine Profiles in 5-Fluorouracil Induced Intestinal Mucositis. Front Cell Infect Microbiol, 2017. 7: p. 455.
|