|
Reference
1.Brenner, S., Nobel lecture. Nature's gift to science. Biosci Rep, 2003. 23(5-6): p. 225-37. 2.Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94. 3.Genome Sequence of the Nematode C. elegans: A Platform for Investigating Biology. Science, 1998. 282(5396): p. 2012-2018. 4.Tan, M.-W. and F.M. Ausubel, Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Current opinion in microbiology, 2000. 3(1): p. 29-34. 5.Tan, M.-W., et al., Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proceedings of the National Academy of Sciences, 1999. 96(5): p. 2408-2413. 6.Aballay, A., P. Yorgey, and F.M. Ausubel, Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Current Biology, 2000. 10(23): p. 1539-1542. 7.Kurz, C.L. and J.J. Ewbank, Caenorhabditis elegans for the study of host–pathogen interactions. Trends in microbiology, 2000. 8(3): p. 142-144. 8.Darby, C., et al., Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature, 2002. 417(6886): p. 243. 9.Sifri, C.D., et al., Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infection and immunity, 2003. 71(4): p. 2208-2217. 10.Garsin, D.A., et al., A simple model host for identifying Gram-positive virulence factors. Proceedings of the National Academy of Sciences, 2001. 98(19): p. 10892-10897. 11.Waterfield, N.R. and B.W. Wren, Invertebrates as a source of emerging human pathogens. Nature Reviews Microbiology, 2004. 2(10): p. 833. 12.Irazoqui, J.E., J.M. Urbach, and F.M. Ausubel, Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol, 2010. 10(1): p. 47-58. 13.Gyles, C., Shiga toxin-producing Escherichia coli: an overview. Journal of animal science, 2007. 85(suppl_13): p. E45-E62. 14.Furukawa, I., et al., An outbreak of enterohemorrhagic Escherichia coli O157: H7 infection associated with minced meat cutlets in Kanagawa, Japan. Japanese Journal of Infectious Diseases, 2018: p. JJID. 2017.495. 15.Pennington, H., Escherichia coli O157. The Lancet, 2010. 376(9750): p. 1428-1435. 16.Koochakzadeh, A., et al., Survey on O157: H7 enterohemorrhagic Escherichia coli (EHEC) in cattle in Golestan province, Iran. Iranian journal of microbiology, 2014. 6(4): p. 276. 17.Renter, D.G., et al., Diversity, frequency, and persistence of Escherichia coli O157 strains from range cattle environments. Appl. Environ. Microbiol., 2003. 69(1): p. 542-547. 18.Goldwater, P.N. and K.A. Bettelheim, Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS). BMC Med, 2012. 10: p. 12. 19.Anyanful, A., et al., Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene. Molecular microbiology, 2005. 57(4): p. 988-1007. 20.Farfan, M.J. and A.G. Torres, Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infection and immunity, 2012. 80(3): p. 903-913. 21.Chou, T.C., et al., Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cell Microbiol, 2013. 15(1): p. 82-97. 22.Strockbine, N.A., et al., Two toxin-converting phages from Escherichia coli O157: H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infection and immunity, 1986. 53(1): p. 135-140. 23.Perna, N.T., et al., Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature, 2001. 409(6819): p. 529-33. 24.Kamath, R.S., et al., Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003. 421(6920): p. 231. 25.Kamath, R.S., et al., Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome biology, 2000. 2(1): p. research0002. 1. 26.Davis, M.W., et al., Rapid single nucleotide polymorphism mapping in C. elegans. BMC Genomics, 2005. 6: p. 118. 27.Minevich, G., et al., CloudMap: a cloud-based pipeline for analysis of mutant genome sequences. Genetics, 2012. 192(4): p. 1249-69. 28.Mellies, J.L., et al., The global regulator Ler is necessary for enteropathogenic Escherichia coli colonization of Caenorhabditis elegans. Infect Immun, 2006. 74(1): p. 64-72. 29.Labrousse, A., et al., Caenorhabditis elegans is a model host for Salmonella typhimurium. Current Biology, 2000. 10(23): p. 1543-1545. 30.Sega, G.A., A review of the genetic effects of ethyl methanesulfonate. Mutation Research/Reviews in Genetic Toxicology, 1984. 134(2-3): p. 113-142. 31.Wicks, S.R., et al., Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet, 2001. 28(2): p. 160-4. 32.Martin, N., J. Singh, and A. Aballay, Natural Genetic Variation in the Caenorhabditis elegans Response to Pseudomonas aeruginosa. G3 (Bethesda), 2017. 7(4): p. 1137-1147. 33.Doitsidou, M., et al., C. elegans mutant identification with a one-step whole-genome-sequencing and SNP mapping strategy. PLoS One, 2010. 5(11): p. e15435. 34.Timmons, L. and A. Fire, Specific interference by ingested dsRNA. Nature, 1998. 395(6705): p. 854. 35.Simmer, F., et al., Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Current biology, 2002. 12(15): p. 1317-1319. 36.Katzemich, A., et al., The function of the M-line protein obscurin in controlling the symmetry of the sarcomere in the flight muscle of Drosophila. J Cell Sci, 2012. 125(Pt 14): p. 3367-79. 37.Waterston, R.H., J.N. Thomson, and S. Brenner, Mutants with altered muscle structure in Caenorhabditis elegans. Developmental Biology, 1980. 77(2): p. 271-302. 38.Sutter, S.B., et al., Orthologous relationship of obscurin and Unc-89: phylogeny of a novel family of tandem myosin light chain kinases. Development genes and evolution, 2004. 214(7): p. 352-359. 39.Qadota, H., et al., The SH3 domain of UNC-89 (obscurin) interacts with paramyosin, a coiled-coil protein, in Caenorhabditis elegans muscle. Molecular biology of the cell, 2016. 27(10): p. 1606-1620. 40.Ermolaeva, M.A. and B. Schumacher, Insights from the worm: the C. elegans model for innate immunity. Semin Immunol, 2014. 26(4): p. 303-9. 41.Kumar, S., et al., Lifespan Extension in C. elegans Caused by Bacterial Colonization of the Intestine and Subsequent Activation of an Innate Immune Response. Dev Cell, 2019. 49(1): p. 100-117 e6. 42.Lapierre, L.R., et al., The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nature communications, 2013. 4: p. 2267. 43.(Structure of a PH Domain from the C. elegans Muscle Protein UNC-89 Suggests a Novel Function.pdf). 44.Xue, Y. and M.-J. Zhu, Suppressing autophagy: a strategy by Escherichia coli O157: H7 for its survival on host epithelial cells. Cell death & disease, 2018. 9(2): p. 64. 45.Shiu, P.K. and C.P. Hunter, Early developmental exposure to dsRNA is critical for initiating efficient nuclear RNAi in C. elegans. Cell reports, 2017. 18(12): p. 2969-2978. 46.Berin, M.C., et al., Role of EHEC O157: H7 virulence factors in the activation of intestinal epithelial cell NF‐κB and MAP kinase pathways and the upregulated expression of interleukin 8. Cellular microbiology, 2002. 4(10): p. 635-648. 47.Sheng, H., et al., Role of Escherichia coli O157: H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infection and immunity, 2006. 74(8): p. 4685-4693. 48.Pacheco, A.R., et al., CRISPR screen reveals that EHEC’s T3SS and Shiga toxin rely on shared host factors for infection. MBio, 2018. 9(3): p. e01003-18. 49.Strockbine, N.A., et al., Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect Immun, 1986. 53(1): p. 135-40. 50.Brenner, S., The genetics of Caenorhabditis elegans. Genetics 1974. 77, 71-94.
|