跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 11:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡佳恩
研究生(外文):Chia-EnTsai
論文名稱:分析線蟲對於出血性大腸桿菌感染具耐受性之宿主因子
論文名稱(外文):Analyzing the Host Factors Involved in the Tolerance of Enterohemorrhagic E. coli in Caenorhabditis elegans
指導教授:陳昌熙
指導教授(外文):Chang-Shi Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:50
中文關鍵詞:秀麗隱桿線蟲出血性大腸桿菌腸道寄殖增加表現型耐受性細菌迴避行為
外文關鍵詞:C. elegansEnterohaemorrhagic E. coli (EHEC)Intestinal colonization (INC)ToleranceBacterial avoidance behavior
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
出血性大腸桿菌主要血清型為O157:H7,能經由食物或水源傳播感染人類,進而導致出血性腹瀉、溶血性尿毒症等症狀發生。在我們過去的研究中,發現出血性大腸桿菌能寄殖並複製於秀麗隱桿線蟲(Caenorhabditis elegans) 的腸道當中,進行感染及毒殺。已有許多研究發現參與在出血性大腸桿菌寄殖的毒力因子,然而對於參與其中的宿主因子尚且不多。在我們的研究當中,我們利用甲基磺酸乙酯(EMS)突變劑篩選對於出血性大腸桿菌寄殖於線蟲腸道中所參與的宿主因子。我們利用餵食帶有綠色螢光(GFP)的出血性大腸桿菌,篩選出32株突變株具有”腸道寄殖增加”(enhanced intestinal colonization, INC)的表現型。出乎意料之外地,我們發現其中四株擁有INC表現型的突變株,卻對於出血性大腸桿菌有較強的耐受能力,這個現象違背我們對於細菌感染的現有知識,因此,我們利用單核苷酸多態性分析方法(SNP mapping),以及次世代定序(NGS),分析這四株突變株的突變位點,透過生資分析平台CloudMap,我們得到了23個候選基因並透過RNA干擾以及突變株確認該突變基因為unc-89。unc-89已知能調控肌細胞組成,其腸道寄殖增加知表現型,可能因咽部細胞突變受損所致。值得一提的是,細菌迴避行為以及活化hlh-30先天免疫反應,可能與unc-89增加對於出血性大腸桿菌的耐受性有關。整體來說,此研究顯示,在線蟲中unc-89因咽部細胞受損導致腸道寄殖性的增加,卻也同時促進先天性免疫反應,以提升對於出血性大腸桿菌感染之耐受性。我們相信本篇研究可為抵禦出血性大腸桿菌感染之未來研究發展帶來新的曙光。
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) causes acute hemorrhagic diarrhea and hemolytic uremic syndrome through water and food. In our previous study, we found that EHEC colonized and replicated in the intestinal lumen of C. elegans during the infection. Several researches have identified the key bacterial factors required for EHEC colonization; however, the host factors involved in EHEC colonization remain unclear. Here, we applied a forward genetic screen to identify the host factors involved in EHEC colonization in C. elegans. We have isolated 32 Ethyl methanesulfonate (EMS)-induced mutants conferred the enhanced intestinal colonization (Inc) phenotype under the infection of GFP-labeled EHEC. Surprisingly, in the susceptibility test of these mutants, we found four mutants exhibited a significant tolerant phenotype to EHEC infection compared to the wild type C. elegans. Given that the phenotype with enhancement of intestinal colonization yet tolerance to EHEC infection is contradictory to our current knowledge about bacterial infection, we therefore turned our attentions to identify the mutant genes by single-nucleotide polymorphism (SNP) mapping and Next-generation sequencing (NGS). By using the CloudMap, a useful bioinformatics tool, we identified 23 candidate genes and confirmed unc-89 as inc-1 by complementation test, RNAi knockdown and mutant worms. unc-89, known for muscle cell assembly, caused the enhancement of bacterial colonization in the intestine may due to pharyngeal muscle defect. On top of that, the tolerance to EHEC in unc-89 may relate to bacterial avoidance behavior and activated hlh-30-mediated innate immune response. Taken together, we demonstrated unc-89 enhanced the intestinal colonization due to the pharyngeal muscle defect yet enhanced the tolerance of EHEC through activated innate immunity in C. elegans. We believed our study may gain insights on the novel aspects of immunity in bacterial infection.
中文摘要 i
Abstract ii
誌謝 iv
Introduction 1
Material and Methods 4
Bacterial and Nematode Strains 4
Bacteria (E. coli OP50 and E. coli O157:H7 EDL933) Killing Assay 4
INC (enhanced intestinal colonization) phenotype assay 5
Two Generation RNA Interference (RNAi) 5
Colony Forming Units (CFU) 6
SNP Mapping 7
Next Generation Sequencing (NGS) 7
Measurement of Bacterial Avoidance Behavior 8
HLH-30 nuclear localization of unc-89 KD in OP433 8
Results 10
YQ032, YQ087, YQ106 and YQ269 strains performed INC phenotype yet conferred tolerance to EHEC infection. 10
There were two complementation groups (inc-1 and inc-2) among four mutant allele. 11
unc-89 caused INC phenotype yet conferred tolerance to EHEC infection in RNAi knockdown and mutant alleles. 13
Bacterial avoidance behavior by unc-89 may limit bacterial accumulation in intestine and cause survival extension. 16
unc-89 mutation may induce HLH-30 nuclear localization 17
Conclusions and Discussion 19
Tables 22
Table 1. Bacterial and nematode strains and plasmids used for this study 22
Table 2. SNP mapping of YQ269 (inc-1) crossed with Hawaiian strain CB4856 23
Table 3. Twenty-three candidate genes were predicted by CloudMap platform on Galaxy website….. 25
Figures 26
Fig. 1 YQ032, YQ087, YQ106 and YQ269 strains performed INC phenotype yet conferred tolerance to EHEC infection. 27
Fig. 2 The INC phenotype of eleven mutants. 28
Fig. 3 The INC phenotype of worms knockdown in seventeen candidate genes 29
Fig. 4 The INC phenotype of F1 progeny from YQ269 crossed with unc-89(e1469). 30
Fig. 5. The INC phenotype of unc-89 mutants and RNAi knockdown in rrf-3. 33
Fig. 6 EDL933 colonization is increased in YQ269, unc-89 and phm-2. 34
Fig. 7. unc-89 mutants performed tolerance to EHEC infection. 36
Fig. 8 The defect of pharyngeal muscle in unc-89 and phm-2 may lead to the enhancement of EHEC colonization 38
Fig. 9 unc-89 mutants display bacterial avoidance behavior. 40
Fig. 10 Survival of unc-89 in small or large bacterial lawns. 42
Fig. 11. The INC phenotype of innate immune genes knockdown in inc-1(wf132). 43
Fig. 12 HLH-30 nuclear localization in the unc-89 RNAi knockdown assay. 45
Fig. 13 unc-89 was predicted as inc-1 by NGS analysis. 46
Reference 47
Reference

1.Brenner, S., Nobel lecture. Nature's gift to science. Biosci Rep, 2003. 23(5-6): p. 225-37.
2.Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94.
3.Genome Sequence of the Nematode C. elegans: A Platform for Investigating Biology. Science, 1998. 282(5396): p. 2012-2018.
4.Tan, M.-W. and F.M. Ausubel, Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Current opinion in microbiology, 2000. 3(1): p. 29-34.
5.Tan, M.-W., et al., Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proceedings of the National Academy of Sciences, 1999. 96(5): p. 2408-2413.
6.Aballay, A., P. Yorgey, and F.M. Ausubel, Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Current Biology, 2000. 10(23): p. 1539-1542.
7.Kurz, C.L. and J.J. Ewbank, Caenorhabditis elegans for the study of host–pathogen interactions. Trends in microbiology, 2000. 8(3): p. 142-144.
8.Darby, C., et al., Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature, 2002. 417(6886): p. 243.
9.Sifri, C.D., et al., Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infection and immunity, 2003. 71(4): p. 2208-2217.
10.Garsin, D.A., et al., A simple model host for identifying Gram-positive virulence factors. Proceedings of the National Academy of Sciences, 2001. 98(19): p. 10892-10897.
11.Waterfield, N.R. and B.W. Wren, Invertebrates as a source of emerging human pathogens. Nature Reviews Microbiology, 2004. 2(10): p. 833.
12.Irazoqui, J.E., J.M. Urbach, and F.M. Ausubel, Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol, 2010. 10(1): p. 47-58.
13.Gyles, C., Shiga toxin-producing Escherichia coli: an overview. Journal of animal science, 2007. 85(suppl_13): p. E45-E62.
14.Furukawa, I., et al., An outbreak of enterohemorrhagic Escherichia coli O157: H7 infection associated with minced meat cutlets in Kanagawa, Japan. Japanese Journal of Infectious Diseases, 2018: p. JJID. 2017.495.
15.Pennington, H., Escherichia coli O157. The Lancet, 2010. 376(9750): p. 1428-1435.
16.Koochakzadeh, A., et al., Survey on O157: H7 enterohemorrhagic Escherichia coli (EHEC) in cattle in Golestan province, Iran. Iranian journal of microbiology, 2014. 6(4): p. 276.
17.Renter, D.G., et al., Diversity, frequency, and persistence of Escherichia coli O157 strains from range cattle environments. Appl. Environ. Microbiol., 2003. 69(1): p. 542-547.
18.Goldwater, P.N. and K.A. Bettelheim, Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS). BMC Med, 2012. 10: p. 12.
19.Anyanful, A., et al., Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene. Molecular microbiology, 2005. 57(4): p. 988-1007.
20.Farfan, M.J. and A.G. Torres, Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infection and immunity, 2012. 80(3): p. 903-913.
21.Chou, T.C., et al., Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cell Microbiol, 2013. 15(1): p. 82-97.
22.Strockbine, N.A., et al., Two toxin-converting phages from Escherichia coli O157: H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infection and immunity, 1986. 53(1): p. 135-140.
23.Perna, N.T., et al., Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature, 2001. 409(6819): p. 529-33.
24.Kamath, R.S., et al., Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003. 421(6920): p. 231.
25.Kamath, R.S., et al., Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome biology, 2000. 2(1): p. research0002. 1.
26.Davis, M.W., et al., Rapid single nucleotide polymorphism mapping in C. elegans. BMC Genomics, 2005. 6: p. 118.
27.Minevich, G., et al., CloudMap: a cloud-based pipeline for analysis of mutant genome sequences. Genetics, 2012. 192(4): p. 1249-69.
28.Mellies, J.L., et al., The global regulator Ler is necessary for enteropathogenic Escherichia coli colonization of Caenorhabditis elegans. Infect Immun, 2006. 74(1): p. 64-72.
29.Labrousse, A., et al., Caenorhabditis elegans is a model host for Salmonella typhimurium. Current Biology, 2000. 10(23): p. 1543-1545.
30.Sega, G.A., A review of the genetic effects of ethyl methanesulfonate. Mutation Research/Reviews in Genetic Toxicology, 1984. 134(2-3): p. 113-142.
31.Wicks, S.R., et al., Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet, 2001. 28(2): p. 160-4.
32.Martin, N., J. Singh, and A. Aballay, Natural Genetic Variation in the Caenorhabditis elegans Response to Pseudomonas aeruginosa. G3 (Bethesda), 2017. 7(4): p. 1137-1147.
33.Doitsidou, M., et al., C. elegans mutant identification with a one-step whole-genome-sequencing and SNP mapping strategy. PLoS One, 2010. 5(11): p. e15435.
34.Timmons, L. and A. Fire, Specific interference by ingested dsRNA. Nature, 1998. 395(6705): p. 854.
35.Simmer, F., et al., Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Current biology, 2002. 12(15): p. 1317-1319.
36.Katzemich, A., et al., The function of the M-line protein obscurin in controlling the symmetry of the sarcomere in the flight muscle of Drosophila. J Cell Sci, 2012. 125(Pt 14): p. 3367-79.
37.Waterston, R.H., J.N. Thomson, and S. Brenner, Mutants with altered muscle structure in Caenorhabditis elegans. Developmental Biology, 1980. 77(2): p. 271-302.
38.Sutter, S.B., et al., Orthologous relationship of obscurin and Unc-89: phylogeny of a novel family of tandem myosin light chain kinases. Development genes and evolution, 2004. 214(7): p. 352-359.
39.Qadota, H., et al., The SH3 domain of UNC-89 (obscurin) interacts with paramyosin, a coiled-coil protein, in Caenorhabditis elegans muscle. Molecular biology of the cell, 2016. 27(10): p. 1606-1620.
40.Ermolaeva, M.A. and B. Schumacher, Insights from the worm: the C. elegans model for innate immunity. Semin Immunol, 2014. 26(4): p. 303-9.
41.Kumar, S., et al., Lifespan Extension in C. elegans Caused by Bacterial Colonization of the Intestine and Subsequent Activation of an Innate Immune Response. Dev Cell, 2019. 49(1): p. 100-117 e6.
42.Lapierre, L.R., et al., The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nature communications, 2013. 4: p. 2267.
43.(Structure of a PH Domain from the C. elegans Muscle Protein UNC-89 Suggests a Novel Function.pdf).
44.Xue, Y. and M.-J. Zhu, Suppressing autophagy: a strategy by Escherichia coli O157: H7 for its survival on host epithelial cells. Cell death & disease, 2018. 9(2): p. 64.
45.Shiu, P.K. and C.P. Hunter, Early developmental exposure to dsRNA is critical for initiating efficient nuclear RNAi in C. elegans. Cell reports, 2017. 18(12): p. 2969-2978.
46.Berin, M.C., et al., Role of EHEC O157: H7 virulence factors in the activation of intestinal epithelial cell NF‐κB and MAP kinase pathways and the upregulated expression of interleukin 8. Cellular microbiology, 2002. 4(10): p. 635-648.
47.Sheng, H., et al., Role of Escherichia coli O157: H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infection and immunity, 2006. 74(8): p. 4685-4693.
48.Pacheco, A.R., et al., CRISPR screen reveals that EHEC’s T3SS and Shiga toxin rely on shared host factors for infection. MBio, 2018. 9(3): p. e01003-18.
49.Strockbine, N.A., et al., Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect Immun, 1986. 53(1): p. 135-40.
50.Brenner, S., The genetics of Caenorhabditis elegans. Genetics 1974. 77, 71-94.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top