|
1.Bomalaski, J.S., E. Neilson, and S.A. Jimenez, 1-Regulation of fibroblast proliferation and collagen synthesis by cytokines. Immunology Today, 1986. 7(10): p. 303-307. 2.Badylak, S.F., D.O. Freytes, and T.W. Gilbert, 2-Extracellular matrix as a biological scaffold material: structure and function. Acta biomaterialia, 2009. 5(1): p. 1-13. 3.desJardins-Park, H.E., D.S. Foster, and M.T. Longaker, Fibroblasts and wound healing: an update. 2018, Future Medicine. 4.Baum, J. and H.S. Duffy, Fibroblasts and myofibroblasts: what are we talking about? Journal of cardiovascular pharmacology, 2011. 57(4): p. 376. 5.Lynch, M.D. and F.M. Watt, Fibroblast heterogeneity: implications for human disease. The Journal of clinical investigation, 2018. 128(1): p. 26-35. 6.Wynn, T.A. and T.R. Ramalingam, Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature medicine, 2012. 18(7): p. 1028. 7.Murakami, M. and T. Hirano, The molecular mechanisms of chronic inflammation development. Frontiers in immunology, 2012. 3: p. 323. 8.Moore, K.J. and I. Tabas, Macrophages in the pathogenesis of atherosclerosis. Cell, 2011. 145(3): p. 341-355. 9.Dunster, J.L., The macrophage and its role in inflammation and tissue repair: mathematical and systems biology approaches. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016. 8(1): p. 87-99. 10.Wynn, T.A. and K.M. Vannella, Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016. 44(3): p. 450-462. 11.Khalil, N., et al., TGF-beta 1, but not TGF-beta 2 or TGF-beta 3, is differentially present in epithelial cells of advanced pulmonary fibrosis: an immunohistochemical study. American journal of respiratory cell and molecular biology, 1996. 14(2): p. 131-138. 12.Meng, X.-m., D.J. Nikolic-Paterson, and H.Y. Lan, TGF-β: the master regulator of fibrosis. Nature Reviews Nephrology, 2016. 12(6): p. 325. 13.Thannickal, V.J., et al., Myofibroblast differentiation by transforming growth factor-β1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. Journal of Biological Chemistry, 2003. 278(14): p. 12384-12389. 14.Xu, J., S. Lamouille, and R. Derynck, TGF-β-induced epithelial to mesenchymal transition. Cell research, 2009. 19(2): p. 156. 15.Hu, Y., et al., SARA, a FYVE domain protein, affects Rab5-mediated endocytosis. Journal of cell science, 2002. 115(24): p. 4755-4763. 16.Huang, F. and Y.-G. Chen, Regulation of TGF-β receptor activity. Cell & bioscience, 2012. 2(1): p. 9. 17.Chen, Y.-G., Endocytic regulation of TGF-β signaling. Cell research, 2009. 19(1): p. 58. 18.Yakymovych, I., M. Yakymovych, and C.-H. Heldin, Intracellular trafficking of transforming growth factor β receptors. Acta biochimica et biophysica Sinica, 2017. 50(1): p. 3-11. 19.Schmid, S.L., Clathrin-coated vesicle formation and protein sorting: an integrated process. Annual review of biochemistry, 1997. 66(1): p. 511-548. 20.Nabi, I.R. and P.U. Le, Caveolae/raft-dependent endocytosis. The Journal of cell biology, 2003. 161(4): p. 673-677. 21.Choi, S.-i., et al., Lysosomal trafficking of TGFBIp via caveolae-mediated endocytosis. PLoS One, 2015. 10(4): p. e0119561. 22.Massagué, J. and B. Kelly, Internalization of transforming growth factor‐β and its receptor in BALB/c 3T3 fibroblasts. Journal of cellular physiology, 1986. 128(2): p. 216-222. 23.Mitchell, H., et al., Ligand-dependent and-independent transforming growth factor-β receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Molecular biology of the cell, 2004. 15(9): p. 4166-4178. 24.Lock, J.G. and J.L. Stow, Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Molecular biology of the cell, 2005. 16(4): p. 1744-1755. 25.Takahashi, S., et al., Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J Cell Sci, 2012. 125(17): p. 4049-4057. 26.Valdez, Y., M. Maia, and E. M Conway, CD248: reviewing its role in health and disease. Current drug targets, 2012. 13(3): p. 432-439. 27.Franchi, F., et al., Mutations in the thrombomodulin and endothelial protein C receptor genes in women with late fetal loss. British journal of haematology, 2001. 114(3): p. 641-646. 28.Conway, E.M., et al., The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor κB and mitogen-activated protein kinase pathways. Journal of Experimental Medicine, 2002. 196(5): p. 565-577. 29.Rettig, W.J., et al., Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proceedings of the National Academy of Sciences, 1992. 89(22): p. 10832-10836. 30.MacFadyen, J., et al., Endosialin is expressed on stromal fibroblasts and CNS pericytes in mouse embryos and is downregulated during development. Gene Expression Patterns, 2007. 7(3): p. 363-369. 31.Dolznig, H., et al., Characterization of cancer stroma markers: in silico analysis of an mRNA expression database for fibroblast activation protein and endosialin. Cancer Immunity Archive, 2005. 5(1): p. 10. 32.Tomkowicz, B., et al., Interaction of endosialin/TEM1 with extracellular matrix proteins mediates cell adhesion and migration. Proceedings of the National Academy of Sciences, 2007. 104(46): p. 17965-17970. 33.Fujii, S., et al., TEM 1 expression in cancer‐associated fibroblasts is correlated with a poor prognosis in patients with gastric cancer. Cancer medicine, 2015. 4(11): p. 1667-1678. 34.Christian, S., et al., Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. The American journal of pathology, 2008. 172(2): p. 486-494. 35.Rouleau, C., et al., Endosialin is expressed in high grade and advanced sarcomas: evidence from clinical specimens and preclinical modeling. International journal of oncology, 2011. 39(1): p. 73-89. 36.Smith, S.W., et al., CD248+ stromal cells are associated with progressive chronic kidney disease. Kidney international, 2011. 80(2): p. 199-207. 37.Smith, S.W., et al., Genetic deletion of the stromal cell marker CD248 (endosialin) protects against the development of renal fibrosis. Nephron, 2015. 131(4): p. 265-277. 38.Denis, J.-F., et al., Activation of Smad2 but not Smad3 is required to mediate TGF-β signaling during axolotl limb regeneration. Development, 2016. 143(19): p. 3481-3490. 39.Kubiczkova, L., et al., TGF-β–an excellent servant but a bad master. Journal of translational medicine, 2012. 10(1): p. 183. 40.Baliga, B., A. Pronczuk, and H. Munro, Mechanism of cycloheximide inhibition of protein synthesis in a cell-free system prepared from rat liver. Journal of Biological Chemistry, 1969. 244(16): p. 4480-4489. 41.Masclef, L., et al., Cyclin D1 stability is partly controlled by O-GlcNAcylation. Frontiers in endocrinology, 2019. 10: p. 106. 42.Breen, E., et al., Bleomycin regulation of transforming growth factor-mRNA in rat lung fibroblasts. Am J Respir Cell Mol Biol, 1992. 6(2): p. 146-152. 43.Yamamoto, T., et al., Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. Journal of Investigative Dermatology, 1999. 112(4): p. 456-462. 44.Hong, Y.-K., et al., Tumor Endothelial Marker 1 (TEM1/endosialin/CD248) Enhances Wound Healing by Interacting with Platelet-Derived Growth Factor Receptors. Journal of Investigative Dermatology, 2019. 45.MacFadyen, J.R., et al., Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS letters, 2005. 579(12): p. 2569-2575. 46.Zhang, K., K.C. Flanders, and S.H. Phan, Cellular localization of transforming growth factor-beta expression in bleomycin-induced pulmonary fibrosis. The American journal of pathology, 1995. 147(2): p. 352. 47.Gurujeyalakshmi, G., M. Hollinger, and S. Giri, Regulation of transforming growth factor-β1 mRNA expression by taurine and niacin in the bleomycin hamster model of lung fibrosis. American journal of respiratory cell and molecular biology, 1998. 18(3): p. 334-342. 48.Shi, Y. and J. Massagué, Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell, 2003. 113(6): p. 685-700. 49.He, K., et al., Internalization of the TGF-beta type I receptor into caveolin-1 and EEA1 double-positive early endosomes. Cell Res, 2015. 25(6): p. 738-52. 50.Lapierre, L.A., et al., Coordinated regulation of caveolin-1 and Rab11a in apical recycling compartments of polarized epithelial cells. Exp Cell Res, 2012. 318(2): p. 103-13. 51.Zhang, Y.-N., et al., Rab5, Rab7, and Rab11 Are Required for Caveola-Dependent Endocytosis of Classical Swine Fever Virus in Porcine Alveolar Macrophages. Journal of Virology, 2018. 92(15): p. e00797-18. 52.Naslavsky, N., R. Weigert, and J.G. Donaldson, Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides. Mol Biol Cell, 2003. 14(2): p. 417-31.
|