跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/12 15:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪嘉儀
研究生(外文):Chia-YiHung
論文名稱:腫瘤內皮標誌一在皮膚的纖維母細胞中對於轉化生長因子β介導信號傳遞之角色
論文名稱(外文):The role of tumor endothelial marker1 (TEM1) in transforming growth factor-β- mediated signaling in dermal fibroblasts
指導教授:吳華林
指導教授(外文):Hua-Lin Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:61
中文關鍵詞:腫瘤內皮標誌物一纖維化第二型乙型轉化生長因子受器人類真皮纖維母細胞
外文關鍵詞:TEM1FibrosisTβRIINHDF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腫瘤內皮標誌物一(TEM1) 是丙型凝集素跨膜受體家族中的第一型穿膜糖蛋白,主要表達於間質幹細胞、平滑肌細胞、周細胞以及纖維母細胞。TEM1可能參與肝臟、腎臟以及肺臟等器官纖維化的發病機制。已知乙型轉化生長因子(TGF-β)參與纖維細胞的活化及膠原蛋白合成的增加是組織纖維化的關鍵。因此推測TEM1可能參與TGF-β所介導的訊息傳遞進而造成纖維化。當使用小分子干擾核醣核酸(siRNA)去抑制人類真皮纖維母細胞(NHDF)表達TEM1,可見smad2被TGF-β誘導入核的情況下降。通過蔗糖梯度離心分離NHDF中的脂質和非脂質筏區域後,發現TEM1和第二型乙型轉化生長因子受器(TβRII)在這兩個區域都有分布。另外,TEM1的減少不會影響TβRII的分布位置。實驗發現,TEM1和TβRII在NHDF亞胞器產生共位現象。通過共免疫沉澱進一步證明TEM1與TβRII相連。此外,TEM1不是與網格蛋白輕鏈(clathrin light chain)共位,而是與一號小窩蛋白(caveolin-1)產生共位。另一方面,當限制表達TEM1時,caveolin-1的蛋白表現些微上升,第一、第二型乙型轉化生長因子受器的蛋白表現量卻下降。在博萊黴素誘導皮膚纖維化的小鼠模型中,TEM1缺失的小鼠真皮厚度變薄且膠原沉積變少。此外在臨床方面,在增生性疤痕的組織中,可發現TEM1被顯著表達,且與TβRII共位。綜合以上,TEM1可能在真皮纖維化中透過與TβRII相互作用而抑制乙型轉化生長因子所介導的訊息傳導。
Tumor endothelial marker 1 (TEM1) is a type I transmembrane glycoprotein belonging to the “Group XIV”, a family of C-type lectin transmembrane receptors. Expression of TEM1 was found in mesenchymal stem cells, smooth muscle cells, pericytes, and fibroblasts. TEM1 was shown to be involved in the pathogenesis of fibrotic diseases in liver, kidney, and pulmonary fibrosis. Transforming growth factor-β (TGF-β) plays a key role in the tissue fibrosis by modulating the activation of fibroblasts and increasing collagen synthesis. We proposed that TEM1 might participate in TGF-β-mediated signaling. TGF-β-mediated signaling pathways and downstream protein expressions in normal human dermal fibroblasts (NHDFs) were inhibited by transfection with small interfering RNA of TEM1. Decreased TGF-β-induced nuclear translocation of Smad2 was found in TEM1 knockdown NHDFs. Both TEM1 and TGF-β receptor II (TβRII) were found in the lipid and non-lipid raft fractions in NHDFs by sucrose gradient centrifugation. Besides, knocking down TEM1 did not affect the distribution of TβRII. Interestingly, TEM1 and TβRII were co-localized in subcellular organelles in fibroblasts. The association of TEM1 and TβRII was demonstrated by co-immunoprecipitation. In addition, the co-localization of TEM1 with caveolin-1 but not clathrin light chain was observed in NHDFs. Silencing TEM1 in NHDFs increased the protein levels of caveolin-1 and reduced the protein expressions of TGF-β receptor I and II. TEM1 knockout exhibited thinner thickness and lower collagen deposition in the dermis in the mouse model of bleomycin-induced dermal fibrosis. In clinical samples, TEM1 expression was significantly up-regulated and co-localized with TβRII in hypertrophic scar. Taken together, TEM1 plays a critical role in dermal fibrosis by interacting with TβRII and suppressing TGF-β-mediated signaling.
中文摘要 ...............Ⅰ
Abstract ...............Ⅱ
Acknowledgement ............Ⅲ
Contents ...............Ⅳ
Abbreviation ..............Ⅶ
Instruments .............Ⅸ
Reagents and Chemicals ...........XI
Introduction ...............1
I. Physiological Functions of Dermal Fibroblast. ......1
II. The Mechanism of Fibrosis. .........2
III. The TGF-β-Mediated Signaling Pathway. ......3
IV. Endocytic Regulation of TGF-β Signaling. ........3
V. Physiological Function of Tumor Endothelial Marker 1. .....5
Specific Aim ..............7
Materials and Methods ............8
I. Cell Culture .............8
II. Cell Counting .............9
III. Cell Freezing ............10
IV. Cell Thawing ............11
V. siRNA teansfection..........12
VI. Time Course or Signal Starvation Assay .......13
VII. Protein degradation Assay ..........14
VIII. Scratch Assay ............16
IX. Co-Immunoprecipitation Assay...16
X. Density Gradient Ultracentrifugation....18
XI. Western Blot Analysis............21
XII. Immunocytochemical Staining.........24
XIII. Real-Time Polymerase Chain Reaction........26
XIV. Hematoxylin and Eosin Staining..........28
XV. Sirius Red Staining...30
XVI. Immunohistochemistry Staining........32
XVII. Animal model of bleomycin-induced dermal fibrosis....34
Results..............35
I. TEM1 knockdown inhibits TGF-β-induced signaling in NHDFs. ...35
II. TEM1 is associated and co-localized with TGF-β receptor II in NHDFs. .36
III. TEM1 and TGF-β receptor II are located in intracellular vesicles. ..36
IV. TGF-β receptor is significantly diminished in TEM1 knockdown NHDFs. .37
V. Animal model of bleomycin-induced dermal fibrosis......38
VI. Bleomycin-induced dermal fibrosis was reduced in TEM1 gene deleted mouse. ..............39
VII. TEM1 is associated with TGF-β receptor II in hypertrophic scar. ...39
Conclusion..............40
Discussion...............41
Figures..............45
1. TEM1 knockdown inhibits TGF-β-mediated signal in NHDFs....45
2. TEM1 silencing down-regulate the translocation of Smad2 into nuclear in NHDFs. ..............46
3. TEM1 is associated and co-localized with TβRII in NHDFs. .47
4. TEM1 and TβRII are located in intracellular vesicles. ....48
5. TGF-β1 changes the co-localization of TEM1 with caveolin-1 in NHDFs. ..49
6. TGF-β receptor is significantly diminished in TEM1 knockdown NHDFs..50
7. TEM1 knockdown facilitates the degradation of TGF-β receptor in NHDFs. ..51
8. Animal model of bleomycin-induced dermal fibrosis. ....52
9. TEM1 is up-regulated in dermal fibrosis of mice. .......53
10. Bleomycin-induced dermal fibrosis was reduced in TEM1 gene deleted mouse. ..............54
11. TEM1 is associated with TGF-β receptor II in hypertrophic scar. ...55
12. Schematic model is proposed for the biological function of TEM1 in TGF-β-mediated signal transduction...56
13. The effect of TEM1 on TGF-β receptor expression in NHDFs after TGF-β1 treatment.....57
References...............58
1.Bomalaski, J.S., E. Neilson, and S.A. Jimenez, 1-Regulation of fibroblast proliferation and collagen synthesis by cytokines. Immunology Today, 1986. 7(10): p. 303-307.
2.Badylak, S.F., D.O. Freytes, and T.W. Gilbert, 2-Extracellular matrix as a biological scaffold material: structure and function. Acta biomaterialia, 2009. 5(1): p. 1-13.
3.desJardins-Park, H.E., D.S. Foster, and M.T. Longaker, Fibroblasts and wound healing: an update. 2018, Future Medicine.
4.Baum, J. and H.S. Duffy, Fibroblasts and myofibroblasts: what are we talking about? Journal of cardiovascular pharmacology, 2011. 57(4): p. 376.
5.Lynch, M.D. and F.M. Watt, Fibroblast heterogeneity: implications for human disease. The Journal of clinical investigation, 2018. 128(1): p. 26-35.
6.Wynn, T.A. and T.R. Ramalingam, Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature medicine, 2012. 18(7): p. 1028.
7.Murakami, M. and T. Hirano, The molecular mechanisms of chronic inflammation development. Frontiers in immunology, 2012. 3: p. 323.
8.Moore, K.J. and I. Tabas, Macrophages in the pathogenesis of atherosclerosis. Cell, 2011. 145(3): p. 341-355.
9.Dunster, J.L., The macrophage and its role in inflammation and tissue repair: mathematical and systems biology approaches. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016. 8(1): p. 87-99.
10.Wynn, T.A. and K.M. Vannella, Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016. 44(3): p. 450-462.
11.Khalil, N., et al., TGF-beta 1, but not TGF-beta 2 or TGF-beta 3, is differentially present in epithelial cells of advanced pulmonary fibrosis: an immunohistochemical study. American journal of respiratory cell and molecular biology, 1996. 14(2): p. 131-138.
12.Meng, X.-m., D.J. Nikolic-Paterson, and H.Y. Lan, TGF-β: the master regulator of fibrosis. Nature Reviews Nephrology, 2016. 12(6): p. 325.
13.Thannickal, V.J., et al., Myofibroblast differentiation by transforming growth factor-β1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. Journal of Biological Chemistry, 2003. 278(14): p. 12384-12389.
14.Xu, J., S. Lamouille, and R. Derynck, TGF-β-induced epithelial to mesenchymal transition. Cell research, 2009. 19(2): p. 156.
15.Hu, Y., et al., SARA, a FYVE domain protein, affects Rab5-mediated endocytosis. Journal of cell science, 2002. 115(24): p. 4755-4763.
16.Huang, F. and Y.-G. Chen, Regulation of TGF-β receptor activity. Cell & bioscience, 2012. 2(1): p. 9.
17.Chen, Y.-G., Endocytic regulation of TGF-β signaling. Cell research, 2009. 19(1): p. 58.
18.Yakymovych, I., M. Yakymovych, and C.-H. Heldin, Intracellular trafficking of transforming growth factor β receptors. Acta biochimica et biophysica Sinica, 2017. 50(1): p. 3-11.
19.Schmid, S.L., Clathrin-coated vesicle formation and protein sorting: an integrated process. Annual review of biochemistry, 1997. 66(1): p. 511-548.
20.Nabi, I.R. and P.U. Le, Caveolae/raft-dependent endocytosis. The Journal of cell biology, 2003. 161(4): p. 673-677.
21.Choi, S.-i., et al., Lysosomal trafficking of TGFBIp via caveolae-mediated endocytosis. PLoS One, 2015. 10(4): p. e0119561.
22.Massagué, J. and B. Kelly, Internalization of transforming growth factor‐β and its receptor in BALB/c 3T3 fibroblasts. Journal of cellular physiology, 1986. 128(2): p. 216-222.
23.Mitchell, H., et al., Ligand-dependent and-independent transforming growth factor-β receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Molecular biology of the cell, 2004. 15(9): p. 4166-4178.
24.Lock, J.G. and J.L. Stow, Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Molecular biology of the cell, 2005. 16(4): p. 1744-1755.
25.Takahashi, S., et al., Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J Cell Sci, 2012. 125(17): p. 4049-4057.
26.Valdez, Y., M. Maia, and E. M Conway, CD248: reviewing its role in health and disease. Current drug targets, 2012. 13(3): p. 432-439.
27.Franchi, F., et al., Mutations in the thrombomodulin and endothelial protein C receptor genes in women with late fetal loss. British journal of haematology, 2001. 114(3): p. 641-646.
28.Conway, E.M., et al., The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor κB and mitogen-activated protein kinase pathways. Journal of Experimental Medicine, 2002. 196(5): p. 565-577.
29.Rettig, W.J., et al., Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proceedings of the National Academy of Sciences, 1992. 89(22): p. 10832-10836.
30.MacFadyen, J., et al., Endosialin is expressed on stromal fibroblasts and CNS pericytes in mouse embryos and is downregulated during development. Gene Expression Patterns, 2007. 7(3): p. 363-369.
31.Dolznig, H., et al., Characterization of cancer stroma markers: in silico analysis of an mRNA expression database for fibroblast activation protein and endosialin. Cancer Immunity Archive, 2005. 5(1): p. 10.
32.Tomkowicz, B., et al., Interaction of endosialin/TEM1 with extracellular matrix proteins mediates cell adhesion and migration. Proceedings of the National Academy of Sciences, 2007. 104(46): p. 17965-17970.
33.Fujii, S., et al., TEM 1 expression in cancer‐associated fibroblasts is correlated with a poor prognosis in patients with gastric cancer. Cancer medicine, 2015. 4(11): p. 1667-1678.
34.Christian, S., et al., Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. The American journal of pathology, 2008. 172(2): p. 486-494.
35.Rouleau, C., et al., Endosialin is expressed in high grade and advanced sarcomas: evidence from clinical specimens and preclinical modeling. International journal of oncology, 2011. 39(1): p. 73-89.
36.Smith, S.W., et al., CD248+ stromal cells are associated with progressive chronic kidney disease. Kidney international, 2011. 80(2): p. 199-207.
37.Smith, S.W., et al., Genetic deletion of the stromal cell marker CD248 (endosialin) protects against the development of renal fibrosis. Nephron, 2015. 131(4): p. 265-277.
38.Denis, J.-F., et al., Activation of Smad2 but not Smad3 is required to mediate TGF-β signaling during axolotl limb regeneration. Development, 2016. 143(19): p. 3481-3490.
39.Kubiczkova, L., et al., TGF-β–an excellent servant but a bad master. Journal of translational medicine, 2012. 10(1): p. 183.
40.Baliga, B., A. Pronczuk, and H. Munro, Mechanism of cycloheximide inhibition of protein synthesis in a cell-free system prepared from rat liver. Journal of Biological Chemistry, 1969. 244(16): p. 4480-4489.
41.Masclef, L., et al., Cyclin D1 stability is partly controlled by O-GlcNAcylation. Frontiers in endocrinology, 2019. 10: p. 106.
42.Breen, E., et al., Bleomycin regulation of transforming growth factor-mRNA in rat lung fibroblasts. Am J Respir Cell Mol Biol, 1992. 6(2): p. 146-152.
43.Yamamoto, T., et al., Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. Journal of Investigative Dermatology, 1999. 112(4): p. 456-462.
44.Hong, Y.-K., et al., Tumor Endothelial Marker 1 (TEM1/endosialin/CD248) Enhances Wound Healing by Interacting with Platelet-Derived Growth Factor Receptors. Journal of Investigative Dermatology, 2019.
45.MacFadyen, J.R., et al., Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS letters, 2005. 579(12): p. 2569-2575.
46.Zhang, K., K.C. Flanders, and S.H. Phan, Cellular localization of transforming growth factor-beta expression in bleomycin-induced pulmonary fibrosis. The American journal of pathology, 1995. 147(2): p. 352.
47.Gurujeyalakshmi, G., M. Hollinger, and S. Giri, Regulation of transforming growth factor-β1 mRNA expression by taurine and niacin in the bleomycin hamster model of lung fibrosis. American journal of respiratory cell and molecular biology, 1998. 18(3): p. 334-342.
48.Shi, Y. and J. Massagué, Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell, 2003. 113(6): p. 685-700.
49.He, K., et al., Internalization of the TGF-beta type I receptor into caveolin-1 and EEA1 double-positive early endosomes. Cell Res, 2015. 25(6): p. 738-52.
50.Lapierre, L.A., et al., Coordinated regulation of caveolin-1 and Rab11a in apical recycling compartments of polarized epithelial cells. Exp Cell Res, 2012. 318(2): p. 103-13.
51.Zhang, Y.-N., et al., Rab5, Rab7, and Rab11 Are Required for Caveola-Dependent Endocytosis of Classical Swine Fever Virus in Porcine Alveolar Macrophages. Journal of Virology, 2018. 92(15): p. e00797-18.
52.Naslavsky, N., R. Weigert, and J.G. Donaldson, Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides. Mol Biol Cell, 2003. 14(2): p. 417-31.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top