跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/01 14:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊振家
研究生(外文):Chen-ChangYang
論文名稱:台灣油芒的中期染色體核型分析
論文名稱(外文):Mitotic metaphase karyotypes of Eccoilopus formosanus (Rendle) A. Camus.
指導教授:張松彬張松彬引用關係
指導教授(外文):Song-Bin Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:36
中文關鍵詞:台灣油芒螢光原位雜交核型分析45S rDNA
外文關鍵詞:Eccoilopus formosanusFISHkaryotyping analysis45S rDNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
台灣有著歷史悠久的原住民文化,其中包含了許多具有經濟發展與文化研究潛力的作物,台灣油芒(Eccoilopus formosanus)即為同時具備這兩種價值的物種,它的種子含有豐富的脂肪與胺基酸,同時莖桿含油量高具有生質能源作物的發展潛力,耐乾旱環境、耕作時不需灌溉設施,且植株高不易受雜草影響,這些特色讓油芒被視為有經濟發展價值的作物。目前人工栽培的台灣油芒被記錄於台灣的雙龍、太平村、那瑪夏、大鳥、台坂、德文、大南、高中里與樂野等九個地區部落,九個部落分別包含了六個不同部族,栽培的族群各自獨立,這些特色也讓台灣油芒在使用親緣地理探討原住民遷徙上成為有潛力的物種。因此,本實驗選定屏東縣德文部落之栽培種台灣油芒作為實驗目標,進行核型分析(Karyotyping analysis),觀察台灣油芒有絲分裂中期染色體,並透過螢光原位雜交技術(Fluorescence in situ hybridization, FISH)中的酪胺放大雜交技術(Tyramide Signal Amplification (TSA)-FISH),將45S rDNA定位至染色體上幫助辨識,結果顯示台灣油芒多屬於中位中節染色體,僅有第15對染色體為次中位中節染色體,在第10、15、24等三對染色體出現45S rDNA的訊號,少數染色體標本中可以觀察到一至兩對染色體上有次級收縮區,本實驗將依據這些染色體特徵建立完整的染色體分布圖並為其排序編號,提供後續基因體學以及細胞遺傳學發展使用。
Taiwan has an abundant heritage of aboriginal agriculture. Many crops with the potential of economic and research. Eccoilopus formosanus is a species with both of these values. Its seeds are rich in fatty acid and amino acids. The high oil content of the stem is also the advantage of becoming a biomass energy crop. It is resistant to drought, does not require irrigation facilities when farming, and not susceptible to weeds. At present, the cultivated E. formosanus are recorded in nine villages in Taiwan. These nine villages contain six tribe and locations throughout Taiwan. These characteristics also make E. formosanus possibly use in phylogeography and anthropology. This study using the cultivar of E. formosanus collected from Devon village on Pingtung. Preparing the chromosome spreads and karyotyping analysis. Observing the mitotic metaphase chromosome of E. formosanus, and though Tyramide Signal Amplification (TSA)-FISH labeling 45S rDNA probe in chromosomes. The results showed that E. formosanus (2n=48) have 23 metacentric chromosome pairs, only the NO. 15 chromosome pair were submetacentric, and the six 45S rDNA signals appeared on the three pairs of chromosomes. Two pairs of chromosome have secondary constrictions. This study will establish a complete chromosomal physical map which can be useful for further genomic and cytogenetic studies.
摘要 I
Abstract II
致謝 III
Contents IV
List of Tables VI
List of Figures VII
Abbreviations VIII
Chapter 1 Introduction 1
1.1 Potential indigenous crops 1
1.2 Taiwan oil millet (Eccoilopus formosanus (Rendle) A. Camus) 2
1.2.1 Phenotypic description and classification of Taiwan oil millet 2
1.2.2 The distribution and history of Taiwan oil millet 2
1.3 Karyotyping analysis of the Eccoilopus formosanus 4
1.3.1 Previous studies 4
1.3.2 Repetitive DNA sequences 4
1.3.3 Fluorescence in situ hybridization 5
1.4 Purpose 6
Chapter 2 Materials and Methods 7
2.1 Plant Material 7
2.2 Chromosome preparation 7
2.3 Probe labeling 8
2.4 Tyramide Signal Amplification (TSA)-FISH 9
2.5 Image processing and karyotype analysis 11
Chapter 3 Results 12
3.1 Karyotype comparison by DAPI staining 12
3.2 Physical mapping of 45S rDNA loci 13
3.3 Chromosomes with high percentage of heterochromatin banding pattern 13
Chapter 4 Discussions 14
4.1 Preparation of chromosome spreads 14
4.2 Chromosome characteristics 15
4.3 Secondary constriction and 45S rDNA loci 16
Chapter 5 Conclusion 18
Chapter 6 References 19
Chapter 7 Tables 24
Chapter 8 Figures 28
Appendix 1 (a) Aboriginal tribe with E. formosanus cultivation record. (b) Showing the location of the E. formosanus collection record. 35
Appendix 2 Aboriginal tribe and location with E. formosanus cultivation record. 36
1.Blench, R. In The Austronesians: an agricultural revolution that failed, In International conference on Formosan indigenous peoples: Contemporary perspectives, 2014; 2014; p 15.
2.江瑞拱, 小米種原之分布, 分類與鑑定. 作物種原野外採集訓練專刊 1998, 101-117.
3.謝葦勳. 以農藝性狀與簡單重複性序列評估高粱種原之遺傳歧異度. 臺灣大學農藝學研究所, 2014.
4.王素美. 民族植物薏苡應用於原住民工藝之探討與創作研究. 臺東大學進修部美術產業發展碩專 (夜間班) 學位論文, 2011.
5.林恒生. 台灣小米種原遺傳歧異度與原住民關係之探討. 成功大學生命科學系學位論文, 2012.
6.李榮雲, 山地農業推廣工作現況檢討與改進方向. 農業推廣文彙 1989, (34輯), 65-70.
7.Takei, E., Millet Culture and Indigenous Cuisine in Taiwan. 2013 中華飲食文化國際學術研討會論文集 2013, 193-210.
8.Ohwi, J., Gramina japonica IV. Acta phytotax. geobot 1942, 11, 145-193.
9.Laurent, S.; Tsai, Y. C.; Hsu, T.; Hsing, Y. C., The formosan vocabulary of foxtail millet, with terms relating to other plant domesticates. 2016.
10.lin, L. H.; shui, L. T.; chieng, H. T.; Koyama, T.; DeVol, C. E., Flora of Taiwan, 1st edition Vol. 5. 現代關係出版社: 1978.
11.Forbes, F. B.; Hemsley, W. B., An Enumeration of all the Plants known from China Proper, Formosa, Hainan, Corea, the Luchu Archipelago, and the Island of Hongkong, together with their Distribution and Synonymy.—Part II. Journal of the Linnean Society of London, Botany 1886, 23, (151), 81-162.
12.Forbes, F. B.; Hemsley, W. B., An Enumeration of all the Plants known from China Proper, Formosa, Hainan, Corea, the Luchu Archipelago, and the Island of Hongkong, together with their Distribution and Synonymy.—Part XVIII. Journal of the Linnean Society of London, Botany 1904, 36, (253), 297-376.
13.Hayata, B., Enumeratio plantarum Formosanarum. J. Coll. Sci. Imp. Univ. Tokyo 1906, 22, 242-243.
14.Hayata, B., Supplements to the Enumeratio Plantarum Formosanarum. Shokubutsugaku Zasshi 1907, 21, (243), 49-55.
15.HSU, C., Gramineae. Flora of Taiwan, vol. 5, Editorial Committee of the Flora of Taiwan. In Department of Botany, National Taiwan University, 2000.
16.Wu, Z. Y.; Raven, P. H.; Hong, D. Y., Flora of China. Vol. 22: Poaceae. Published on the Internet: http://www.efloras.org. Science Press, Beijing, China, and Missouri Botanical Garden Press, St. Louis, Missouri, USA. 2006.
17.Kubis, S., Schmidt, Thomas, Heslop-Harrison, John Seymour Repetitive DNA elements as a major component of plant genomes. Ann. Bot. 1998, 82, 45-55.
18.Appels, R.; Gerlach, W.; Dennis, E.; Swift, H.; Peacock, W., Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals. Chromosoma 1980, 78, (3), 293-311.
19.Frankel, O. H.; Gerlach, W. L.; Peacock, W. J., The ribosomal RNA genes in synthetic tetraploids of wheat. Theoretical and Applied Genetics 1987, 75, (1), 138-143.
20.Trask, B. J., Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends in Genetics 1991, 7, (5), 149-154.
21.Devi, J.; Ko, J. M.; Seo, B. B., FISH and GISH: Modern cytogenetic techniques. 2005.
22.Roth, K. A., Tyramide Signal Amplification Strategies for Fluorescence Labeling. Short Course II 2008, 19.
23.Schönhuber, W.; Fuchs, B.; Juretschko, S.; Amann, R., Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Applied and environmental microbiology 1997, 63, (8), 3268-3273.
24.Li, K. P.; Wu, Y. X.; Zhao, H.; Wang, Y.; Lü, X. M.; Wang, J. M.; Xu, Y.; Li, Z. Y.; Han, Y. H., Cytogenetic relationships among Citrullus species in comparison with some genera of the tribe Benincaseae (Cucurbitaceae) as inferred from rDNA distribution patterns. BMC evolutionary biology 2016, 16, (1), 85.
25.Kao, Y. Y.; Chang, S. B.; Lin, T. Y.; Hsieh, C. H.; Chen, Y. H.; Chen, W. H.; Chen, C. C., Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Ann. Bot. 2001, 87, (3), 387-395.
26.Aliyeva-Schnorr, L.; Ma, L.; Houben, A., A Fast Air-dry Dropping Chromosome Preparation Method Suitable for FISH in Plants. Journal of visualized experiments: JoVE 2015, (106), e53470-e53470.
27.Giorgi, B.; Bozzini, A., Karyotype Analysis in Triticum: III—Analysis of the Presumed Diploid Progenitors of Polyploid Wheats. Caryologia 1969, 22, (3), 279-288.
28.Kirov, I.; Divashuk, M.; Van Laere, K.; Soloviev, A.; Khrustaleva, L., An easy “SteamDrop method for high quality plant chromosome preparation. Molecular cytogenetics 2014, 7, (1), 21.
29.Fukui, K.; Iijima, K., Somatic chromosome map of rice by imaging methods. Theor. Appl. Genet. 1991, 81, (5), 589-596.
30.De Carvalho, C. R.; Saraiva, L. S., An air drying technique for maize chromosomes without enzymatic maceration. Biotechnic & histochemistry 1993, 68, (3), 142-145.
31.Jewell, D. C.; Islam-Faridi, N., A technique for somatic chromosome preparation and C-banding of maize. In The maize handbook, Springer: 1994; pp 484-493.
32.Spurbeck, J. L.; Zinsmeister, A. R.; Meyer, K. J.; Jalal, S. M., Dynamics of chromosome spreading. American journal of medical genetics 1996, 61, (4), 387-393.
33.Kato, A.; Kato, A.; Albert, P. S.; Vega, J. M.; Kato, A.; Albert, P. S.; Vega, J. M.; Birchler, J. A.; Histochemistry, Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotechnic 2006, 81, (2-3), 71-78.
34.Ma, L.; Vu, G. T.; Schubert, V.; Watanabe, K.; Stein, N.; Houben, A.; Schubert, I., Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosome research 2010, 18, (7), 841-850.
35.Kuo, Y. T.; Hsu, H. L.; Yeh, C. H.; Chang, S. B., Application of a modified drop method for high-resolution pachytene chromosome spreads in two Phalaenopsis species. Molecular cytogenetics 2016, 9, (1), 44.
36.Ma, Y.; Islam-Faridi, M. N.; Crane, C. F.; Stelly, D. M.; Price, H. J.; Byrne, D. H., A new procedure to prepare slides of metaphase chromosomes of roses. HortScience 1996, 31, (5), 855-857.
37.Carlson, W. R., The cytogenetics of corn. Corn and corn improvement 1988, (cornandcornimpr), 259-343.
38.Kato, A.; Lamb, J. C.; Birchler, J. A., Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proceedings of the National Academy of Sciences 2004, 101, (37), 13554-13559.
39.Kim, J. S.; Childs, K. L.; Islam-Faridi, M. N.; Menz, M. A.; Klein, R. R.; Klein, P. E.; Price, H. J.; Mullet, J. E.; Stelly, D. M., Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 2002, 45, (2), 402-412.
40.Sugiyama, S.; Yoshino, T.; Hirose, T.; Ohtani, T., Karyotyping of barley chromosomes by a new fluorescence banding technique combined with scanning probe microscopy. Scanning 2012, 34, (3), 186-190.
41.Ananiev, E. V.; Phillips, R. L.; Rines, H. W., Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proceedings of the National Academy of Sciences 1998, 95, (22), 13073-13078.
42.McClintock, B., A cytological demonstration of the location of an interchange between two non-homologous chromosomes of Zea mays. Proceedings of the National Academy of Sciences 1930, 16, (12), 791-796.
43.Longley, A. E. Knob positions on corn chromosomes; sidalc.net, 1939.
44.Rhoades, M. M., Meiosis in maize. Journal of Heredity 1950, 41, 59-67.
45.Chen, C. C.; Chen, C. M.; Hsu, F. C.; Wang, C. J.; Yang, J. T.; Kao, Y. Y., The pachytene chromosomes of maize as revealed by fluorescence in situ hybridization with repetitive DNA sequences. Theor. Appl. Genet. 2000, 101, (1-2), 30-36.
46.Heslop‐Harrison, J.; Schwarzacher, T., Organisation of the plant genome in chromosomes. The Plant Journal 2011, 66, (1), 18-33.
47.Vanzela, A. L.; Ruas, C. F.; Oliveira, M. F.; Ruas, P. M., Characterization of diploid, tetraploid and hexaploid Helianthus species by chromosome banding and FISH with 45S rDNA probe. Genetica 2002, 114, (2), 105-111.
48.Sato, S.; Hizume, M.; Kawamura, S., Relationship between secondary constrictions and nucleolus organizing regions inAllium sativum chromosomes. Protoplasma 1980, 105, (1-2), 77-85.
49.Sato, S., Cytological studies on the satellited chromosomes of Allium cepa. Caryologia 1981, 34, (4), 431-440.
50.Schubert, I.; Wobus, U., In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 1985, 92, (2), 143-148.
51.Cazaux, B.; Catalan, J.; Veyrunes, F.; Douzery, E. J.; Britton-Davidian, J., Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae). BMC evolutionary biology 2011, 11, (1), 124.
52.Huang, M.; Li, H.; Zhang, L.; Gao, F.; Wang, P.; Hu, Y.; Yan, S. H.; Zhao, L.; Zhang, Q.; Tan, J. J., Plant 45S rDNA clusters are fragile sites and their instability is associated with epigenetic alterations. PloS one 2012, 7, (4), e35139.
53.Vaio, M.; Speranza, P.; Valls, J. F.; Guerra, M.; Mazzella, C., Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae). Ann. Bot. 2005, 96, (2), 191-200.

Website:
Eccoilopus formosanus (Rendle) A. Camus 臺灣油芒| 台灣生物多樣性檢索 (http://taibif.tw/zh/namecode/201494; accessed on 01/09/2019)

台灣油芒Eccoilopus formosanus - Plants of TAIWAN 台灣植物資訊整合查詢系統(http://tai2.ntu.edu.tw/PlantInfo/species-name.php?code=628%20045%2002%200; accessed on 01/09/2019)

高砂族調査書. 第2編 - 国立国会図書館デジタルコレクション(http://dl.ndl.go.jp/info:ndljp/pid/1449505; accessed on 01/09/2019)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top