跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 18:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝淑芳
研究生(外文):Shu-FangHsieh
論文名稱:研究化療前的白血病患者脂質與脂蛋白與疾病間的相關性
論文名稱(外文):Study on the lipoprotein/apolipoprotein profiles in leukemia before chemotherapy
指導教授:楊孔嘉楊孔嘉引用關係
指導教授(外文):Kung-Chia Young
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學檢驗生物技術學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:94
中文關鍵詞:白血病脂質脂蛋白載脂蛋白
外文關鍵詞:Leukemialipidlipoproteinapolipoprotein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白血病是因骨髓造血細胞不正常增生並且侵犯骨髓為主的血液惡性疾病,依病程進展包括:急性骨髓性白血病(Acute myeloid leukemia)、急性淋巴性白血病(Acute lymphoblastic leukemia)、慢性骨髓性白血病(Chronic myeloid leukemia)、慢性淋巴性白血病(Chronic lymphocytic leukemia)、多發性骨髓瘤(Multiple myeloma) 以及骨髓增生不良症候群(myelodysplastic syndromes, MDS)。在先前的研究中發現,兒童急性淋巴性白血病(ALL)患者罹患心臟血管疾病的風險是增加的。然而,目前對於白血病患者發生血脂異常的機制尚未完全了解。此外,血液惡性腫瘤的發生,治療和預後可能與脂質、脂蛋白和載脂蛋白的代謝有關。本研究的目的旨在觀察化療前的白血病患者與健康對照組相比,血漿中的脂質、脂蛋白和載脂蛋白的組成與疾病間是否具有相關性。實驗方法則是應用碘克沙醇密度梯度超高速離心從血漿中分離出脂蛋白,再利用生化分析和酵素免疫分析法分別定量脂質和載脂蛋白。研究結果顯示,(i) CML,MDS和MM血漿中的三酸甘油脂(TG)有顯著上升的趨勢,而膽固醇(CHOL)則是下降並有顯著差異,但AML不管是三酸甘油脂(TG)或是膽固醇(CHOL)在統計上均未達到統計意義。(ii) 低密度脂蛋白(LDL)的三酸甘油脂(TG)與膽固醇(CHOL)在AML,MDS和MM的患者中發生改變;其結果顯示,低密度脂蛋白(LDL)含有較多的TG,但較少的膽固醇(CHOL),因而導致TG / CHOL ratio增加。(iii) 三酸甘油脂(TG)在VLDL轉變成LDL過程中發生改變,除了在MDS患者中未達到統計學意義,其他白血病患者AML、CML、MM和CLL皆有顯著下降的趨勢。(iv)與健康對照組相比,所有白血病患者血漿中的高密度脂蛋白膽固醇(HDL)都有顯著下降的表現。(v) 白血病族群與健康對照組比較發現,CML、MDS和CLL 血漿中載脂蛋白AI (apoAI)、載脂蛋白CIII (apoCIII) 與載脂蛋白J (apoJ)的濃度有顯著較低的現象。而載脂蛋白的組間比對結果顯示,AML和MM具有較高濃度表現的載脂蛋白CIII (apoCIII) 與載脂蛋白J(apoJ)。總結,透過研究分析每一種脂質、脂蛋白與載脂蛋白,我們的結果顯示白血病患者脂蛋白代謝可能具有顯著的異常表現。
Leukemia is malignancy of hematological cells. The most common types of leukemia include acute myelocytic leukemia (AML), acute lymphocytic leukemia (ALL), chronic myelocytic leukemia (CML), chronic lymphocytic leukemia (CLL) and myelodysplastic syndromes (MDS). More ever, multiple myeloma (MM) is a blood cancer related to lymphoma and leukemia. In circulation, lipids are transported through different forms of lipoproteins and imbalance of lipoprotein metabolism might indicate metabolic disorders. In the previous study, childhood ALL survivors were at increased risks of developing late cardiometabolic conditions. However, the lipid profiles in different leukemia types are not fully understood. Moreover, the occurrence, treatment and prognosis of hematological malignancies may be related to the metabolism of lipids and lipoproteins/apolipoproteins. The study aimed to characterize plasma lipid profile and lipoprotein compositions of in patient’s before chemotherapy as compared with healthy volunteers. An iodixanol density-gradient ultracentrifugation was applied to isolate plasma lipoprotein classes from plasma. The lipid contents and apolipoprotein levels were quantified by biochemical assay and ELISA, respectively. The results indicated (i) significant increased TG level and decreased CHOL level was found in CML, MDS and MM, however, no overt alternation of TG and CHOL was found in AML. (ii)The lipid profiles of low-density lipoproteins (LDLs) were altered in patients with AML, MDS and MM. LDL of leukemia patients contained more TG, but less CHOL, resulting in increasing ratio of TG/CHOL ratio. (iii) Moreover, the VLDL-to-LDL ratios of TG were altered in leukemia patients (p 〈0.05), but not reaching statistical significance in MDS. (iv)Especially, the level of plasma high density lipoprotein-cholesterol (HDL) was decreased in all leukemia patients compared with healthy volunteers. (v) CML, MDS and CLL patients had significant low levels of apoAI, apoCIII and apoJ. However, compared with leukemia cohort, AML and MM exhibited high C-III and apoJ. In conclusion, the results suggested the significant abnormalities of lipoprotein metabolism in leukemia patients.
中文摘要 I
Abstract III
致謝 IV
英文延伸摘要 III
表目錄 IX
圖目錄 X
藥品與儀器 XII
簡稱/縮寫 XIV
前言 16
1. 白血病 (Leukemia) 16
1.1 急性骨髓性白血病 (AML) 17
1.2 急性淋巴性白血病 (ALL) 17
1.3 慢性骨髓性白血病(CML) 18
1.4 骨髓增生不良症候群(MDS) 19
1.5 多發性骨髓瘤(MM) 19
1.6 慢性淋巴性白血病(CLL) 20
2. 心血管疾病(Cardiovascular disease, CVD) 20
3. 脂質 (Lipid) 21
3.1 三酸甘油脂 (triglyceride, TG) 21
3.2 膽固醇 (cholesterol, CHOL) 22
4. 脂蛋白 (Lipoprotein) 22
4.1 極低密度脂蛋白 (very low density lipoprotein, VLDL) 22
4.2 低密度脂蛋白 (low-density lipoprotein, LDL) 23
4.3 高密度膽固醇 (high-density lipoprotein cholesterol, HDL-C) 23
5. 載脂蛋白 (Apolipoprotein) 23
5.1 載脂蛋白AI (apoAI) 24
5.2 載脂蛋白B (apoB) 24
5.3 載脂蛋白CIII (apoCIII) 25
5.4 載脂蛋白J (apoJ) 25
實驗目的 26
材料與方法 27
4.1 定量三酸甘油脂 (triglyceride, TG) 28
4.2 定量膽固醇 (cholesterol, CHOL) 29
4.3 定量高密度膽固醇 (high-density lipoprotein cholesterol, HDL-C) 29
5.1. 定量載脂蛋白AI (apoAI) 30
5.2. 定量載脂蛋白B (apoB) 31
5.3. 定量載脂蛋白CIII (apoCIII) 32
5.4. 定量載脂蛋白J (apoJ) 33
5.5 共用試劑配置 35
結果 36
3. 白血病患者脂質與健康者比較結果 37
3.1 白血病患者三酸甘油脂(TG)與健康者比較結果 37
3.2 白血病患者總膽固醇(Total CHOL)與健康者比較結果 37
3.3 白血病患者極低密度脂蛋白(VLDL)中三酸甘油脂(TG)與健康者比較結果… 37
3.4 白血病患者極低密度脂蛋白(VLDL)中膽固醇(CHOL)與健康者比較結果… 37
3.5 白血病患者低密度脂蛋白(LDL)中三酸甘油脂(TG)與健康者比較結果 38
3.6 白血病患者低密度脂蛋白(LDL)中膽固醇(CHOL)與健康者比較結果 38
3.7 白血病患者極低密度脂蛋白(VLDL)中三酸甘油脂(TG)與膽固醇(CHOL)比值(TG/CHOL ratio)與健康者比較結果 38
3.8 白血病患者低密度脂蛋白(LDL)中三酸甘油脂(TG)與膽固醇(CHOL)比值(TG/CHOL ratio)與健康者比較結果 38
3.9 白血病患者極低密度脂蛋白(VLDL)經LPL代謝轉變成低密度脂蛋白(LDL) 後三酸甘油脂(TG)的改變 39
3.10 白血病患者極低密度脂蛋白(VLDL)經LPL代謝轉變成低密度脂蛋白(LDL) 後膽固醇(CHOL)的改變 39
3.11 白血病患者高密度脂蛋白(HDL)與健康者比較結果 39
3.12 白血病患者載脂蛋白AI (apoAI)與健康者比較結果 39
3.13 白血病患者載脂蛋白B (apoB)與健康者比較結果 40
3.14 白血病患者載脂蛋白CIII (apoCIII)與健康者比較結果 40
3.15 白血病患者載脂蛋白J (apoJ)與健康者比較結果 40
4. 白血病族群脂質、脂蛋白與載脂蛋白組間比較結果 41
4.1 白血病族群三酸甘油脂(TG)組間比較 41
4.2 白血病族群總膽固醇(Total CHOL)組間比較 41
4.3 白血病族群極低密度脂蛋白(VLDL)中三酸甘油脂(TG)組間比較 41
4.4 白血病族群極低密度脂蛋白(VLDL)中膽固醇(CHOL)組間比較 41
4.5 白血病族群低密度脂蛋白(LDL)中三酸甘油脂(TG)組間比較 42
4.6 白血病族群低密度脂蛋白(LDL)中膽固醇(CHOL)組間比較 42
4.7 白血病族群極低密度脂蛋白(VLDL)中三酸甘油脂(TG)與膽固醇(CHOL)比值(TG/CHOL ratio)組間比較 42
4.8 白血病族群低密度脂蛋白(LDL)中三酸甘油脂(TG)與膽固醇(CHOL)比值(TG/CHOL ratio)組間比較 42
4.9 白血族群者極低密度脂蛋白(VLDL)經LPL代謝轉變成低密度脂蛋白(LDL) 後三酸甘油脂(TG)的改變組間比較 43
4.10 白血病族群極低密度脂蛋白(VLDL)經LPL代謝轉變成低密度脂蛋白(LDL) 後膽固醇(CHOL)的改變組間比較 43
4.11 白血病族群高密度脂蛋白(HDL)組間比較 43
4.12 白血病族群載脂蛋白AI (apoAI)組間比較 43
4.13 白血病族群載脂蛋白B (apoB)組間比較 44
4.14 白血病族群載脂蛋白CIII (apoCIII)組間比較 44
4.15 白血病族群載脂蛋白J (apoJ)組間比較 44
討論 45
結論 50
參考文獻 51
1.Arber, D.A., et al., The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016. 127(20): p. 2391-405.
2.Grigoropoulos, N.F., et al., Leukaemia update. Part 1: diagnosis and management. BMJ, 2013. 346: p. f1660.
3.Kelta, E., F. Ashall, and A. Abubeker, Assessment of Serum Tryptase Activity Among Acute and Chronic Myeloid Leukemia Patients Visiting Hematology-Oncology Clinic at TikurAnbessa Specialized Hospital, and Comparison with Healthy Controls. Cancer Research Journal, 2018. 6(1): p. 26.
4.Mulas, M., et al., Cholesterol esters as growth regulators of lymphocytic leukaemia cells. Cell proliferation, 2011. 44(4): p. 360-371.
5.Zubaidy, A.S., A.S. Aqabi, and M.H.A. Maini, Hypolipoproteinemia as biological marker in acute leukemia. Iraqi Academic Scientific Journal, 2011. 10(4): p. 456-459.
6.Vardiman, J.W., N.L. Harris, and R.D. Brunning, The World Health Organization (WHO) classification of the myeloid neoplasms. Blood, 2002. 100(7): p. 2292-302.
7.Villela, L. and J. Bolanos-Meade, Acute myeloid leukaemia: optimal management and recent developments. Drugs, 2011. 71(12): p. 1537-50.
8.Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature medicine, 1997. 3(7): p. 730.
9.Heikamp, E.B. and C.-H. Pui, Next-Generation Evaluation and Treatment of Pediatric Acute Lymphoblastic Leukemia. The Journal of pediatrics, 2018. 203: p. 14-24. e2.
10.Hunger, S.P. and C.G. Mullighan, Acute lymphoblastic leukemia in children. New England Journal of Medicine, 2015. 373(16): p. 1541-1552.
11.Solano-Páez, P., et al., L-Asparaginase and steroids-associated hypertriglyceridemia successfully treated with plasmapheresis in a child with acute lymphoblastic leukemia. Journal of pediatric hematology/oncology, 2011. 33(3): p. e122-e124.
12.Morel, S., et al., Lipid and lipoprotein abnormalities in acute lymphoblastic leukemia survivors. Journal of lipid research, 2017. 58(5): p. 982-993.
13.Di Bacco, A., et al., Molecular abnormalities in chronic myeloid leukemia: deregulation of cell growth and apoptosis. Oncologist, 2000. 5(5): p. 405-15.
14.Cortes, J. and H. Kantarjian, How I treat newly diagnosed chronic phase CML. Blood, 2012. 120(7): p. 1390-7.
15.Druker, B.J., et al., Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. New England Journal of Medicine, 2001. 344(14): p. 1031-1037.
16.Valent, P., et al., Proposed minimal diagnostic criteria for myelodysplastic syndromes (MDS) and potential pre-MDS conditions. Oncotarget, 2017. 8(43): p. 73483-73500.
17.Nimer, S.D., Myelodysplastic syndromes. Blood, 2008. 111(10): p. 4841-51.
18.Bennett, J.M., et al., Proposals for the classification of the myelodysplastic syndromes. British journal of haematology, 1982. 51(2): p. 189-199.
19.Lynch, H.T., et al., Familial multiple myeloma: a family study and review of the literature. J Natl Cancer Inst, 2001. 93(19): p. 1479-83.
20.Durie, B.G. and S.E. Salmon, A clinical staging system for multiple myeloma correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer, 1975. 36(3): p. 842-854.
21.Kumar, S.K., et al., Improved survival in multiple myeloma and the impact of novel therapies. Blood, 2008. 111(5): p. 2516-2520.
22.Byrd, J.C., Introduction to a series of reviews on chronic lymphocytic leukemia. Blood, 2015. 126(4): p. 427.
23.Wierda, W., et al., Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J Clin Oncol, 2005. 23(18): p. 4070-8.
24.Rozman, C. and E. Montserrat, Chronic lymphocytic leukemia. New England Journal of Medicine, 1995. 333(16): p. 1052-1057.
25.Hamblin, T.J., et al., Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood, 1999. 94(6): p. 1848-1854.
26.Kuemmerle, N.B., et al., Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Molecular cancer therapeutics, 2011. 10(3): p. 427-436.
27.McCaw, L., et al., Low density lipoproteins amplify cytokine-signaling in chronic lymphocytic leukemia cells. EBioMedicine, 2017. 15: p. 24-35.
28.Mortality, G.B.D. and C. Causes of Death, Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015. 385(9963): p. 117-71.
29.Castelli, W.P., Lipids, risk factors and ischaemic heart disease. Atherosclerosis, 1996. 124 Suppl: p. S1-9.
30.Go, A.S., et al., Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation, 2013. 127(1): p. e6-e245.
31.Sargent, J.R., D.R. Tocher, and J.G. Bell, The lipids, in Fish nutrition. 2003, Elsevier. p. 181-257.
32.Sprong, H., P. van der Sluijs, and G. van Meer, How proteins move lipids and lipids move proteins. Nature Reviews Molecular Cell Biology, 2001. 2(7): p. 504.
33.Patsch, J.R., Triglyceride-rich lipoproteins and atherosclerosis. Atherosclerosis, 1994. 110: p. S23-S26.
34.Cole, T.G., S.G. Klotzsch, and J.R. McNamara, Measurement of triglyceride concentration. Handbook of lipoprotein testing, 2000. 8.
35.Davignon, J. and J.S. Cohn, Triglycerides: a risk factor for coronary heart disease. Atherosclerosis, 1996. 124: p. S57-S64.
36.Lecerf, J.-M. and M. De Lorgeril, Dietary cholesterol: from physiology to cardiovascular risk. British Journal of Nutrition, 2011. 106(1): p. 6-14.
37.Houston, D., et al., Dietary fat and cholesterol and risk of cardiovascular disease in older adults: the Health ABC Study. Nutrition, Metabolism and Cardiovascular Diseases, 2011. 21(6): p. 430-437.
38.Dyer, A.R., et al., Serum cholesterol and risk of death from cancer and other causes in three Chicago epidemiological studies. Journal of chronic diseases, 1981. 34(6): p. 249-260.
39.Barter, P., et al., HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med, 2007. 357(13): p. 1301-10.
40.Utermann, G., The mysteries of lipoprotein (a). Science, 1989. 246(4932): p. 904-910.
41.Castelli, W.P., et al., Incidence of coronary heart disease and lipoprotein cholesterol levels: the Framingham Study. Jama, 1986. 256(20): p. 2835-2838.
42.Gibbons, G., et al., Synthesis and function of hepatic very-low-density lipoprotein. 2004, Portland Press Limited.
43.Packard, C., Triacylglycerol-rich lipoproteins and the generation of small, dense low-density lipoprotein. 2003, Portland Press Limited.
44.Martin, S.S., R.S. Blumenthal, and M. Miller, LDL cholesterol: the lower the better. Med Clin North Am, 2012. 96(1): p. 13-26.
45.Austin, M.A., et al., Low-density lipoprotein subclass patterns and risk of myocardial infarction. Jama, 1988. 260(13): p. 1917-1921.
46.Wilson, P., R.D. Abbott, and W.P. Castelli, High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis: An Official Journal of the American Heart Association, Inc., 1988. 8(6): p. 737-741.
47.Nubiola, A.R., et al., High-density lipoprotein cholesterol in cerebrovascular disease. Archives of neurology, 1981. 38(7): p. 468-468.
48.Gordon, T., et al., High density lipoprotein as a protective factor against coronary heart disease: the Framingham Study. The American journal of medicine, 1977. 62(5): p. 707-714.
49.Mahley, R.W., et al., Plasma lipoproteins: apolipoprotein structure and function. Journal of lipid research, 1984. 25(12): p. 1277-1294.
50.Durstine, J.L., et al., Lipids, lipoproteins, and exercise. Journal of Cardiopulmonary Rehabilitation and Prevention, 2002. 22(6): p. 385-398.
51.Wasan, K.M., et al., Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery. Nat Rev Drug Discov, 2008. 7(1): p. 84-99.
52.Tailleux, A., et al., Apolipoprotein A-II, HDL metabolism and atherosclerosis. Atherosclerosis, 2002. 164(1): p. 1-13.
53.Wilkins, J.T., et al., Discordance Between Apolipoprotein B and LDL-Cholesterol in Young Adults Predicts Coronary Artery Calcification: The CARDIA Study. J Am Coll Cardiol, 2016. 67(2): p. 193-201.
54.Walldius, G. and I. Jungner, The apoB/apoA-I ratio: a strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy--a review of the evidence. J Intern Med, 2006. 259(5): p. 493-519.
55.Kohan, A.B., Apolipoprotein C-III: a potent modulator of hypertriglyceridemia and cardiovascular disease. Curr Opin Endocrinol Diabetes Obes, 2015. 22(2): p. 119-25.
56.Xiong, X., et al., The association of HDL-apoCIII with coronary heart disease and the effect of statin treatment on it. Lipids Health Dis, 2015. 14: p. 127.
57.Lin, C.C., et al., Apolipoprotein J, a glucose-upregulated molecular chaperone, stabilizes core and NS5A to promote infectious hepatitis C virus virion production. J Hepatol, 2014. 61(5): p. 984-93.
58.Koltai, T., Clusterin: a key player in cancer chemoresistance and its inhibition. Onco Targets Ther, 2014. 7: p. 447-56.
59.Sansanwal, P., L. Li, and M.M. Sarwal, Inhibition of intracellular clusterin attenuates cell death in nephropathic cystinosis. J Am Soc Nephrol, 2015. 26(3): p. 612-25.
60.Redgrave, T., D. Roberts, and C. West, Separation of plasma lipoproteins by density-gradient ultracentrifugation. Analytical biochemistry, 1975. 65(1-2): p. 42-49.
61.Singh, G., et al., Spectrum of acute and chronic leukemia at a tertiary care hospital, Haryana, India. Int J Res Med Sci, 2016. 4: p. 1115-1118.
62.Varbo, A. and B.G. Nordestgaard, Nonfasting triglycerides, low-density lipoprotein cholesterol, and heart failure risk: two cohort studies of 113 554 individuals. Arteriosclerosis, thrombosis, and vascular biology, 2018. 38(2): p. 464-472.
63.Chajek, T., O. Stein, and Y. Stein, Lipoprotein lipase of cultured mesenchymal rat heart cells: II. Hydrolysis of labeled very low density lipoprotein triacylglycerol by membrane-supported enzyme. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1978. 528(3): p. 466-474.
64.Mills, G.E. and L.R. Gay, Educational research: Competencies for analysis and applications. 2019: ERIC.
65.Mansouri, M., et al., Lipoprotein lipase is differentially expressed in prognostic subsets of chronic lymphocytic leukemia but displays invariably low catalytical activity. Leukemia research, 2010. 34(3): p. 301-306.
66.Chow, S., R. Buckstein, and D.E. Spaner, A link between hypercholesterolemia and chronic lymphocytic leukemia. Leukemia & lymphoma, 2016. 57(4): p. 797-802.
67.Usman, H., et al., Revisiting the dyslipidemia associated with acute leukemia. Clinica Chimica Acta, 2015. 444: p. 43-49.
68.Mertens, A.C., et al., Cause-specific late mortality among 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. Journal of the National Cancer Institute, 2008. 100(19): p. 1368-1379.
69.Fournier, M., et al., Altered proteome of high-density lipoproteins from paediatric acute lymphoblastic leukemia survivors. Scientific reports, 2019. 9(1): p. 4268.
70.Musso, G., R. Gambino, and M. Cassader, Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Progress in lipid research, 2009. 48(1): p. 1-26.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊