跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 22:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉治
研究生(外文):ZHIYE
論文名稱:應用奈米於臨床微生物的診斷與治療
論文名稱(外文):Application of nanoparticles in clinical microbiological diagnosis and therapy
指導教授:蔡佩珍蔡佩珍引用關係
指導教授(外文):Pei-Jane Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學檢驗生物技術學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:54
中文關鍵詞:艱難梭狀桿菌孢子奈米念珠菌血症念珠菌
外文關鍵詞:C. difficilesporenanoparticlecandidemiaCandida spp.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,奈米材料在臨床治療及臨床診斷方面的應用也越來越廣泛。在我的研究中主要分為兩部分:一是探求用於治療艱難梭狀桿菌感染的奈米顆粒,另一是開發用於快速診斷念珠菌血症的磁性奈米顆粒。
艱難梭狀桿菌是一種會產生孢子的厭氧菌,其孢子形態被認為是環境傳播的主要來源。然而,臨床上目前針對此疾病的治療仍依賴於抗生素對菌體的傷害,而抗生素會破壞正常菌群,繼而導致感染復發風險變高。在本次研究中,我們篩選了13種不同的奈米粒子,用來抑制艱難梭狀桿菌孢子和細菌存活。其中,我們發現了一種奈米粒子不僅能抑制孢子的存活,還能抑制菌體的存活。從穿透式電子顯微鏡檢查顯示奈米顆粒能夠快速破壞艱難梭狀桿菌孢子和菌體。此外,在小鼠糞便離體試驗中,此新型奈米對艱難梭菌的殺菌能力與奈米材料濃度呈正相關性。在小鼠活體實驗中,新型奈米能夠有效減緩小鼠被艱難梭菌感染的病症,顯示新型奈米具有發展為治療艱難梭狀桿菌感染之全新型製劑的潛力。
念珠菌血症是常見造成血液感染性疾病的主要原因之一,可導致高死亡率。因此,念珠菌血症需要在短時間被正確性的檢測。在本次研究中,我們通過磁性奈米粒子濃縮病原體並以聚合酶連鎖反應檢測來縮短血液培養時間。我們發現鐵奈米可在短時間內與低濃度的念珠菌屬特異性地結合,直接檢測念珠菌血症的臨床樣本,其診斷結果與傳統診斷法的結果相符。此部分,我們開發了一種新型奈米用於念珠菌血症的快速檢測方法。
During recent years, there has been more interest in using nanoparticles for clinical diagnosis and therapy. In this study, my research is divided into two parts: one is searching for a new therapeutic nanoparticle to against Clostridium difficile infection (CDI) and the other is developing a rapid candidemia diagnostic magnetic nanoparticle.
C. difficile is a spore-forming anaerobe. The spores are considered a major source of transmission. However, current treatment against CDI relies on antibiotic usage, which also damaged the normal flora and raised a high CDI recurrence risk. Therefore, alternative therapies that are more effective against C. difficile bacteria or spores are needed. Here, we screened 13 different nanoparticles on inhibition of C. difficile spore- and bacterial-survival. We identified a new nanoparticle which inhibited the survival of not only spores but also vegetative cells. Transmission electron microscope examination revealed that the nanoparticle quickly disrupted C. difficile spores and vegetative cells. The survival of C. difficile in a fecal bench ex vivo test showed this nanoparticle exhibited bactericidal ability against C. difficile in a dose dependent manner. In a CDI murine model, this nanoparticle showed therapeutic efficacy through attenuating CDI. Taken together, these results suggest this nanoparticle possess great potential to be a new alternative therapeutic strategy to against CDI.
Candidemia is a one of common bloodstream infections worldwide causing high mortality rate. Here, we shorten the incubation time of blood cultures via condensing the pathogen by magnetic nanoparticles and identifying the pathogen by PCR. We found an iron nanoparticle can quickly and specifically bind to Candida spp. This condensation procedure revealed the same results as that in traditional diagnostic process in clinical candidemia specimen. Taken together, this study demonstrated a rapid candidemia identification process via magnetic nanoparticles.
CONTENTS
中文摘要 I
ABSTRACT II
致謝 III
CONTENTS IV
Part one: Inhibition of Clostridium difficile spore and bacterial survival by novel nanoparticles.
Chapter 1. INTRODUCTION 1
1.1 Clostridium difficile infection and epidemiology 1
1.2 Pathogenesis of Clostridium difficile infection 1
1.3 Clostridium difficile spores 2
1.4 Nanomaterials 3
1.5 Antibacterial activity of nanomaterials 3
Chapter 2. MATERIALS AND METHODS 5
2.1 Bacterial culture 5
2.2 Purification of spores 5
2.3 Spore staining viability assay 5
2.4 Spore viability assay 6
2.5 Spore germination assay 6
2.6 DPA release assay 6
2.7 Vegetative bacterial cells viability test 7
2.8 MIC of nanoparticles in against C. difficile 7
2.9 Trans-electron microscopic analysis of spores and vegetative cells 7
2.10 Spore integrity staining 7
2.11 Animal 7
2.12 C. difficile infection animal model 8
2.13 Inhibition of C. difficile in a fecal bench ex vivo test 8
2.14 The therapeutic efficacy of the nanoparticles in CDI murine
model 8
2.15 The effect of the nanoparticles on animal guts microbiota 9
2.16 Statistical analysis 9
Chapter 3. RESULTS 10
3.1 The sporicidal ability of nanoparticles against C. difficile spores 10
3.2 The effects of silver nanoparticles on C. difficile spore germination 10
3.3 The effects of silver nanoparticles on C. difficile spore DPA
releasing 10
3.4 The silver nanoparticles decrease the viability of C. difficile vegetative
cells 11
3.5 The new silver nanoparticles damage spore and vegetative
ultrastructures 11
3.6 The new silver nanoparticles disrupted integrities of spore and
vegetative cell 12
3.7 The new silver nanoparticles inhibit C. difficile growth mixed with
colonic microbiome 12
3.8 The new silver nanoparticles have the therapeutic effects on C. difficile
infection 13
Chapter 4. DISCUSSION 14
REFERENCES 16
APPENDIX 30
Appendix 1. List for nanoparticles used in this study 30
Appendix 2. List for primers used in this study 30
Appendix 3. Recipes of broth and agar 31

Part two: Magnetic nanoparticles for Candida concentration in Candidemia.
Chapter 1. INTRODUCTION 32
1.1 Candidemia 32
1.2 Epidemiology of candidemia 32
1.3 Limitation of blood culture for diagnosis of bloodstream infections 33
1.4 The application of magnetic nanoparticles in previous study 34
1.5 Iron nanoparticle (IONP) 34
Chapter 2. MATERIALS AND METHODS 35
2.1 Fungal culture 35
2.2 Bacterial culture 35
2.3 DNA extraction 35
2.4 Amplification of the ITS region and 16srRNA 36
2.5 Identification of yeast by ITS sequencing 36
2.6 Trans-electron microscopic analysis of fungi interacting with iron
nanoparticles 36
2.7 Spike assay 37
2.8 Fungal counting of clinical candidemia specimens 37
2.9 Data analysis 37
Chapter 3. RESULTS 38
3.1 Proposed working model for shorten identification process in blood
culture specimen 38
3.2 The iron nanoparticles (IONPs) magnetic condensed Candida spp.
which can be identified by PCR 38
3.3 TEM images of IONPs interacting with Candida tropicalis 39
3.4 IONPs specificity magnetic condensed Candida spp. 39
3.5 The optimum interacted condition of IONPs and Candida spp. 39
3.6 Condensation of Candida spp. in the blood culture condition with
IONPs 40
3.7 Detection accuracy of IONPs magnetic condensed and identification
by PCR in clinical candidemia specimens 40
Chapter 4. DISCUSSION 42
REFERENCES 44
APPENDIX 54
Appendix 1. List for primers used in this study 54
Appendix 2. Recipes of broth and agar 54

INDEX OF TABLES
Part one: Inhibition of Clostridium difficile spore and bacterial survival by novel nanoparticles.
Table 1. C. difficile growth inhibition by silver nanoparticles 29

Part two: Magnetic nanoparticles for Candida concentration in Candidemia.
Table 1. The colony forming units of Candida spp. from candidemia specimens 53


INDEX OF FIGURES
Part one: Inhibition of Clostridium difficile spore and bacterial survival by novel nanoparticles.
Figure 1. The sporicidal activity of 13 different nanoparticles on C. difficile spore 19
Figure 2. The silver nanoparticles inhibit C. difficile spore germination 20
Figure 3. The silver nanoparticles inhibit C. difficile spore DPA releasing 21
Figure 4. The silver nanoparticles inhibit C. difficile growth 22
Figure 5. The new silver nanoparticles damage spore and vegetative
ultrastructures 23
Figure 6. The new silver nanoparticles damaged spore and vegetative cell integrity 24
Figure 7. The new silver nanoparticles inhibit C. difficile growth mixed with colonic microbiome 25
Figure 8. The new silver nanoparticles have therapeutic effects on C. difficile infection 26
Figure 9. The new silver nanoparticles altered the microbiome in a dose-dependent manner 27
Figure 10. The new silver nanoparticles inhibit human colon cancer cell line HT29 growth 28
Part two: Magnetic nanoparticles for Candida concentration in Candidemia.
Figure 1. Proposed working model for shorten identification process in blood culture specimen 46
Figure 2. The iron nanoparticles (IONPs) magnetic condensed Candida spp. which can be identified by PCR 47
Figure 3. TEM images of IONPs interacting with Candida tropicalis 48
Figure 4. IONPs specificity magnetic condensed Candida spp. 49
Figure 5. The optimum interacted condition of IONPs and Candida spp. 50
Figure 6. Condensation of Candida spp. in the blood culture condition with IONPs 51
Figure 7. Detection accuracy of IONPs magnetic condensed and identification by PCR in clinical candidemia specimens 52
Abt, M. C., et al. (2016). Clostridium difficile colitis: pathogenesis and host defence. Nature Reviews Microbiology, 14(10), 609.
Amin, M. L., et al. (2015). Surface modification and local orientations of surface molecules in nanotherapeutics. Journal of controlled release, 207, 131-142.
Barbut, F., et al. (2009). Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores. infection control & hospital epidemiology, 30(6), 507-514.
Barra-Carrasco, J., et al. (2014). Clostridium difficile spores: a major threat to the hospital environment. Future microbiology, 9(4), 475-486.
Cavassin, E. D., et al. (2015). Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of nanobiotechnology, 13(1), 64.
Chandler, R. E., et al. (2007). Clostridium difficile-associated disease in Oregon: increasing incidence and hospital-level risk factors. infection control & hospital epidemiology, 28(2), 116-122.
Chen, Y.-H., et al. (2019). Vancomycin-loaded nanoparticles enhance sporicidal and antibacterial efficacy for Clostridium difficile infection. Frontiers in microbiology, 10.
Chung, C.-H., et al. (2010). Clostridium difficile infection at a medical center in southern Taiwan: incidence, clinical features and prognosis. Journal of Microbiology, Immunology and Infection, 43(2), 119-125.
Dupuy, B., et al. (1998). Regulated transcription of Clostridium difficile toxin genes. Molecular microbiology, 27(1), 107-120.
Fernández-García, L., et al. (2017). Clostridium difficile Infection: Pathogenesis, Diagnosis and Treatment. Clostridium Difficile: A Comprehensive Overview, 57.
Francis, M. B., et al. (2016). Dipicolinic acid release by germinating Clostridium difficile spores occurs through a mechanosensing mechanism. Msphere, 1(6), e00306-00316.
Goudarzi, M., et al. (2014). Clostridium difficile infection: epidemiology, pathogenesis, risk factors, and therapeutic options. Scientifica, 2014.
Hung, Y.-P., et al. (2012). Impact of toxigenic Clostridium difficile colonization and infection among hospitalized adults at a district hospital in southern Taiwan. Plos one, 7(8), e42415.
Jain, P. K., et al. (2007). Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2(3), 107-118.
Khan, I., et al. (2017). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry.
Kochan, T. J., et al. (2017). Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores. PLoS pathogens, 13(7), e1006443.
Kuehne, S. A., et al. (2010). The role of toxin A and toxin B in Clostridium difficile infection. Nature, 467(7316), 711.
Lee, W.-T., et al. (2017). Octahedron iron oxide nanocrystals prohibited Clostridium difficile spore germination and attenuated local and systemic inflammation. Scientific reports, 7(1), 8124.
Mabena, L. F., et al. (2011). Nitrogen-doped carbon nanotubes as a metal catalyst support. Applied Nanoscience, 1(2), 67-77.
Paidhungat, M., et al. (2000). Characterization of spores of Bacillus subtilis which lack dipicolinic acid. Journal of bacteriology, 182(19), 5505-5512.
Paredes-Sabja, D., et al. (2008). Characterization of Clostridium perfringens spores that lack SpoVA proteins and dipicolinic acid. Journal of bacteriology, 190(13), 4648-4659.
Paredes-Sabja, D., et al. (2014). Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends in microbiology, 22(7), 406-416.
Pépin, J., et al. (2005). Mortality attributable to nosocomial Clostridium difficile–associated disease during an epidemic caused by a hypervirulent strain in Quebec. Cmaj, 173(9), 1037-1042.
Poutanen, S. M., et al. (2004). Clostridium difficile-associated diarrhea in adults. Cmaj, 171(1), 51-58.
Puri, A., et al. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Critical Reviews™ in Therapeutic Drug Carrier Systems, 26(6).
Ramos, A. P., et al. (2017). Biomedical applications of nanotechnology. Biophysical reviews, 9(2), 79-89.
Saint, S., et al. (2015). Clostridium difficile infection in the United States: a national study assessing preventive practices used and perceptions of practice evidence. infection control & hospital epidemiology, 36(8), 969-971.
Salata, O. V. (2004). Applications of nanoparticles in biology and medicine. Journal of nanobiotechnology, 2(1), 3.
Shrestha, R., et al. (2019). Terbium chloride influences Clostridium difficile spore germination. Anaerobe.
Sorg, J. A., et al. (2008). Bile salts and glycine as cogerminants for Clostridium difficile spores. Journal of bacteriology, 190(7), 2505-2512.
Sorg, J. A., et al. (2009). Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. Journal of bacteriology, 191(3), 1115-1117.
Sorg, J. A., et al. (2010). Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. Journal of bacteriology, 192(19), 4983-4990.
Tonna, I., et al. (2005). Pathogenesis and treatment of Clostridium difficile infection. Postgraduate medical journal, 81(956), 367.
Weir, E., et al. (2008). The use of nanoparticles in anti-microbial materials and their characterization. Analyst, 133(7), 835-845.
Wilson, K. H. (1983). Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. Journal of clinical microbiology, 18(4), 1017-1019.
Yah, C. S., et al. (2015). Nanoparticles as potential new generation broad spectrum antimicrobial agents. DARU Journal of Pharmaceutical Sciences, 23(1), 43.
Zaman, M., et al. (2014). Nanoparticles in relation to peptide and protein aggregation. International journal of nanomedicine, 9, 899.
Zhang, Y., et al. (2015). Antimicrobial activity of gold nanoparticles and ionic gold. Journal of Environmental Science and Health, Part C, 33(3), 286-327.
Beer, C., et al. (2012). Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicology letters, 208(3), 286-292.
Kang, J. D., et al. (2019). Bile acid 7α-dehydroxylating gut bacteria secrete antibiotics that inhibit Clostridium difficile: role of secondary bile acids. Cell chemical biology, 26(1), 27-34. e24.
Kim, S., et al. (2009). Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology in vitro, 23(6), 1076-1084.
Prabhu, S., et al. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International nano letters, 2(1), 32.
Spigaglia, P. (2016). Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Therapeutic advances in infectious disease, 3(1), 23-42.
Yang, Y.-W., et al. (2015). Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in mouse feces. Appl. Environ. Microbiol., 81(19), 6749-6756.
Antinori, S., et al. (2016). Candidemia and invasive candidiasis in adults: A narrative review. European journal of internal medicine 34: 21-28.
Bassetti, M., et al. (2006). Epidemiological trends in nosocomial candidemia in intensive care. BMC infectious diseases 6(1): 21.
Burrel, E. K., et al. (2012). Candida Infection of the Bloodstream-Candidemia. American Thoracic Society 185: 3-4.
Buttery, J., et al. (2001). Neonatal blood cultures: how much blood do we take. European Society of Pediatric Infectious Diseases, Istanbul.
Chen, L.-Y., et al. (2011). Changes in the incidence of candidaemia during 2000–2008 in a tertiary medical centre in northern Taiwan. Journal of Hospital Infection 78(1): 50-53.
Chen, P.-Y., et al. (2014). Comparison of epidemiology and treatment outcome of patients with candidemia at a teaching hospital in Northern Taiwan, in 2002 and 2010. Journal of Microbiology, Immunology and Infection 47(2): 95-103.
Cheng, Y., et al. (2006). Risk factors for candidemia-related mortality at a medical center in central Taiwan. Journal of microbiology, immunology, and infection= Wei mian yu gan ran za zhi 39(2): 155-161.
Davis, S. L., et al. (2007). Epidemiology, risk factors, and outcomes of Candida albicans versus non-albicans candidemia in nonneutropenic patients. Annals of Pharmacotherapy 41(4): 568-573.
Gao, J., et al. (2009). Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Accounts of chemical research 42(8): 1097-1107.
Gupta, A. K. and M. Gupta (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. biomaterials 26(18): 3995-4021.
Hii, M., et al. (2015). Changing epidemiology of candidemia in a medical center in middle Taiwan. Journal of Microbiology, Immunology and Infection 48(3): 306-315.
Jachec, S., et al. (2019). Candida Antigen Titer Elevation and Mortality in Burn Patients. World journal of plastic surgery 8(1): 18.
Komori, A., et al. (2019). Clinical features of patients with candidemia in sepsis. Journal of General and Family Medicine 20(4): 161.
Lamy, B., et al. (2016). How to optimize the use of blood cultures for the diagnosis of bloodstream infections? A state-of-the art. Frontiers in microbiology 7: 697.
Laurent, S., et al. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews 108(6): 2064-2110.
Lin, C.-C., et al. (2015). Antimicrobial susceptibility and clinical outcomes of Candida parapsilosis bloodstream infections in a tertiary teaching hospital in Northern Taiwan. Journal of Microbiology, Immunology and Infection 48(5): 552-558.
Lin, Y.-S., et al. (2005). Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Analytical chemistry 77(6): 1753-1760.
Lindberg, E., et al. (2019). Species distribution and antifungal drug susceptibilities of yeasts isolated from the blood samples of patients with candidemia. Scientific reports 9(1): 3838.
Liu, C.-Y., et al. (2010). Changing epidemiology of nosocomial bloodstream infections in 11 teaching hospitals in Taiwan between 1993 and 2006. Journal of Microbiology, Immunology and Infection 43(5): 416-429.
Liu, W.-L., et al. (2017). Clinical manifestations of candidemia caused by uncommon Candida species and antifungal susceptibility of the isolates in a regional hospital in Taiwan, 2007–2014. Journal of Microbiology, Immunology and Infection.
Mahdavi, M., et al. (2013). Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18(7): 7533-7548.
Morgan, J. (2005). Global trends in candidemia: review of reports from 1995–2005. Current infectious disease reports 7(6): 429-439.
Papadimitriou-Olivgeris, M., et al. (2019). Increasing incidence of candidaemia and shifting epidemiology in favor of Candida non-albicans in a 9-year period (2009–2017) in a university Greek hospital. Infection 47(2): 209-216.
Patterson, T. F. (2017). The newest treatment strategies for candidemia. International journal of antimicrobial agents, ELSEVIER SCIENCE BV PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS.
Sandven, P. (2000). Epidemiology of candidemia. Revista Iberoamericana de Micologia 17(3): 73-81.
Strollo, S., et al. (2017). Epidemiology of hospitalizations associated with invasive candidiasis, United States, 2002–2012. Emerging infectious diseases 23(1): 7.
Taieb, F., et al. (2011). Management of candidemia and invasive candidiasis. La Revue de medecine interne 32(3): 173-180.
Tang, H. J., et al. (2015). Epidemiology and prognostic factors of candidemia in elderly patients. Geriatrics & gerontology international 15(6): 688-693.
Wu, Y.-M., et al. (2018). Risk factors and outcomes of candidemia caused by Candida parapsilosis complex in a medical center in northern Taiwan. Diagnostic microbiology and infectious disease 90(1): 44-49.
Xiao, Z., et al. (2019). Epidemiology, species distribution, antifungal susceptibility and mortality risk factors of candidemia among critically ill patients: a retrospective study from 2011 to 2017 in a teaching hospital in China. Antimicrobial Resistance & Infection Control 8(1): 89.
Hong, Wei-En, et al. (2018). Assembled growth of 3D Fe3O4@ Au nanoparticles for efficient photothermal ablation and SERS detection of microorganisms. Journal of Materials Chemistry B 6.36: 5689-5697.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top