|
[1]J. Lexell and U. B. Flansbjer, Muscle strength training, gait performance and physiotherapy after stroke, Minerva Med, vol. 99, no. 4, pp. 353-68, Aug 2008. [2]S. Yang, J. T. Zhang, A. C. Novak, B. Brouwer, and Q. Li, Estimation of spatio-temporal parameters for post-stroke hemiparetic gait using inertial sensors, Gait Posture, vol. 37, no. 3, pp. 354-8, Mar 2013. [3]H. Y. Chen, S. C. Chen, J. J. Chen, L. L. Fu, and Y. L. Wang, Kinesiological and kinematical analysis for stroke subjects with asymmetrical cycling movement patterns, J Electromyogr Kinesiol, vol. 15, no. 6, pp. 587-95, Dec 2005. [4]S. I. Lin, C. C. Lo, P. Y. Lin, and J. J. Chen, Biomechanical assessments of the effect of visual feedback on cycling for patients with stroke, J Electromyogr Kinesiol, vol. 22, no. 4, pp. 582-8, Aug 2012. [5]S. A. Combs, E. L. Dugan, E. N. Ozimek, and A. B. Curtis, Bilateral coordination and gait symmetry after body-weight supported treadmill training for persons with chronic stroke, Clin Biomech (Bristol, Avon), vol. 28, no. 4, pp. 448-53, Apr 2013. [6]L. Comolli, S. Ferrante, A. Pedrocchi, M. Bocciolone, G. Ferrigno, and F. Molteni, Metrological characterization of a cycle-ergometer to optimize the cycling induced by functional electrical stimulation on patients with stroke, Med Eng Phys, vol. 32, no. 4, pp. 339-48, May 2010. [7]G. Yavuzer et al., Mirror therapy improves hand function in subacute stroke: a randomized controlled trial, Arch Phys Med Rehabil, vol. 89, no. 3, pp. 393-8, Mar 2008. [8]R. Mazzocchio, S. Meunier, S. Ferrante, F. Molteni, and L. G. Cohen, Cycling, a tool for locomotor recovery after motor lesions?, NeuroRehabilitation, vol. 23, no. 1, pp. 67-80, 2008. [9]R. Topp, M. Ditmyer, K. King, K. Doherty, and J. Hornyak, 3rd, The effect of bed rest and potential of prehabilitation on patients in the intensive care unit, AACN Clin Issues, vol. 13, no. 2, pp. 263-76, May 2002. [10]F. Vanoglio et al., Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: A randomized pilot controlled study, Clin Rehabil, Apr 07 2016. [11]S. M. Parry et al., Early rehabilitation in critical care (eRiCC): functional electrical stimulation with cycling protocol for a randomised controlled trial, BMJ Open, vol. 2, no. 5, 2012. [12]K. M. Triandafilou, J. Ochoa, X. Kang, H. C. Fischer, M. E. Stoykov, and D. G. Kamper, Transient impact of prolonged versus repetitive stretch on hand motor control in chronic stroke, Top Stroke Rehabil, vol. 18, no. 4, pp. 316-24, Jul-Aug 2011. [13]A. C. Nobrega, J. W. Williamson, D. B. Friedman, C. G. Araujo, and J. H. Mitchell, Cardiovascular responses to active and passive cycling movements, Med Sci Sports Exerc, vol. 26, no. 6, pp. 709-14, Jun 1994. [14]L. Ballaz, N. Fusco, A. Cretual, B. Langella, and R. Brissot, Acute peripheral blood flow response induced by passive leg cycle exercise in people with spinal cord injury, Arch Phys Med Rehabil, vol. 88, no. 4, pp. 471-6, Apr 2007. [15]P. Y. Lin, J. J. Chen, and S. I. Lin, The cortical control of cycling exercise in stroke patients: an fNIRS study, Hum Brain Mapp, vol. 34, no. 10, pp. 2381-90, Oct 2013. [16]R. W. Motl, B. D. Knowles, and R. K. Dishman, Acute bouts of active and passive leg cycling attenuate the amplitude of the soleus H-reflex in humans, Neurosci Lett, vol. 347, no. 2, pp. 69-72, Aug 21 2003. [17]J. S. Knutson, M. J. Fu, L. R. Sheffler, and J. Chae, Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia, Phys Med Rehabil Clin N Am, vol. 26, no. 4, pp. 729-45, Nov 2015. [18]O. A. Howlett, N. A. Lannin, L. Ada, and C. McKinstry, Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis, Arch Phys Med Rehabil, vol. 96, no. 5, pp. 934-43, May 2015. [19]M. Kafri and Y. Laufer, Therapeutic effects of functional electrical stimulation on gait in individuals post-stroke, Ann Biomed Eng, vol. 43, no. 2, pp. 451-66, Feb 2015. [20]T. E. Johnston, C. M. Modlesky, R. R. Betz, and R. T. Lauer, Muscle changes following cycling and/or electrical stimulation in pediatric spinal cord injury, Arch Phys Med Rehabil, vol. 92, no. 12, pp. 1937-43, Dec 2011. [21]S. M. Rayegani, H. Shojaee, L. Sedighipour, M. R. Soroush, M. Baghbani, and O. B. Amirani, The effect of electrical passive cycling on spasticity in war veterans with spinal cord injury, Front Neurol, vol. 2, p. 39, 2011. [22]E. Ambrosini, S. Ferrante, A. Pedrocchi, G. Ferrigno, and F. Molteni, Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: a randomized controlled trial, Stroke, vol. 42, no. 4, pp. 1068-73, Apr 2011. [23]E. Ambrosini, S. Ferrante, G. Ferrigno, F. Molteni, and A. Pedrocchi, Cycling induced by electrical stimulation improves muscle activation and symmetry during pedaling in hemiparetic patients, IEEE Trans Neural Syst Rehabil Eng, vol. 20, no. 3, pp. 320-30, May 2012. [24]J. J. Chen, N. Y. Yu, D. G. Huang, B. T. Ann, and G. C. Chang, Applying fuzzy logic to control cycling movement induced by functional electrical stimulation, IEEE Trans Rehabil Eng, vol. 5, no. 2, pp. 158-69, Jun 1997. [25]T. E. Johnston, Biomechanical considerations for cycling interventions in rehabilitation, Phys Ther, vol. 87, no. 9, pp. 1243-52, Sep 2007. [26]R. C. H. So, J. K. F. Ng, and G. Y. F. Ng, Muscle recruitment pattern in cycling: a review, Physical Therapy in Sport, vol. 6, no. 2, pp. 89-96, 2005. [27]M. Gfohler and P. Lugner, Dynamic simulation of FES-cycling: influence of individual parameters, IEEE Trans Neural Syst Rehabil Eng, vol. 12, no. 4, pp. 398-405, Dec 2004. [28]P.-W. Hsueh, M.-C. Tsai, and C.-L. Chen, Stimulation Interval Evaluation for Lower-Limb Cycling Movement Based on Torque Observer, Asian Journal of Control, vol. 20, no. 6, pp. 2318-2330, 2018/11/01 2017. [29]I. J. MJ, G. J. Renzenbrink, and A. C. Geurts, Neuromuscular stimulation after stroke: from technology to clinical deployment, Expert Rev Neurother, vol. 9, no. 4, pp. 541-52, Apr 2009. [30]S. Sharififar, J. J. Shuster, and M. D. Bishop, Adding electrical stimulation during standard rehabilitation after stroke to improve motor function. A systematic review and meta-analysis, Ann Phys Rehabil Med, vol. 61, no. 5, pp. 339-344, Sep 2018. [31]T. W. Janssen et al., Effects of electric stimulation-assisted cycling training in people with chronic stroke, Arch Phys Med Rehabil, vol. 89, no. 3, pp. 463-9, Mar 2008. [32]A. K. Vafadar, J. N. Cote, and P. S. Archambault, Effectiveness of functional electrical stimulation in improving clinical outcomes in the upper arm following stroke: a systematic review and meta-analysis, Biomed Res Int, vol. 2015, p. 729768, 2015. [33]E. Langzam, E. Isakov, Y. Nemirovsky, and J. Mizrahi, Muscle force augmentation by low-intensity electrical stimulation, Conf Proc IEEE Eng Med Biol Soc, vol. 6, pp. 5808-11, 2005. [34]A. Katz, E. Tirosh, R. Marmur, and J. Mizrahi, Enhancement of muscle activity by electrical stimulation in cerebral palsy: a case-control study, J Child Neurol, vol. 23, no. 3, pp. 259-67, Mar 2008. [35]R. N. Annavarapu, S. Kathi, and V. K. Vadla, Non-invasive imaging modalities to study neurodegenerative diseases of aging brain, J Chem Neuroanat, Feb 21 2018. [36]C. R. Rooks, N. J. Thom, K. K. McCully, and R. K. Dishman, Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review, Prog Neurobiol, vol. 92, no. 2, pp. 134-50, Oct 2010. [37]M. Ferrari and V. Quaresima, A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application, Neuroimage, vol. 63, no. 2, pp. 921-35, Nov 1 2012. [38]F. Scholkmann et al., A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology, Neuroimage, vol. 85 Pt 1, pp. 6-27, Jan 15 2014. [39]A. Torricelli et al., Time domain functional NIRS imaging for human brain mapping, Neuroimage, vol. 85 Pt 1, pp. 28-50, Jan 15 2014. [40]R. Gatto, W. Hoffman, M. Mueller, A. Flores, T. Valyi-Nagy, and F. T. Charbel, Frequency domain near-infrared spectroscopy technique in the assessment of brain oxygenation: a validation study in live subjects and cadavers, J Neurosci Methods, vol. 157, no. 2, pp. 274-7, Oct 30 2006. [41]I. Miyai et al., Cortical mapping of gait in humans: a near-infrared spectroscopic topography study, Neuroimage, vol. 14, no. 5, pp. 1186-92, Nov 2001. [42]Y. Murata et al., Effects of cerebral ischemia on evoked cerebral blood oxygenation responses and BOLD contrast functional MRI in stroke patients, Stroke, vol. 37, no. 10, pp. 2514-20, Oct 2006. [43]A. Kaelin-Lang, A. R. Luft, L. Sawaki, A. H. Burstein, Y. H. Sohn, and L. G. Cohen, Modulation of human corticomotor excitability by somatosensory input, J Physiol, vol. 540, no. Pt 2, pp. 623-33, Apr 15 2002. [44]M. C. Ridding, B. Brouwer, T. S. Miles, J. B. Pitcher, and P. D. Thompson, Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects, Exp Brain Res, vol. 131, no. 1, pp. 135-43, Mar 2000. [45]P. Y. Lin, S. I. Lin, and J. J. Chen, Functional near infrared spectroscopy study of age-related difference in cortical activation patterns during cycling with speed feedback, IEEE Trans Neural Syst Rehabil Eng, vol. 20, no. 1, pp. 78-84, Jan 2012. [46]I. Miyai et al., Premotor cortex is involved in restoration of gait in stroke, Ann Neurol, vol. 52, no. 2, pp. 188-94, Aug 2002. [47]J. Szecsi, C. Krewer, F. Muller, and A. Straube, Functional electrical stimulation assisted cycling of patients with subacute stroke: kinetic and kinematic analysis, Clin Biomech (Bristol, Avon), vol. 23, no. 8, pp. 1086-94, Oct 2008. [48]S. Muehlschlegel et al., Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations, Neurocrit Care, vol. 11, no. 2, pp. 288-95, 2009. [49]L. Koessler et al., Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system, Neuroimage, vol. 46, no. 1, pp. 64-72, May 15 2009. [50]G. Alon, G. Kantor, and H. S. Ho, Effects of electrode size on basic excitatory responses and on selected stimulus parameters, J Orthop Sports Phys Ther, vol. 20, no. 1, pp. 29-35, Jul 1994. [51]T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain, Appl Opt, vol. 48, no. 10, pp. D280-98, Apr 1 2009. [52]M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, Diffuse optical imaging of the whole head, J Biomed Opt, vol. 11, no. 5, p. 054007, Sep-Oct 2006. [53]D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans, Opt Lett, vol. 29, no. 13, pp. 1506-8, Jul 1 2004. [54]S. Jain, K. Gourab, S. Schindler-Ivens, and B. D. Schmit, EEG during pedaling: evidence for cortical control of locomotor tasks, Clin Neurophysiol, vol. 124, no. 2, pp. 379-90, Feb 2013. [55]J. P. Mehta, M. D. Verber, J. A. Wieser, B. D. Schmit, and S. M. Schindler-Ivens, The effect of movement rate and complexity on functional magnetic resonance signal change during pedaling, Motor Control, vol. 16, no. 2, pp. 158-75, Apr 2012. [56]A. Blickenstorfer et al., Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI, Hum Brain Mapp, vol. 30, no. 3, pp. 963-75, Mar 2009. [57]J. Karhu and C. D. Tesche, Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices, J Neurophysiol, vol. 81, no. 5, pp. 2017-25, May 1999. [58]K. Hoechstetter et al., Interaction of tactile input in the human primary and secondary somatosensory cortex--a magnetoencephalographic study, Neuroimage, vol. 14, no. 3, pp. 759-67, Sep 2001. [59]J. Ruben et al., Somatotopic organization of human secondary somatosensory cortex, Cereb Cortex, vol. 11, no. 5, pp. 463-73, May 2001. [60]B. S. Han, S. H. Jang, Y. Chang, W. M. Byun, S. K. Lim, and D. S. Kang, Functional magnetic resonance image finding of cortical activation by neuromuscular electrical stimulation on wrist extensor muscles, Am J Phys Med Rehabil, vol. 82, no. 1, pp. 17-20, Jan 2003. [61]E. Langzam, Y. Nemirovsky, E. Isakov, and J. Mizrahi, Muscle enhancement using closed-loop electrical stimulation: volitional versus induced torque, (in eng), J Electromyogr Kinesiol, vol. 17, no. 3, pp. 275-84, Jun 2007. [62]K. Tomori, Y. Ohta, T. Nishizawa, H. Tamaki, and H. Takekura, Low-intensity electrical stimulation ameliorates disruption of transverse tubules and neuromuscular junctional architecture in denervated rat skeletal muscle fibers, J Muscle Res Cell Motil, vol. 31, no. 3, pp. 195-205, Sep 2010. [63]P. Valli, L. Boldrini, D. Bianchedi, G. Brizzi, and G. Miserocchi, Effect of low intensity electrical stimulation on quadriceps muscle voluntary maximal strength, J Sports Med Phys Fitness, vol. 42, no. 4, pp. 425-30, Dec 2002. [64]M. Muthalib et al., Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study, PLoS One, vol. 10, no. 7, p. e0131951, 2015.
|