|
Uncategorized References 1.Brookes, P.S., et al., Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol, 2004. 287(4): p. C817-33. 2.Preuss, H.G., Basics of renal anatomy and physiology. Clin Lab Med, 1993. 13(1): p. 1-11. 3.Lemley, K.V. and W. Kriz, Anatomy of the renal interstitium. Kidney Int, 1991. 39(3): p. 370-81. 4.Kriz, W., Structural organization of the renal medulla: comparative and functional aspects. Am J Physiol, 1981. 241(1): p. R3-16. 5.Holechek, M.J., Glomerular filtration: an overview. Nephrol Nurs J, 2003. 30(3): p. 285-90; quiz 291-2. 6.Scotcher, D., et al., Novel minimal physiologically-based model for the prediction of passive tubular reabsorption and renal excretion clearance. Eur J Pharm Sci, 2016. 94: p. 59-71. 7.Suchy-Dicey, A.M., et al., Tubular Secretion in CKD. J Am Soc Nephrol, 2016. 27(7): p. 2148-55. 8.Atherton, J.C., Regulation of fluid and electrolyte balance by the kidney. Anaesthesia & Intensive Care Medicine, 2006. 7(7): p. 227-233. 9.Feher, J., 9.2 - Hypothalamus and Pituitary Gland, in Quantitative Human Physiology (Second Edition), J. Feher, Editor. 2017, Academic Press: Boston. p. 870-882. 10.Hoenig, M.P. and M.L. Zeidel, Homeostasis, the milieu interieur, and the wisdom of the nephron. Clin J Am Soc Nephrol, 2014. 9(7): p. 1272-81. 11.Knepper, M.A., Molecular physiology of urinary concentrating mechanism: regulation of aquaporin water channels by vasopressin. Am J Physiol, 1997. 272(1 Pt 2): p. F3-12. 12.Agarwal, S.K. and A. Gupta, Aquaporins: The renal water channels. Indian J Nephrol, 2008. 18(3): p. 95-100. 13.Bedford, J.J., J.P. Leader, and R.J. Walker, Aquaporin expression in normal human kidney and in renal disease. J Am Soc Nephrol, 2003. 14(10): p. 2581-7. 14.Sohara, E., et al., Defective water and glycerol transport in the proximal tubules of AQP7 knockout mice. Am J Physiol Renal Physiol, 2005. 289(6): p. F1195-200. 15.Elkjaer, M.L., et al., Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol Renal Physiol, 2001. 281(6): p. F1047-57. 16.Chou, C.L., et al., Reduced water permeability and altered ultrastructure in thin descending limb of Henle in aquaporin-1 null mice. J Clin Invest, 1999. 103(4): p. 491-6. 17.Takata, K., et al., Localization and trafficking of aquaporin 2 in the kidney. Histochem Cell Biol, 2008. 130(2): p. 197-209. 18.Oshikawa, S., H. Sonoda, and M. Ikeda, Aquaporins in Urinary Extracellular Vesicles (Exosomes). Int J Mol Sci, 2016. 17(6). 19.Isobe, K., et al., Systems-level identification of PKA-dependent signaling in epithelial cells. Proc Natl Acad Sci U S A, 2017. 114(42): p. E8875-e8884. 20.Hamm, L.L., N. Nakhoul, and K.S. Hering-Smith, Acid-Base Homeostasis. Clin J Am Soc Nephrol, 2015. 10(12): p. 2232-42. 21.Koeppen, B.M., The kidney and acid-base regulation. Adv Physiol Educ, 2009. 33(4): p. 275-81. 22.Brown, D., et al., Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking. J Exp Biol, 2009. 212(Pt 11): p. 1762-72. 23.Yasuoka, Y., et al., Decreased expression of aquaporin 2 in the collecting duct of mice lacking the vasopressin V1a receptor. Clin Exp Nephrol, 2013. 17(2): p. 183-90. 24.Nourbakhsh, N. and P. Singh, Role of renal oxygenation and mitochondrial function in the pathophysiology of acute kidney injury. Nephron Clin Pract, 2014. 127(1-4): p. 149-52. 25.Forbes, J.M., Mitochondria-Power Players in Kidney Function? Trends Endocrinol Metab, 2016. 27(7): p. 441-442. 26.Zheleznova, N.N., et al., Mitochondrial proteomic analysis reveals deficiencies in oxygen utilization in medullary thick ascending limb of Henle in the Dahl salt-sensitive rat. Physiol Genomics, 2012. 44(17): p. 829-42. 27.Roy, A., M.M. Al-bataineh, and N.M. Pastor-Soler, Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol, 2015. 10(2): p. 305-24. 28.Bhargava, P. and R.G. Schnellmann, Mitochondrial energetics in the kidney. Nat Rev Nephrol, 2017. 13(10): p. 629-646. 29.Doleris, L.M., et al., Focal segmental glomerulosclerosis associated with mitochondrial cytopathy. Kidney Int, 2000. 58(5): p. 1851-8. 30.Granata, S., et al., Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics, 2009. 10: p. 388. 31.Che, R., et al., Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol, 2014. 306(4): p. F367-78. 32.Devarajan, P., Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol, 2006. 17(6): p. 1503-20. 33.Tran, M., et al., PGC-1alpha promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest, 2011. 121(10): p. 4003-14. 34.Heath-Engel, H.M. and G.C. Shore, Mitochondrial membrane dynamics, cristae remodelling and apoptosis. Biochim Biophys Acta, 2006. 1763(5-6): p. 549-60. 35.Tait, S.W. and D.R. Green, Mitochondria and cell signalling. J Cell Sci, 2012. 125(Pt 4): p. 807-15. 36.Murphy, E., et al., Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. Circ Res, 2016. 118(12): p. 1960-91. 37.Mamenko, M., et al., Defective Store-Operated Calcium Entry Causes Partial Nephrogenic Diabetes Insipidus. J Am Soc Nephrol, 2016. 27(7): p. 2035-48. 38.Rizzuto, R., et al., Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol, 2012. 13(9): p. 566-78. 39.Csordas, G., et al., Calcium transport across the inner mitochondrial membrane: molecular mechanisms and pharmacology. Mol Cell Endocrinol, 2012. 353(1-2): p. 109-13. 40.Penna, E., et al., The MCU complex in cell death. Cell Calcium, 2018. 69: p. 73-80. 41.Mallilankaraman, K., et al., MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca(2+) uptake that regulates cell survival. Cell, 2012. 151(3): p. 630-44. 42.Perocchi, F., et al., MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature, 2010. 467(7313): p. 291-6. 43.Liu, J.C., et al., MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium Overload. Cell Rep, 2016. 16(6): p. 1561-1573. 44.Logan, C.V., et al., Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat Genet, 2014. 46(2): p. 188-93. 45.Antony, A.N., et al., MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration. Nat Commun, 2016. 7: p. 10955. 46.Paillard, M., et al., Tissue-Specific Mitochondrial Decoding of Cytoplasmic Ca(2+) Signals Is Controlled by the Stoichiometry of MICU1/2 and MCU. Cell Rep, 2017. 18(10): p. 2291-2300. 47.Oxenoid, K., et al., Architecture of the mitochondrial calcium uniporter. Nature, 2016. 533(7602): p. 269-73. 48.Kortenoeven, M.L., et al., In mpkCCD cells, long-term regulation of aquaporin-2 by vasopressin occurs independent of protein kinase A and CREB but may involve Epac. Am J Physiol Renal Physiol, 2012. 302(11): p. F1395-401. 49.Cheng, X., et al., Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai), 2008. 40(7): p. 651-62. 50.Moeller, H.B., et al., Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating. Am J Physiol Renal Physiol, 2009. 296(3): p. F649-57. 51.Peppiatt-Wildman, C.M., C. Crawford, and A.M. Hall, Fluorescence imaging of intracellular calcium signals in intact kidney tissue. Nephron Exp Nephrol, 2012. 121(1-2): p. e49-58. 52.Windhager, E., et al., Intracellular calcium ions as regulators of renal tubular sodium transport. Klin Wochenschr, 1986. 64(18): p. 847-52. 53.Arhatte, M., et al., TMEM33 regulates intracellular calcium homeostasis in renal tubular epithelial cells. Nat Commun, 2019. 10(1): p. 2024. 54.De Stefani, D., et al., A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature, 2011. 476(7360): p. 336-40. 55.Pan, X., et al., The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol, 2013. 15(12): p. 1464-72. 56.Patron, M., et al., The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J Biol Chem, 2013. 288(15): p. 10750-8. 57.Patron, M., et al., MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol Cell, 2014. 53(5): p. 726-37. 58.Sancak, Y., et al., EMRE is an essential component of the mitochondrial calcium uniporter complex. Science, 2013. 342(6164): p. 1379-82. 59.Tsai, C.W., et al., Proteolytic control of the mitochondrial calcium uniporter complex. Proc Natl Acad Sci U S A, 2017. 114(17): p. 4388-4393. 60.Csordas, G., et al., MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2)(+) uniporter. Cell Metab, 2013. 17(6): p. 976-87. 61.Bustamante, M., et al., Calcium-sensing receptor attenuates AVP-induced aquaporin-2 expression via a calmodulin-dependent mechanism. J Am Soc Nephrol, 2008. 19(1): p. 109-16. 62.Tang, M.J. and J.M. Weinberg, Vasopressin-induced increases of cytosolic calcium in LLC-PK1 cells. Am J Physiol, 1986. 251(6 Pt 2): p. F1090-5. 63.Khositseth, S., et al., Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes insipidus. Sci Rep, 2015. 5: p. 18311. 64.Sands, J.M., Regulation of renal urea transporters. J Am Soc Nephrol, 1999. 10(3): p. 635-46. 65.Sands, J.M., Urine concentrating and diluting ability during aging. J Gerontol A Biol Sci Med Sci, 2012. 67(12): p. 1352-7. 66.Sands, J.M., Molecular approaches to urea transporters. J Am Soc Nephrol, 2002. 13(11): p. 2795-806. 67.Shayakul, C., et al., Molecular characterization of a novel urea transporter from kidney inner medullary collecting ducts. Am J Physiol Renal Physiol, 2001. 280(3): p. F487-94. 68.Li, X., G. Chen, and B. Yang, Urea transporter physiology studied in knockout mice. Front Physiol, 2012. 3: p. 217. 69.Sands, J.M., M.A. Blount, and J.D. Klein, Regulation of renal urea transport by vasopressin. Trans Am Clin Climatol Assoc, 2011. 122: p. 82-92. 70.Wade, J.B., et al., UT-A2: a 55-kDa urea transporter in thin descending limb whose abundance is regulated by vasopressin. Am J Physiol Renal Physiol, 2000. 278(1): p. F52-62. 71.Yang, B., et al., Urea-selective concentrating defect in transgenic mice lacking urea transporter UT-B. J Biol Chem, 2002. 277(12): p. 10633-7. 72.Klein, J.D., et al., Upregulation of urea transporter UT-A2 and water channels AQP2 and AQP3 in mice lacking urea transporter UT-B. J Am Soc Nephrol, 2004. 15(5): p. 1161-7. 73.Nielsen, S., et al., Aquaporins in the kidney: from molecules to medicine. Physiol Rev, 2002. 82(1): p. 205-44. 74.Deen, P.M., et al., Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science, 1994. 264(5155): p. 92-5. 75.Ma, T., et al., Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A, 2000. 97(8): p. 4386-91. 76.Ohshiro, K., et al., Expression and immunolocalization of AQP6 in intercalated cells of the rat kidney collecting duct. Arch Histol Cytol, 2001. 64(3): p. 329-38. 77.Nejsum, L.N., et al., Localization of aquaporin-7 in rat and mouse kidney using RT-PCR, immunoblotting, and immunocytochemistry. Biochem Biophys Res Commun, 2000. 277(1): p. 164-70. 78.Yang, B., et al., Phenotype analysis of aquaporin-8 null mice. Am J Physiol Cell Physiol, 2005. 288(5): p. C1161-70.
|