跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/08 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥宏
研究生(外文):Yan-HongChen
論文名稱:硫化鐵礦物系列高溫相轉變之研究
論文名稱(外文):Study on High Temperature Phase Transformation of Iron Sulfide Minerals
指導教授:陳燕華陳燕華引用關係
指導教授(外文):Yen-Hua Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:地球科學系
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:112
中文關鍵詞:硫化鐵礦物相轉變厭氧條件
外文關鍵詞:Iron Sulfide MineralsPhase TransformationAnaerobic Conditions.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硫化鐵礦物是地球上常見的礦物之一,常見的硫化鐵礦物包括黃鐵礦(FeS2)、磁黃鐵礦(Fe1-xS)、硫複鐵礦(Fe3S4)及四方硫鐵礦(FeS)等,硫化鐵礦物常出現在海洋或湖泊沉積物中。四方硫鐵礦為硫化鐵礦物的前驅物,在厭氧條件下氫硫酸根(HS-)與亞鐵離子(Fe2+)或金屬鐵(Fe)反應即可生成四方硫鐵礦,四方硫鐵礦的相變序列受到環境條件的影響,在硫化或微氧環境中會相變成硫複鐵礦及黃鐵礦,若在厭氧環境中則相變為磁黃鐵礦。亞穩態的硫複鐵礦是黃鐵礦化(Pyritization)的中間產物,對於硫複鐵礦的高溫相變研究相對較少,更多的研究則探討它的磁特性。前人研究中觀察到斷層滑移摩擦產生高溫使黃鐵礦轉變為磁黃鐵礦,認為黃鐵礦可作為地質溫度的指標,尚未有人提出四方硫鐵礦及硫複鐵礦作為地質溫度指標的可能性。磁黃鐵礦的種類很多,根據磁黃鐵礦的種類可以推論磁黃鐵礦的生成方式。因此針對四方硫鐵礦、硫複鐵礦及磁黃鐵礦做一系列的實驗,探討在厭氧條件下四方硫鐵礦、硫複鐵礦及磁黃鐵礦的高溫相變序列;四方硫鐵礦會在170 ℃開始轉變為NC磁黃鐵礦,並在250 ℃完全轉變為NC磁黃鐵礦,而磁黃鐵礦的相可以穩定存在於900 ℃,降回常溫時形成以6C磁黃鐵礦及11C磁黃鐵礦為主的NC磁黃鐵礦;硫複鐵礦的高溫相變序列比較複雜,加熱硫複鐵礦至320 ℃以上會開始相變為黃鐵礦及磁黃鐵礦,直到加熱至450 ℃時,硫複鐵礦才完全相變成黃鐵礦及磁黃鐵礦,繼續加熱至580 ℃以上,黃鐵礦會完全轉變為磁黃鐵礦,而磁黃鐵礦可以穩定存在於900 ℃,降回常溫則形成4M磁黃鐵礦;NC磁黃鐵礦加熱至900 ℃依然為磁黃鐵礦的相,降回常溫同樣為NC磁黃鐵礦。硫化鐵礦物的相變序列受到環境條件的影響,因此探討地質環境中的硫化鐵礦物,則可推論地質環境。四方硫鐵礦在微氧環境及硫化環境中會相變為硫複鐵礦及黃鐵礦,可用來判斷地質環境的氧化程度及硫化程度;硫複鐵礦除了能應用於古地磁的研究,在厭氧條件下,硫複鐵礦有著複雜的高溫相轉變序列,使硫複鐵礦適合作為地質溫度指標;在厭氧條件下磁黃鐵礦為硫化鐵礦物相轉變序列的最終產物,從硫化鐵礦物相轉變序列中可以推論地質溫度,因此磁黃鐵礦可作為地質溫度計與厭氧環境的指標,另外,單斜晶系的磁黃鐵礦為亞鐵磁性,可應用於古地磁研究。
Summary
Iron sulfide minerals are the common minerals on earth, which include pyrite (FeS2), pyrrhotite (Fe1-xS), greigite (Fe3S4), and mackinawite (FeS). Iron sulfide minerals often appear in marine or lake sediments. Mackinawite is a precursor of iron sulfide minerals. Under anaerobic conditions, Hydrosulfide (HS-) reacts with ferrous ion (Fe2+) or iron (Fe) will form mackinawite. The phase transition sequence of mackinawite is affected by environmental conditions. Mackinawite transform into greigite and then pyrite in the slightly oxidizing or sulfidic environment. Mackinawite transform into pyrrhotite in the anaerobic environment. Metastable greigite is an intermediate of pyriteization. There are few studies on the high temperature phase transition of greigite. More research is on its magnetic properties. In previous studies, it was observed that fault slip friction caused high temperature to convert pyrite to pyrrhotite. Therefore, pyrite can be used as a geothermometer. But, it has not been proposed that mackinawite and greigite be a geothermometer. There are many kinds of pyrrhotite. According to the kind of pyrrhotite, the formation of pyrrhotite can be inferred. There are a series of experiments for mackinawite, greigite and pyrrhotite in this study. Discussion on high temperature phase transition sequence of mackinawite, greigite and pyrrhotite under anaerobic conditions. Mackinawite was stable below 170 ℃. It will transform into pyrrhotite between 170 ℃ to 250 ℃. Only the pyrrhotite phase remained when the temperature reached 900 ℃. But, the iron phase can be found after returning to room temperature. Greigite was stable from room temperature to 300 ℃. Pyrite and pyrrhotite began to appear at 320 ℃. Greigite disappeared at approximately 450 ℃, and pyrite disappeared at approximately 580 ℃. Only the pyrrhotite phase remained when the temperature reached 900 ℃. After returning to room temperature, the final product of the heating process is pyrrhotite (monoclinic structure). NC-Pyrrhotite was remained when the temperature reached 900 ℃. After returning to room temperature, the iron phase can be found. The phase transition sequence of iron sulfide minerals is affected by environmental conditions. Therefore, considering the iron sulfide minerals in the geological environment, the geological environment can be inferred. Mackinawite transform into greigite and then pyrite in the slightly oxidizing or sulfidic environment. It can be used to determine the degree of oxidation and degree of sulfidic in the geological environment. In addition to the application of greigite in palaeogeomagnetism. Under anaerobic conditions, greigite has a complex high-temperature phase transition sequence, making it suitable as a geothermometer. Under anaerobic conditions, pyrrhotite is the final product of phase transition sequence of iron sulfide mineral. The geological temperature can be deduced from the phase transition sequence of iron sulfide mineral. Therefore, pyrrhotite can be used as an indicator of anaerobic environment and geothermometer.

Introduction
Iron sulfide minerals are the common minerals on earth. The methane hydrate layer in the southwestern Taiwan contains many greigite, pyrite and pyrrhotite. Pyrrhotite is also found in the metamorphic rocks of the Central Mountain Range. Mackinawite (FeS) is a precursor of iron sulfide minerals. In the process of pyritization, greigite is an intermediate product and finally converted into pyrite. The transformation of pyrite into pyrrhotite above 500 °C was observed in the Chelungpu fault zone, which formed as a result of the 1999 Chi-Chi earthquake in Taiwan. Similarly, pyrite transformation to pyrrhotite at approximately 640 °C was observed during the Tohoku earthquake in Japan. In this study, we investigated the high temperature phase transition of iron sulfide minerals under anaerobic conditions.

Methods
Mackinawite was fabricated by coprecipitation. Iron(II) sulfate (FeSO4‧7H2O) and Sodium sulfide (Na2S) into 0.1 M solution respectively. Mix two solutions and produce precipitate immediately. The precipitated mackinawite is filtered with deionized water and dried for more 12 hours by freeze dryer.
Greigite and pyrrhotite were fabricated by hydrothermal synthesis according to the following procedure. Iron (II) sulfate heptahydrate (FeSO4‧7H2O) and thioacetamide (C2H5NS) were formulated into 0.2 and 0.3 M solutions, respectively, such that the volume of each was 50 mL. The solutions were then mixed and loaded into an autoclave. The anaerobic conditions in the autoclave were maintained by injecting nitrogen gas. The mixture was heated to 115 °C and held at this temperature for 2 h to fabricate greigite. The mixture was Heated to 160 °C and held at this temperature for 1 h to fabricate pyrrhotite. After cooling, the solution was filtered with deionized water and an acetic acid filter and then dried in a freeze dryer for more than 12 h to obtain greigite and pyrrhotite powders. Finaly, the synthesisd smaple was stored in anaerobic glove box for the subsequent experiment.
The fabricated mackinawite, greigite and pyrrhotite were confirmed to consist of the pure phase by XRD (Cu Kα= 1.5418 Å, 2θ = 10 °~60 °, scanning rate of 1 °/min, scanning step of 0.02 °). Further, use GSAS to fit the structure of mackinawite, greigite and pyrrhotite.
Next, we observed the weight change and exothermic heat release reaction of the sample at high temperatures by TG-DTA (heating rate of 10 °C/min, from 25 to 900 °C). We used 5N ultra-high-purity nitrogen and an oxygen trapping system to reduce the oxygen content in the chamber. The sequence of mackinawite, greigite and pyrrhotite phase changes was examined by in situ XRD with synchrotron radiation.The in situ XRD diffraction patterns were recorded in the BL01C2 and BL17A1 beamlines of the NSRRC in Taiwan. The wavelength of the beamline was 1.03 A and 1.32 A for BL01C2 and BL17A1, respectively. The wavelength was converted to Cu Kα for a clear comparison.
In addition to the basic experiment, we add some customized experiment for mackinawite, greigite and pyrrhotite. Use HRTEM to analysis the structure transform of mackinawite. This experiment obtain the lattice images and selected area diffraction (SAED) of synthesisd mackinawite and phase transformed mackinawite. EDS analysis was used to confirm the composition variety of mackinawite and pyrrhotite after heating to specific temperatures. XPS showed the Fe2+:Fe3+ ratio of greigite. SQUID was used to confirm the magnetism of greigite and pyrrhotite.
Finally, integrate the above experimental results and show the phase transition path on the phase diagram which calculated by FactSage.

Results
Phase transition sequence of mackinawite, greigite and pyrrhotite is show in Figure 1. This result suggests that the high-temperature phase transition is irreversible, and that pyrrhotite can exist as a stable phase under anaerobic conditions.
NC-Pyrrhotite was remained when the temperature reached 900 ℃. But it will process magnetic moment disorder when temperature above 315 ℃. After returning to room temperature, the iron phase can be found. The final product of the heating process is NC-pyrrhotite (hexagonal structure).
Greigite was stable from room temperature to 300 ℃. Pyrite and pyrrhotite began to appear at 320 ℃. Greigite disappeared at approximately 450 ℃, and pyrite disappeared at approximately 580 ℃. Only the pyrrhotite phase remained when the temperature reached 900 ℃. After returning to room temperature, the final product of the heating process is pyrrhotite (monoclinic structure).
Mackinawite was stable below 170 ℃. It will transform into pyrrhotite between 170 ℃ to 250 ℃. Only the pyrrhotite phase remained when the temperature reached 900 ℃. But, the iron phase can be found after returning to room temperature. The final product of the heating process is pyrrhotite (hexagonal structure).



Conclusion
Under anaerobic conditions, pyrrhotite was stable up to 900 ℃. The phase transition sequence of greigite : greigitegreigite, pyrite and pyrrhotite pyrite and pyrrhotite  pyrrhotite (monoclinic structure). The phase transition sequence of mackinawite : mackinawite mackinawite and pyrrhotite pyrrhotite. The iron phase can be found after returning to room temperature in experiment of mackinawite and pyrrhotite . The final product of the heating process is pyrrhotite.
中文摘要 I
Abstract III
致謝 IX
目錄 X
圖目錄 XIII
表目錄 XVI
第一章、緒論 1
1.1 文獻回顧 1
1.2 研究動機 2
1.3 論文架構 3
第二章、研究背景 4
2.1 硫化鐵礦物 4
2.1.1 四方硫鐵礦(FeS) 4
2.1.2 硫複鐵礦(Fe3S4) 5
2.1.3 磁黃鐵礦(Fe1-xS) 7
2.1.4 黃鐵礦(FeS2) 10
2.2 自然界硫化鐵礦物生成與相變 11
2.3 硫化鐵高溫相變實驗 14
第三章、研究方法與實驗儀器 16
3.1 實驗流程 16
3.2 合成方法 19
3.2.1 水熱合成法 19
3.2.2 共沉澱法 19
3.3 實驗設備 20
3.3.1 厭氧手套箱 20
3.3.2 高壓釜 21
3.3.3 冷凍乾燥機 22
3.3.4 高溫爐管 23
3.4 分析儀器 24
3.4.1 X光粉末繞射儀 24
3.4.2 同步輻射X光粉末繞射 25
3.4.3 熱重熱差分析儀 27
3.4.4 高解析穿透式電子顯微鏡 28
3.4.5 掃描式電子顯微鏡 29
3.4.6 X射線光電子能譜 30
3.4.7 超導量子干涉震動磁量儀 31
3.5計算軟體 32
3.5.1 FactSage 32
3.5.2 GSAS 32
第四章、結果與討論 33
4.1 四方硫鐵礦 (FeS) 33
4.1.1 X光粉末繞射 33
4.1.2 結構擬合 34
4.1.3 高解析穿透式電子顯微分析 36
4.1.4 能量分散光譜 48
4.1.5 熱重熱差分析 50
4.1.6 同步輻射X光粉末繞射 51
4.1.7 鐵硫相圖計算 53
4.1.8 地質意義探討 55
4.2 硫複鐵礦 (Fe3S4) 57
4.2.1 X光粉末繞射 57
4.2.2 結構擬合 59
4.2.3 X射線光電子能譜 61
4.2.4 磁滯曲線 63
4.2.5 熱重熱差分析 64
4.2.6 同步輻射X光粉末繞射 65
4.2.7 鐵硫相圖計算 67
4.2.8 地質意義探討 69
4.3 磁黃鐵礦 (Fe1-xS) 70
4.3.1 X光粉末繞射 70
4.3.2 結構擬合 71
4.3.3 磁滯曲線 73
4.3.4 熱重熱差分析 74
4.3.5 能量分散光譜 75
4.3.6 同步輻射X光粉末繞射 76
4.3.7 鐵硫相圖計算 79
4.3.8 地質意義探討 81
4.4 綜合比較 82
第五章、結論 84
參考文獻 86
Aubourg, C. & Pozzi, J.-P., Toward a new (250°C pyrrhotite-magnetite geothermometer for claystones, Earth and Planetary Science Letters, 294, 47-57, 2010
Bale, C.W., Bélisle, E., Chartrand, P., Decterov, S.A., Eriksson, G., Gheribi , A.E., Hack , K., Jung , I.-H., Kang Y.-B., Melançon , J., Pelton, A.D., Petersen , S., Robelin, C., Sangster , J., Spencer, P. & Van Ende, M.-A., FactSage thermochemical software and databases, 2010-2016, Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 54, 35-53, 2016
Benning, L.G., Wilkin, R.T. & Barnes, H.L., Reaction pathways in the Fe-S system below 100°C, Chemical Geology, 167, 25-51, 2000
Bhargava, SK, Garg, A. & Subasinghe, ND, In situ high-temperature phase transformation studies on pyrite, Fuel, 88(6), 988-993, 2009
Bourdoiseau, J.-A., Jeannin, M., Sabot, R., Rémazeilles, C. & Refait, Ph., Characterisation of mackinawite by Raman spectroscopy: Effects of crystallisation, drying and oxidation, Corrosion Science, 50, 3247-3255, 2008
Cai, X., Zhao, X. &Yao, H., Spontaneous combustion tendency of iron sulfide corrosion: Oxidation characterization and thermostability, Procedia Engineering, 84, 356-362, 2014
Chang, L., Roberts, A.P., Tang, Y., Rainford, B.D., Muxworthy, A.R. & Chen, Q., Fundamental magnetic parameters from pure synthetic greigite (Fe3S4), Journal of Geophysical Research: Solid Earth, 113, B06104, 2008
Chang, L., Vasiliev, I., Van Baak, C., Krijgsman, W., Dekkers, M. J., Roberts, A.P., Fitz Gerald, J. D., Van Hoesel, A. & Winklhofer, M., Identification and environmental interpretation of diagenetic and biogenic greigite in sediments: A lesson from the Messinian Black Sea, Geochem. Geophys. Geosyst., 15, 3612-3627, 2014
Chang, Y.S., Savitha, S., Sadhasivam, S., Hsu, C.K. & Lin, F.H., Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia, Journal of Colloid and Interface Science, 363, 314-319, 2011
Chou, Y.-M., Song, S.-R., Aubourg, C., Song, Y.-F., Boullier, A. M., Lee, T.‐Q., Evans, M., Yeh, E.-C. & Chen, Y.-M., Pyrite alteration and neoformed magnetic minerals in the fault zone of the Chi-Chi earthquake (Mw 7.6, 1999): Evidence for frictional heating and co-seismic fluids, Geochemistry, Geophysics, Geosystems, 13(8), Q08002, 2012
Csákberényi-Malasics, D., Rodriguez-Blanco, J.D., Kis, V.K., Rečnik A., Benning, L.G. & Pósfai, M., Structural properties and transformations of precipitated FeS, Chemical Geology, 294-295, 249-258, 2012
Dawson, K.R., Maxwell, J.A. & Parsons, D.E., A description of the meteorite which fell near Abee, Alberta, Canada, Geochimica et Cosmochimica Acta, 21(1-2), 127-144, 1960
De Groot, L.V., Fabian, K., Bakelaar, I.A. & Dekkers, M.J., Magnetic force microscopy reveals meta-stable magnetic domain states that prevent reliable absolute palaeointensity experiments, Nature Communications, 5, 4548, 2014
Dekkers, M. J., Magnetic properties of natural pyrrhotite Part I: Behaviour of initial susceptibility and saturation-magnetization-related rock-magnetic parameters in a grain-size dependent framework, Physics of the Earth and Planetary Interiors, 52(3-4), 376–393, 1988
Ding, Y.H., Wang, Y.Q., Cai, R.S., Chen, Y.Z. & Sun, J.R., Charge ordering modulations in a Bi0.4Ca0.6MnO3 film with a thickness of 110 nm, Chinese Physics B, 21(8), 087502, 2012
Folmer, J.C.W. & Jellinek, F., The valence of copper in sulphides and selenides: An X-ray photoelectron spectroscopy study, Journal of The Less-Common Metals, 76(1-2), 153-162, 1980
Folmer, J.C.W., Jellinek, F. & Calis, G.H.M., The electronic structure of pyrites, particularly CuS2 and Fe1-xCuxSe2: An XPS and Mössbauer study, Journal of Solid State Chemistry, 72(1), 137-144, 1988
Fu, C., Bloemendal, J., Qiang, X., Hill, M.J. & An, Z., Occurrence of greigite in the Pliocene sediments of Lake Qinghai, China, and its paleoenvironmental and paleomagnetic implications, Geochemistry, Geophysics, Geosystems, 16, 1293-1306, 2015
Han, W. & Gao, M., Investigations on iron sulfide nanosheets prepared via a single-source precursor approach, Crystal Growth & Design, 8, 3, 2008
Herbert, F.W., Krishnamoorthy, A., Yildiz, B. & Van Vliet, K.J., Diffusion-limited kinetics of the antiferromagnetic to ferrimagnetic λ-transition in Fe1-xS, Applied Physics Letters, 106(9), 092402, 2015
Hoffmann, V., Greigite (Fe3S4): magnetic properties and first domain observations, Physics of the Earth and Planetary Interiors, 70, 288-301, 1992
Horng, C.-S. & Chen, K.-H., Complicated Magnetic Mineral Assemblages in Marine Sediments Offshore of Southwestern Taiwan: Possible Influence of Methane Flux on the Early Diagenetic Process, Terrestrial, Atmospheric and Oceanic Sciences, 17(4), 1009-1026 , 2006a
Horng, C.-S. & Roberts, A.P., Authigenic or detrital origin of pyrrhotite in sediments?: Resolving a paleomagnetic conundrum, Earth and Planetary Science Letters, 241(3-4), 750-762, 2006b
Horng, C.-S., Huh, C.-A., Chen, K.-H., Lin, C.-H., Shea, K.-S. & Hsiung, K.-H., Pyrrhotite as a tracer for denudation of the Taiwan orogen, Geochemistry, Geophysics, Geosystems, 13(8), Q08Z47, 2012
Horng, C.-S., Unusual magnetic properties of sedimentary pyrrhotite in methane seepage sediments: comparison with metamorphic pyrrhotite and sedimentary greigite, Journal of Geophysical Research: Solid Earth, 123(6), 4601-4617, 2018a
Horng, C.-S. & Roberts, A.P., The low-temperature besnus magnetic transition: Signals due to monoclinic and hexagonal pyrrhotite, Geochemistry, Geophysics, Geosystems, 19(9), 3364-3375, 2018b
Hunger, S. & Benning, L.G., Greigite: A true intermediate on the polysulfide pathway to pyrite, Geochemical Transactions, 8, 1, 2007
Jeong, H.Y., Lee, J.H. & Hayes, K.F., Characterization of synthetic nanocrystalline mackinawite: Crystal structure, particle size, and specific surface area, Geochimica et Cosmochimica Acta, 72, 493-505, 2008
Jiuling, L., Daming, F., Feng, Q. & Guilan, Z., The Existence of the Negative Charge of Gold in Sulphide Minerals and Its Formation Mechanism, Acta Geologica Sinica - English Edition, 8(3), 303-315, 1995
Jorgensen, B.B. & Kasten, S., Sulfur cycling and methane oxidation, Marine Geochemistry, 271-309, 2006
Kao, S.J., Horng, C.S., Roberts, A.P. & Liu, K.K., Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: Influence of geochemical environment on greigite and pyrrhotite formation, Chemical Geology, 203, 153-168, 2004
Kars, M. & Kodama, K., Rock magnetic characterization of ferrimagnetic iron sulfides in gas hydrate-bearing marine sediments at Site C0008, Nankai Trough, Pacific Ocean, off-coast Japan, Earth, Planets and Space, 67, 287, 2015
Kim, H.S., Gye, G., Lee, S.-H., Wang, L., Cheong, S.-W., & Yeom, H.W., Moiré Superstructure and Dimensional Crossover of 2D Electronic States on Nanoscale Lead Quantum Films, Scientific Reports, 7(1),12735, 2017
Lake, C.H. & Toby, B.H., Recent developments targeting new and experienced users in EXPGUI, an open source Rietveld analysis interface, Zeitschrift fur Kristallographie, 226(12), 892-897, 2011
Lambert Jr., J.M., Simkovich, G. & Walker Jr., P.L., The kinetics and mechanism of the pyrite to pyrrhotite transformation, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 29(2), 385-396, 1998
Lennie, A.R., Redfern, S.A.T., Schofield, P.F. & Vaughan, D.J., Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS, Min. Mag., 59, 677-683, 1995a
Lennie, A.R., England, K.E.R. &Vaughan, D.J., Transformation of synthetic mackinawite to hexagonal pyrrhotite: A kinetic study, American Mineralogist, 80, 960-967, 1995b
Lennie, A.R., Redfern, S.A.T., Champness, P.E., Stoddart, C.P., Schofield, P.F. & Vaughan, D.J., Transformation of mackinawite to greigite: An in situ X-ray powder diffraction and transmission electron microscope study, American Mineralogist, 82, 302-309, 1997
Li, F. & Franzen, H.F., Ordering, incommensuration, and phase transitions in pyrrhotite: Part II: A high-temperature X-ray powder diffraction and thermomagnetic study, Journal of Solid State Chemistry, 126, 108-120, 1996
Li, Y., van Santen, R.A. & Weber, Th., High-temperature FeS-FeS2 solid-state transitions: Reactions of solid mackinawite with gaseous H2S, Journal of Solid State Chemistry, 181, 3151-3162, 2008
Liu, S., Li, M., Li, S., Li, H. & Yan, L., Synthesis and adsorption/photocatalysis performance of pyrite FeS2, Applied Surface Science, 268, 213-217, 2013
Morse, J.W., Millero, F.J., Cornwell, J.C. & Rickard, D., The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters, Earth Science Reviews, 24(1), 1-42, 1987
Multani, R.S. & Waters, K.E., A review of the physicochemical properties and flotation of pyrrhotite superstructures (4C – Fe7S8 / 5C – Fe9S10 ) in Ni-Cu sulphide mineral processing, Canadian Journal of Chemical Engineering, 96(5), 1185-1206, 2018
Nakazawa, H. & Morimoto, N., Phase relations and superstructures of pyrrhotite, Fe1-x S, Materials Research Bulletin, 6(5), 345-357, 1971
Nekrasov, I.J. & Besmen, N.I., Pyrite-pyrrhotite geothermometer. Distribution of cobalt, nickel and tin, Physics and Chemistry of the Earth, 11, 767-771, 1979
O’Reilly, W., Hoffmann, V., Chouker, A.C., Soffel, H.C. & Menyeh, A., Magnetic properties of synthetic analogues of pyrrhotite ore in the grain size range 1-24 μm, Geophysical Journal International, 142(3), 669-683, 2000
Ohfuji, H. & Rickard, D., High resolution transmission electron microscopic study of synthetic nanocrystalline mackinawite, Earth and Planetary Science Letters, 241(1-2), 227-233, 2006
Rickard, D. & Luther III, G.W., Chemistry of iron sulfides, Chemical Reviews, 107, 514-562, 2007
Roberts, A.P., Magnetic mineral diagenesis, Earth Science Reviews, 115, 1-47, 2015
Rubin, A.E., Mineralogy of meteorite groups, Meteoritics and Planetary Science, 32(2), 231-247, 1997
Rudmin, M., Roberts, A.P., Horng, C.-S., Mazurov, A., Savinova, O., Ruban, A., Kashapov, R. & Veklich, M., Ferrimagnetic iron sulfide formation and methane venting across the Paleocene-Eocene thermal maximum in shallow marine sediments, Ancient West Siberian Sea, Geochemistry, Geophysics, Geosystems, 19(1), 21-42, 2018
Steinhagen, C., Harvey, T.B., Stolle, C.J., Harris, J. & Korgel, B.A., Pyrite nanocrystal solar cells: Promising, or fool's gold?, Journal of Physical Chemistry Letters, 3(17), 2352-2356, 2012
Sweeney, R.E. & Kaplan, I.R., Pyrite framboid formation: Laboratory synthesis and marine sediments, Economic Geology, 68(5), 618-634, 1973
Toby, B.H., EXPGUI, a graphical user interface for GSAS, Journal of Applied Crystallography, 34(2), 210-213, 2001
Toby, B.H. & Von Dreele, R.B., GSAS-II: The genesis of a modern open-source all purpose crystallography software package, Journal of Applied Crystallography, 46(2), 544-549, 2013
Tsatis, D.E., Thermal expansion of pyrrhotite (Fe7S8) at high temperatures, Journal of Physics and Chemistry of Solids, 49(4), 359-362, 1988
Valdez-Grijalva, M.A., Nagy, L., Muxworthy, A.R., Williams, W. & Fabian, K., The magnetic structure and palaeomagnetic recording fidelity of sub-micron greigite (Fe3S4), Earth and Planetary Science Letters, 483, 76-89, 2018
Wang, H. & Salveson, I., A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1-x S (0≤ x ≤0.125): Polymorphs, phase relations and transitions, electronic and magnetic structures, Phase Transitions, 78(7-8), 547-567, 2005
Watson, J.H.P., Ellwood, D.C., Deng, Q., Mikhalovsky, S., Hayter, C.E. & Evans, J., Heavy metal adsorption on bacterially produced FeS, Minerals Engineering, 8(10), 1097-1108, 1995
White, L.M., Bhartia, R., Stucky, G.D., Kanik, I. & Russell, M.J., Mackinawite and greigite in ancient alkaline hydrothermal chimneys: Identifying potential key catalysts for emergent life, Earth and Planetary Science Letters, 430, 105-114, 2015
Wignall, P.B., Newton, R. & Brookfield, M.E., Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir, Palaeogeography, Palaeoclimatology, Palaeoecology, 216, 183-188, 2005
Wilkin, R.T., Barnes, H.L. & Brantley, S.L., The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions, Geochimica et Cosmochimica Acta, 60, 3897-3912, 1996
Wilkin, R.T., Arthur, M.A. & Dean, W.E., History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions, Earth and Planetary Science Letters, 148, 517-525, 1997a
Wilkin, R.T. & Barnes, H.L., Formation processes of framboidal pyrite, Geochimica et Cosmochimica Acta, 61(2), 323-339, 1997b
Xu, T., Bei, K., Tian, H. & Cao, Y., Laboratory experiment and numerical simulation on authigenic mineral formation induced by seabed methane seeps, Marine and Petroleum Geology, 88, 950-960, 2017
Yang, T., Dekkers, M.J. & Chen, J., Thermal alteration of pyrite to pyrrhotite during earthquakes: New evidence of seismic slip in the rock record, Journal of Geophysical Research: Solid Earth, 123, 1116-1131, 2018
Yang, Y., Chen, T., Sumona, M., Gupta,B.S., Sun,Y., Hu, Z. & Zhan, X., Utilization of iron sulfides for wastewater treatment: a critical review, Reviews in Environmental Science and Biotechnology, 16(2), 289-308, 2017
Yu, C., Virtasalo, J.J., Karlsson, T., Peltola, P., Österholm, P., Burton, E.D., Arppe, L., Hogmalm, J.K., Ojala, A.E.K. & Åström, M.E., Iron behavior in a northern estuary: Large pools of non-sulfidized Fe(II) associated with organic matter, Chemical Geology, 413, 73-85, 2015
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top