跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 11:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅素米
研究生(外文):Matin RoshanzamirModaberi
論文名稱:利用混合金屬有機前驅物合成鎳摻雜氧化鋅半導體之奈米結構並作氣體感測之應用
論文名稱(外文):Synthesis of Nanostructured Ni-doped ZnO Semiconductors using Hybrid Metal Organic Precursors for Gas Sensing
指導教授:劉全璞
指導教授(外文):Chuan-Pu liu
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:118
外文關鍵詞:ZnOsemiconductorgas sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:56
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The increasing concerns of industrial safety, chemical control and environmental pollution are spurring demand for high performance gas sensors. Growing use of gas sensors is making gas sensors on demand. After decades of research and development activities, semiconductorbased gas sensors are now used in a variety of applications. However, challenges still remain in the area of sensitivity, selectivity, response-recovery speeds and power consumption.
Therefore, improvement of metal oxide gas sensors by the incorporation of different technology is important. Various types of gas sensors have been developed based on different signals originated from gas interactions with either sensing materials or probing sources.
Among them, chemiresistive sensors present unique advantages due to their simple implementation and low manufacturing cost. Combined with good sensitivity, selectivity, and reliability for real-time monitoring, semiconducting metal oxides (SMOs) represent the most popular materials to operate at high temperatures.
Metal-Organic Precursors (MOP) are often volatile enough to be useful as precursors of the metals in vapor phase deposition process e.g. chemical vapor deposition (CVD). Metal-Organic Precursor materials have been the focus in all researches for their application as molecular storage, molecular sensing, catalyst asymmetric synthesis and host materials. These types of martials represent a promising new class of crystalline solids because they exhibit large pore volume, high surface area, permanent porosity, high thermal stability, feature open channels with tunable dimensions and topology.
In this study we investigated the design synthesis and structures of a new family of MOPs through their hybrid-bimetal to expand our knowledge about heterostructures of MOPs. The main objective of this study is synthesis and characterization of a series of hybrid transition metal complexes as single MOP in order to enhance gas sensing and optical properties of nanocrystalline derived from ZnO thin films via hydrothermal techniques. The morphology, microstructure, surface chemistry and photoluminescence properties of the as-grown Ni-doped ZnO nanorods (NRs) are extensively examined. Optical and photocatalytic results reveal that the photodegradation of methyl orange is facilitated with Cu doping into ZnO NRs. This result may facilitate the use of transition-metal ion-doped ZnO in other photo conversion, such as ZnO based dye-synthesized solar cells and magnetism-assisted photocatalytic system.

Furthermore, for Ni- doped ZnO NRs the gas sensing results are discussed in terms of doping concentration, operating temperature, gas type, gas concentrations and relative humidity. The gas sensor performance of Ni doped ZnO thin film was investigated at different operating temperatures. for various reducing organic gases including CH3OH, C2H5OH and inorganic gases including H2S and CH4. The enhancement of gas sensing response is attributed to increasing the number of active sites for adsorption of oxygen and target gases on the surface through incorporation of Ni3+ over Ni2+ ions. The Ni doped ZnO NRs surface study results show at room temperature, the sensing mechanism is related to the formation of a 7 nm-thick ZnS layer over the NRs through reactions between H2S and adsorbed oxygen. Moderate amount of Humidity about 52%, exhibit the highest response to gas sensing and after that decreasing trend with increasing relative humidity. Adsorption and desorption of water molecule with reducing gas at room temperature has been investigated, however it need further studies.
Table of Contents
Declaration............. i
Acknowledgements.......... ii
Dedication..............iii
Abstract ............ iv
Table of Contents............ vi
List of Figures............. x
List of Tables ............ xvii
List of Abbreviations..........xviii
List of Symbols............. xx
Chapter 1. Introduction...........1
1.1 Back ground.............2
1.2 Motivation...........2
1.3 Objectives and scope of research.........4
1.4 Organization of this dissertation.........5
Chapter 2. Literature review..........7
2.1 Properties of nanostructured materials.........8
2.2 Growth of ZnO NRs by hydrothermal method.........8
2.3 ZnO...............9
2.4 Growth mechanism of Ni doped ZnO NRs........10
2.5 Research review: synthesis methods, morphology, chemical analysis and properties of Ni
doped ZnO nanostructures ...........11
2.6 Metal organic hybrid materials: Functions and applications......29
2.7 Review of some metal organic precursors linked with (acac) ligands....31
2.7.1 Bis(acetylacetonato)dimethanolnickel(II) [Ni(acac)2(MeOH)2]......31
2.7.2 [Cu(acac)2]............32
2.7.3 Bis(acetylacetonato-K2O’,O)- [copper(II)nickel(II)(0.31/0.69)].....36
2.8 Acetylacetone; A Versatile Ligand.........37
2.9 Hydrogen bonds in solid metal organic materials.....39
2.10-Gas sensing ............41
2.10.1- Background............41
2.10.2 Semiconductor gas sensor (SGS)........47
2.10.3 progress of doped Zno nanostructure in gas sensing to alcohol and acetone..49
2.10.4. Chemoresistors Sensing Mechanism........51
2.11 Summary............54
Chapter 3. Hybrid transition metal complexes of diaquabis (acetylasetonato) [nickel
(II)Zn(II)] as solid metal-organic precursors......55
3.1. Experimental procedure..........56
3.2 Results and discussion ...........58
3.2.1 Molecular structure..........58
3.2.1.1 Scanning Electron Microscopic (SEM) and High-Resolution Transition Electron
microscopy (HR-TEM)...........65
3.2.1.2 Transition electron microscopy (TEM).........66
3.2.1.3 Energy Dispersive Spectrometer........67
3.2.1.4 Fourier Transform Infrared Spectroscopy (FT-IR).......68
3.2.1.5 Mass Spectroscopy (MS)..........69
3.2.1.6 X-ray Photoelectron Spectroscopy (XPS)........70
3.2.1.7 X-ray Diffraction...........71
3.2.1.8 Thermo Gravimetric Analysis (TGA).........72
3.2.2 Magnetic properties (Paramagnetic susceptibility).......74
3.3 Summary...........76
Chapter 4. Enhanced response and selectivity of H2S sensing through controlled Ni
doping into ZnO nanorods by using single metal organic precursors......78
4.1 Experimental procedure...........79
4.2 Sensor fabrication and gas sensing measurement........80
4.2.1 Inorganic gas sensing...........81
4.2.2 VOL organic sensors..........82
4.3 Results and discussion...........84
4.3.1 Structural and morphological characterization......84
4.3.2 Transition electron microscope (TEM)........86
4.3.3-X-ray photoelectron spectroscopy........86
4.3.4 Optical properties ..........89
4.4 Gas sensing properties..........91
4.4.1 Room temperature gas sensing..........91
4.4.2 High temperature gas sensing........91
4.4.3 Influence factors on gas sensing........92
4.5 Gas sensing mechanism...........98
4.5.1 H2S hydrolyzation-induced enhanced gas sensing; role of ambient atmosphere...99
4.6 Summary............104
Chapter 5. Conclusions...........105
5.1 Research project pathway...........106
5.2 A summary of the research project Results.......106
References..............108
Appendices............115
Appendix A ..............116
A.1 Images of some apparatuses.........116
Appendix B............117
B.1-Lists of publications and presentations........117
B.1.1 Articles in Research journals.........117
B.1.2 International & national conference proceedings.......117
B.1.3 International project...........118
[1] P. G. Romero, Adv. Mater., 13, 2001, 163-174.
[2] R. Rooydell, Doctor of Philosophy thesis, Department of Material science and engineering, National Cheng Kung University, 2017.
[3]-R.P. Feynman, J. Microelec.,1, 1992, 60-66.
[4]-H. Brune, m giovannini, K. B. Bromann, K. Kern, Nature., 394, 1998, 451-453.
[5]-E. Roduner, size matters: why nanomaterials are different, Chem. Soc. Rev., 35, 2006, 583-592.
[6]- H. Kwang, L. Hyungwoo, J. Jikang, L. dong jin, P. Yongju, L. Changhee, L. Byung Yang, H. Seunghun, Nano Scale Lett., 10, 133, 2015, 1-7.
[7] X. J. Zhao, W.W. Shan, H. He, Xinlian Xue, Z. X. Guoc, S. F. Li, Phy. Chem. Chem. Phy., 19, 2017, 117864-7870.
[8] J. Wu X.Caoc, Electrochem. Acta., 249, 2017, 646-656.
[9] J. M. Yang, H. Yu, B. Xiao, Z. Li, M. Zhang, Russia J. Phy. Chem., 91, 2017, 1214-1220.
[10] B. W Mwakikunga, PhD Thesis, University of the Witwatersrand Johannesburg, 2009.
[11] S. Kuriakose, B. Satpatib and S. Mohapatra, Phys. Chem. Chem. Phys.,16, 2014, 12741-12749.
[12] Rossler, U., ed. (1999). Landolt-Bornstein, New Series, Group III. Vol. 17B, 22,41B. Springer, Heidelberg.
[13] M.A. Carpenter, S. Mathur, A. Kolmakov, Metal oxide nanomaterials for chemical 131 sensors, Chapter 2 pp 37-38, Springer (2013), ISBN: 978-1-4614-5394-9.
[14] Reynolds D C, Look D C and Jogai B 1996 Solid State Commun., 99, 1996, 873-875.
[15] T.B. Hur, G.S. Jeen, Y.H. Hwang, H.K. Kim, J. Appl. Phys., 94, 2003, 5787.
[16] R. Kumar, O. A. Dossary. G. Kumar, A. Umar, Nano-Micro Lett., 7(2), 2015, 97-120.
[17] K. Raja, P.S. Ramesh, D. Geetha, Spectrochimica Acta Part A., 120, 2014, 19-24.
[18] W. J. Liu, X. D. Tang, Z. Tang,2 W. Bai, and N. Y. Tang, Adv. Con. Matt. Phys., 424398, 2013, 6.
[19] N. U. Rehman, M Mehmood, F. Ali, M. A. Rasheed, M. Younas, F. C.C. Ling, S. M. Ali, Chem. Phys. Lett., 615, 2014, 35-43.
[20] B. Pandey a, S. Ghosh, P. Srivastava, D. Kabiraj, T. Shripati, N. P. Lalla, Physica, E 41, ,2009, 1164-1168.
[21] M. Sh. Abdel-wahab, A. Jilani, I.S. Yahia, A. A. Al-Ghamdi, Superlattices and Microstructures, 94, 2016, 108-118.
[22] Z. Yin, N. Chen, F. Yang, S. Song, C. Chai, J. Zhong, H. Qian, K. Ibrahim, Solid State Commun., 135, 2005, 430-433.
[23] G. Peia, C. Xia, S. Cao, J. Zhang, F. Wu, Jun Xu, J. Magn. Magn. Mater., 302, 2006, 340- 342.
[24] S. Kumar, P. Vats, S. Gautam, V.P. Gupta, K.D. Verma, K.H. Chae, M. Hashim, H.K. Choi, Mater. Res. Bull., 59, 2014, 377-381.
[25] R. Elilarassi, G. Chandrasekaran, American J. Mater. Sci., 2(1), 2012, 46-50.
[26] S. Yılmaz, E. McGlynn, E. Bacaksız, J. Cullen, R.K. Chellappan, Chem. Phys. Lett., 525-526, 2012, 72-76.
[27] V.V. Ganbavle, S.I. Inamdar, G.L. Agawane, J.H. Kim, K.Y. Rajpure, J. Chem. Eng., 286, 2016, 36-47.
[28] A.A. Gadalla, I. Abood and & M.M. Elokr, Impact Journals, 4, 2016, 5-16.
[29] K. Raja, P.S. Ramesh, D. Geetha, Spectrochimica Acta Part A., 120, 2014, 19-24.
[30] M. E. Hilo, A. A. Dakhel, A.Y.A. Mohamed, J. Magn. Magn. Mater., 321, 2009, 2279- 2283.
[31] A. A. M. Farag, M. Cavas¸ F. Yakuphanoglu, F. M. Amanullah, J. Alloys Compd., 509, 2011, 7900-7908.
[32] A. P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, F. Iacomi, Appl. Surf. Sci., 280, 2013, 598-604.
[33] B. Singh, A. Kaushal, I. Bdikin, K. Venkata Saravanan, J.M.F. Ferreira, Mater. Res. Bull., 70, 2015, 430-435.
[34] X. Liu, F. Lin, L. Sun, W. Cheng, X. Ma, and W. Shi, Appl. Phys. Lett., 88, 2006, 062508.
[35] W. Yu, L. H. Yang, X. Y. Teng, J. C. Zhang, Z. C. Zhang, L. Zhang, and G. S. Fu, J. Appl. Phys., 103, 2008, 093901.
[36] T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Physica E, 10, 2001, 260-264.
[37] X. Wang, L. Zhu, L. Zhang, J. Jiang, Z. Yang, Z. Ye, B. He, J. Alloys Compd., 509, 2011, 3282-3285.
[38] M. Xu, Q. Li, Y. Ma, H. Fan, Sens. Actuators B, 199, 2014, 403-409.
[39] R. Saravanan, K. Santhi, N. Sivakumar, V. Narayanan, A. Stephen, Mater. Charact., 67, 2012, 10-16.
[40] X. Wang, M. Zhao, F. Liu, J. Jia, X. Li, L. Cao, Ceram. Int., 39, 2013, 2883-2887.
[41] Kenigsberg N L and Chernec A N 1968 Russ. Phys. Stat. Sol., 9, 2834.
[42] Kenigsberg N L, Chernetc A N, Kosmacheva T S and Grinchenko A 1970 Russ. Phys. Stat. Sol., 12 1861.
[43] Chernetc A N and Kenigsberg N L 1973 Thin Solid Films, 18, 1973, 247-255.
[44] D.J. Qiu, H.Z. Wu, A.M. Feng, Y.F. Lao, N.B. Chen, T.N. Xu, Appl. Surf. Sci., 222, 2004, 263-268.
[45] Z. ShaoMin, Y. HongLei, L. LiSheng, C. XiLiang, L. ShiYun, H. YaoMing, Y. RuiJian, L. Ning, Nanoscale Res Lett., 5, 2010, 1284-1288.
[46] B. Zhang, X. T. Zhang, H. C. Gong, Z. S. Wu, S. M. Zhou, Z. L. Du, Phys. Lett A., 372, 2008, 2300-2303.
[47] H. Ahn, Y. Wang, S. H. Jee, M. Park, Y. S. Yoon, D.-J. Kim, Chem. Phys. Lett., 511 ,2011, 331-335.
[48] Z. Bai, C. Xie, M. Hu, S. Zhang, Physica E, 41, 2008, 235-239.
[49] Z. Wei1, X. Wu, L. Zhang, W. Feng and H. Yang, Adv. Mater, 785-786, 2013, 582-585.
[50] T. Al-Harbi, J. Alloys Compd., 509, 2011, 387-390.
[51] W. G. Chen, T. Y. Gao, H. L. Gan, L. N. Xu & L. F. Jin, Mater. Technol., 30, 2015, 356-361.
[52] J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, Y. Zhang, Mater. Res. Bull., 46, 2011, 1207-1210.
[53] L. Yanmei, W. Tao, S. Xia, F. Qingqing, L. Qingrong, S. Xueping, S. Zaoqi, Appl. Surf. Sci., 257, 2011, 6540-6545.
[54] C. Cheng, G. Xu, H. Zhang, Y. Luo, Mat. Lett., 62, 2008, 1617-1620.
[55] G. Srinet, R. Kumar, and V. Sajal, J. Appl. Phys., 114, 2013, 033912.
[56] W. F. Egelhoff, Jr., Surf. Sci. Rep., 6, 1987, 253-415.
[57] B.P. Payne, M.C. Biesinger, N.S. McIntyre, J. Electron Spectrosc. Relat. Phenom., 175, 2009, 55-65.
[58] K. S. KIM and R. E. DAVIS, J. Electron Spectrosc. Relat. Phenom., 1, 1972, 251.
[59] S. Kant and A. Kumar, Adv. Mat. Lett., 3(4), 2012, 350-354.
[60] Y. Liu, H. Liu, Z. Chen, N. Kadasala, C. Mao, Y. Wang,Y. Zhang, H. Liu, Y. Liu, J. Yang, Y. Yan, J. Alloys Compd., 604, 2014, 281-285.
[61] L. Li, S. Xiang, S. Cao, J. Zhang, G. Ouyang, L. Chen and C. Y. Su, Nature Commu., 4:1774, 2013, 1-9.
[62] R. G. Miller, S. Narayanaswamy, J. L. Tallon and S. Brooker, New J. Chem., 38, 2014, 1932.
[63] S. Schlamp, K. Dankhoff and B. Weber, New J. Chem., 38, 2014, 1965.
[64] J. AGUILO, A. Naeimi, R. Bofill, H. M. Bunz, A. Llobet, L, Escribe, X. Sala and M. Albrecht, New J. Chem., 38, 2014, 1980.
[65] L. Xu, J. Pan, Dai, Z, Cao, H. Hang, X, Li and Y. Yan, RSC Advances., 2, 2012, 5571- 5579.
[66] M. A. Subhan, T. Ahmed, R. Awal, R. Makioka, H. Nakata, T. T. Pakkanen, M. Suvanto, B. M. Kim, J. Lumin., 146, 2014, 123-127.
[67] A. Ahmed, M. Forster, R. Clowes, P. Myers and H.Zhang, Chem Commun., 50, 2014, 14314.
[68] Y. Ni, Y. Zhu and X. M. Dalton Trans, 40, 2011, 3689.
[69] P. Sundberg and M. Karppinen, Beilstein J. Nanotech., 5, 2014, 1104-1136.
[70] D. Wang and Y. Li, Adv. Mater., 23, 2011, 1044-1060.
[71] O¨. Metin, L. T. Yıldırım, S. O¨ zkar, Inorg. Chem. Comm., 10, 2007, 1121-1123.
[72] Y. Moreno, R. Arrue, R. Saavedra, J.Y. Pivan, O. Pena, T. Roisnell J. Chil. Chem. Soc., 58, 2013, 4.
[73] M. Shahid, M. Hamid, M. Mazhar, M. A. Malik, J. Raftery, Acta Crystallogr, 66, 2010, 949.
[74] M. Seco, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain, 66, 1989.
[75] D. Ž. Veljković,a V. B. Medaković,a J. M. Andrićb and S. D. Zarić, Cryst Eng. Comm., 16, 2014, 10089-10096.
[76] G. R. Desiraju, Acc. Chem. Res., 35, 2002, 565-573.
[77] K. Wetchaku, T. Samejai, N. Tamaekong, C. Lieuhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuators B., 160, 2011, 580-591.
[78] S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef and M. C. Kanan, Sensors, 9, 2009, 8158-8196.
[79] F.H. Ramirez, J. D. Prades and J. R. Morante, Sens. Actuators, 21, 2009, 219-227.
[80] G. Korotcenkov, Mater. Sci. Eng. B 139, 2007, 1-23.
[81] Yue Hou, Doctor of Philosophy thesis in Engineering, The University of Toledo, 2014.
[82] M. Gautam and A. H. Jayatissa, J. Appl. Phys., 112, 2012, 114326.
[83] M. Gautam, A. H. Jayatissa, Mater. Sci. Eng C, 31, 2011, 1405-1411.
[84] A. H. Jayatissa, P. Samarasekara, and G. Kun, hys. Status Solidi A, 206, 2009, 332-337.
[85] Kun Guo, Ahalapitiya H. Jayatissa, Mater. Sci. Eng C, 28, 2008, 1556-1559.
[86] T. Seiyama and A. Kato, K. Fujiishi, M. Nagatani, Anal. Chem., 34, 1962, 1502.
[87] P. Rai, S. M. Majhi, Y. T. Yub and J. H. Lee, RSC Adv., 5, 2015, 76229.
[88] A. Hulanicki, S.Glab, F. Ingman, Pure & Appl. Chem., 63, 1991, 1247.
[89] V. Galstyan, E. Comini, G. Faglia and G. Sberveglieri, Sensors, 13, 2013, 4813-14838.
[90] C. S. Rout, M. Hegde, C.N.R. Rao, Sens. Actuators B, 128, 2008, 488-493.
[91] L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, and C. Liu, J. Phys. Chem. C, 111, 2007, 1900-1903.
[92] J. Liu, X. Huang, G. Ye, W. Liu, Z. Jiao, W. Ghao, Z. Zhou, and Z. Yu, Sensors, 3, 2003, 110-118.
[93] Z. Sun, H. Yuan, Z. Liu, B. Han, and X. Zhang, Adv. Mater., 17, 2005, 2993-2997.
[94] L. Mai, L. Xu, Q. Gao, C. Han, B. Hu, and Y. Pi, Nano Lett., 10, 2010, 2604-2608.
[95] K. Ren, Y. X. Gan, T. J. Young, Z. M. Moutassem, L. Zhang, Composites: Part B, 52, 2013, 292-302.
[96] J. Nisar, Z. Topalian, A. D. Sarkar, L. Österlund, and R. Ahuja, ACS Appl. Mater.Interfaces, 5, 2013, 8516-8522.
[97] M. H. Darvishnejad, A. A. Firooz, J. Beheshtian and A. A. Khodadadib, RSC Adv., 6, 2016, 7838.
[98] C. Hagleitner, Student Member, IEEE, D. Lange, Student Member, IEEE, A. Hierlemann, O. Brand, Associate Member, IEEE, and H. Baltes, Senior Member, IEEE, IEEE J. Solid-State Circuits, 37, 2002, 1867.
[99] S. Kulinyi, D. Brandsza´jsz, H. Amine, M. A´ da´m, P. Fu¨rjes, I. B´arsony, Cs. D¨ucs˝o, Sens. Actuators B, 111-112, 2005, 286-292.
[100] A. H. Jayatissa, A. Dadi, T. Aoki, Appl. Surf. Sci., 244, 2005, 453-457.
[101] A. H. Jayatissa, S. T. Cheng, T. Gupta, Mater. Sci. Eng B., 109, 2004, 269-275.
[102] G. F. Fine, L. M. Cavanagh, A. Afonja and R. Binions, Sensors, 10, 2010, 5469-5502;
[103] N. Barsan, U. Weimar, J. Electroceram, 7, 2001, 143-167.
[104] N. Yamazoe, Y. Kurokawa and T. Seiyama, Sens. Actuators B, 4, 1983, 283-289.
[105] G. K. Mani and J. B. B. Rayappan, RSC Adv., 5, 2015, 54952.
[106] S. Choopun, N. Hongsith and E. Wongrat, (Handbook) Metal-Oxide Nanowires for Gas Sensors.
[107] D. Dey, S. Ghosh, D. Chopra, J. Chem. Crystallogr, 44, 2014, 131.
[108] R. C. Johnston, P. H. Yeon Cheong, Org. Biomol. Chem.,11, 2013, 5057.
[109] D. G. Tuck, Progr. Inorg. Chem., 9, 1968, 161
[110] G. R. Desiraju, Acc. Chem. Res., 29, 1996, 441.
[111] T. Steiner, Angew. Chem. Int. Ed., 41, 2002, 48.
[112] O. D. Bonner, J. D. Curry, Infrared Phys., 10, 1970, 91.
[113] S. F. Tayyari, F. Milani‐nejad, Spectrochim. Acta A., 56, 2000, 2679.
[114] S. Brahma, S. A. Shivashankar, J. Mol. Struct., 41, 2015, 1101.
[115] A. M. A. Bennett, G. A. Foulds, D. A. Thornton, Polyhedron, 8, 1989, 2305-2311.
[116] K. Nakamoto, P. J. McCarthy, A. E. Martell, J. Am. Chem. Soc., 83, 1961, 1272.
[117] I. D. Acosta, J. Baker, W. Cordes, P. Pulay, J. Phys, Chem. A, 105, 2001, 238.
[118] A. J. Bridgeman, Dalton Trans., 2008, 1989-1992.
[119] A. Lennartson, L. U. Christensen, C. J. McKenzie, U. G. Nielsen, Inorg. Chem., 53, 2014,399.
[120] J. J. Wu and S. C. Liu, Appl. Phys. Lett., 81, 2002, 1312.
[121] S. Kumar, P. Vats, S. Gautam, V.P. Gupta, K.D. Verma, K.H. Chae, M. Hashim, H.K. Choi, Mater. Res. Bull., 59, 2014, 377-381.
[122] B. Pal, D. Sarkar, P.K. Giri, Appl. Surf. Sci., 356, 2015, 804-811.
[123] W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, Appl. Phys. Lett., 86, 2005, 191911 (1-3).
[124] C. V. Manzano, D. Alegre, O. Caballero-Calero, B. Alén, and M. S. Martín-González,J. Appl. Phys., 110, 2011, 043538 (1-8).
[125] J. Iqbal, B. Wang, X. Liu, D. Yu, B. He and R. Yu, New J. Phys., 11, 2009, 1-12.
[126] S. Brahma, J. Khatei, S. Sunkara, K. Y. Lo and S. A. Shivashankar, J. Phys. D: Appl. Phys., 48, 2015, 225305 (12pp).
[127] L. S. Vlasenko and G. D. Watkins, Phys. Rev. B., 71, 2005, 125210 (1-6).
[128] Y. Wang, G. Duan, Y. Zhu, H. Zhang, Z. Xu, Z. Dai, W. Cai, Sens. Actuators B, 228, 2016, 74-84.
[129] N.H. Al-Hardan, M.J. Abdullah, A. Abdul Aziz, Appl. Surf. Sci., 270, 2013, 480- 485.
[130] Z. Li, Y. Huang, S. Zhang, W. Chen, Z. Kuang, D. Ao, W. Liu, Y. Fu, J. Hazard. Mater., 300, 2015, 167-174.
[131] L. Geng, X. Huang, Y. Zhao, P. Li, S. Wang, S. Zhang, S. Wu, Solid-State Electronics, 50, 2006, 723-726.
[132] G. Cui, M. Zhang and G. Zou, Science Report, 3, 2013, 1250 (1-8).
[133] V. D. Kapse, S.A. Ghosh, G.N. Chaudhari, F.C. Raghuwanshi, D.D. Gulwade, Vacuum, 83, 2009, 346-352.
[134] L. Geng, Synthetic Metals, 160, 2010, 1708-1711.
[135] Z. Li, Y. Huang, S. Zhang, W. Chen, Z. Kuang, D. Ao,W. Liu, Y. Fu, J. Hazard. Mater., 300, 2015, 167-174.
[136] L. Wang, Y. Kang, Y. Wang, B. Zhu, S. Zhang, W. Huang, S. Wang, Mater. Sci. Eng. C, 32, 2012, 2079-2085.
[137] J. Kim and K. Yong, J. Phys. Chem. C., 115, 2011, 7218-7224.
[138] M. Zhao, X. Wang, L. Ning, J. Jia, X. Li, L. Cao, Sens. Actuators B, 156, 2011, 588-592.
[139] N. M. Vuong, N. D. Chinh, B. T. Huy and Y. I. Lee, Scientific Reports, 6, 2016, 26736 (1-13).
[140] G. Qi, L. Zhang, and Z. Yuan, Phys. Chem. Chem. Phys., 16, 2014, 13434-13439.
[141] B. P. Dhonge, S. S. Ray and B. Mwakikunga, RSC Adv., 7, 2017, 21703-21712.
[142] P. K. Kannana, R. Saraswathia, J. B. B. Rayappan, Sens. Actuators A., 164, 2010, 8-14.
[143] B.C. Yadav, R. Srivastava, C.D. Dwivedi, Philos. Mag., 88, 2008, 1113-1124.
[144] M. R. Modaberi, S. Brahma, R. Rooydell, R. C. Wang, C. P. Liu, Appl. Organomet. Chem., 3746, 2017, 1-12.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊