|
[1]W.W. Lee, L.T. Nguyen, G.S. Selvaduray, Solder joint fatigue models: review and applicability to chip scale packages, Microelectron. Reliab. 40 (2000) 231-244. [2]M. Abtew and G. Selvaduray, Lead-free solders in microelectronics, Mater. Sci. Eng. R 27 (2000) 95-141. [3]J. Glazer, Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: A review, J. Electron. Mater. 23 (1994) 693-700. [4]K.N. Tu, Reliability challenges in 3D IC packaging technology, Microelectron. Reliab. 51 (2011) 517-523. [5]J.H. Lau, Evolution, challenge, and outlook of TSV, 3D IC integration and 3d silicon integration, International Symposium on Advanced Packaging Materials (APM) (2011) 462-488. [6]K.N. Tu, H.Y. Hsiao, C. Chen, Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy, Microelectron. Reliab. 53 (2013) 2-6. [7]H. Huebner, S. Penka, B. Barchmann, M. Eigner, W. Gruber, M. Nobis, S. Janka, G. Kristen, M. Schneegans, Microcontacts with sub-30 μm pitch for 3D chip-on-chip integration, Microelectron. Eng. 83 (2006) 2155-2162. [8]C.L. Liang, K.L. Lin, J.W. Peng, Microstructural evolution of intermetallic compounds in TCNCP Cu pillar solder joints, J. Electron. Mater. 45 (2016) 51-56. [9]C.W. Chen, T.C. Chiu, Y.T. Chiu, C.W. Lee, K.L. Lin, Current induced segregation of intermetallic compounds in three-dimensional integrated circuit microbumps, Intermetallics 85 (2017) 117-124. [10]K. Zeng and K.N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology, Mater. Sci. Eng. R 38 (2002) 55-105. [11]K.N. Tu, A.M. Gusak, M. Li, Physics and materials challenges for lead-free solders, J. Appl. Phys. 93 (2003) 1335-1353. [12]Y.C. Chan and D. Yang, Failure mechanisms of solder interconnects under current stressing in advanced electronic packages, Prog. Mater. Sci. 55 (2010) 428-475. [13]J.H. Lau and Y.H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York, USA, 1997, Chapter 3. [14]C.Y. Liu, C. Chen, A.K. Mal, K.N. Tu, Direct correlation between mechanical failure and metallurgical reaction in flip chip solder joints, J. Appl. Phys. 85 (1999) 3882-3886. [15]S.K. Kang, W.K. Choi, M.J. Yim, D.Y. Shih, Studies of the mechanical and electrical properties of lead-free solder joints, J. Electron. Mater. 31 (2002) 1292-1303. [16]K.N. Tu, Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions, Phys. Rev. B 49 (1994) 2030-2034. [17]T. B. Massalski, Binary Alloy Phase Diagrams, Volume 1, ASM, Metal Park, Ohio, USA, 1986, p. 965. [18]J.O.G. Parent, D.D.L. Chung, I.M. Bernstein, Effects of intermetallic formation at the interface between copper and lead-tin solder, J. Mater. Sci. 23 (1988) 2564-2572. [19]H.K. Kim and K.N. Tu, Rate of consumption of Cu in soldering accompanied by ripening, Appl. Phys. Lett. 67 (1995) 2002-2004. [20]S.K. Kang, R.S. Rai, S. Purushothaman, Interfacial reactions during soldering with lead-tin eutectic and lead(Pb)-free, tin-rich solders, J. Electron. Mater. 25 (1996) 1113-1120. [21]S. Bader, W. Gust, H. Hieber, Rapid formation of intermetallic compounds by interdiffusion in the Cu-Sn and Ni-Sn systems, Acta Metall. Mater. 43 (1995) 329-337. [22]R.A. Lord and A. Umantsev, Early stages of soldering reactions, J. Appl. Phys. 98 (2005) 063525. [23]H.K. Kim, H.K. Liou, K.N. Tu, Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu, Appl. Phys. Lett. 66 (1995) 2337-2339. [24]H.K. Kim, K.N. Tu, P.A. Totta, Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joints on Si wafers, Appl. Phys. Lett. 68 (1996) 2204-2206. [25]M. Schaefer, R.A. Fournelle, J. Liang, Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control, J. Electron. Mater. 27 (1998) 1167-1176. [26]J. Gorlich, G. Schmitz, K.N. Tu, On the mechanism of the binary Cu/Sn solder reaction, Appl. Phys. Lett. 86 (2005) 053106. [27]D. Ma, W.D. Wang, S.K. Lahiri, Scallop formation and dissolution of Cu-Sn intermetallic compound during solder reflow, J. Appl. Phys. 91 (2002) 3312-3317. [28]A.M. Guask and K.N. Tu, Kinetic theory of flux-driven ripening, Phys. Rev. B 66 (2002) 115403. [29]C.H. Yu and K.L. Lin, The atomic-scale studies of the behavior of the crystal dissolution in a molten metal, Chem. Phys. Lett. 418 (2006) 433-436. [30]K.L. Lin, Y.W. Lin, C.H. Yu, The interphases formed during the very early stage liquid solder/metal substrate interaction of the soldering process, JOM 64 (2012) 1184-1189. [31]C.H. Yu and K.L. Lin, Early dissolution behavior of copper in a molten Sn-Zn-Ag solder, J. Mater. Res. 20 (2005) 666-671. [32]C.H. Yu and K.L. Lin, Early stage soldering reaction and interfacial microstructure formed between molten Sn-Zn-Ag solder and Cu substrate, J. Mater. Res. 20 (2005) 1242-1249. [33]C.C. Pan, C.H. Yu, K.L. Lin, The amorphous origin and the nucleation of intermetallic compounds formed at the interface during the soldering of Sn-3.0Ag-0.5Cu on a Cu substrate, Appl. Phys. Lett. 93 (2008) 061912. [34]C.C. Panand K.L. Lin. The interfacial amorphous double layer and the homogeneous nucleation in reflow of a Sn-Zn solder on Cu substrate, J. Appl. Phys. 109 (2011) 103513. [35]M. Tammaro, Investigation of the temperature dependence in Black’s equation using microscopic electromigration modeling, J. Appl. Phys. 86 (1999) 3612-3615. [36]K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K.N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper, Science 321 (2008) 1066-1069. [37]R. Zhu, Y. Jiang, L. Guan, H. Li, G. Tang, Difference in recrystallization between electropulsing-treated and furnace-treated NiTi alloy, J. Alloy. Compd. 658 (2016) 548-554. [38]G. Hu, Y. Zhu, G. Tang, C. Shek, J. Liu, Effect of electropulsing on recrystallization and mechanical properties of silicon steel strips, J. Mater. Sci. Technol. 27 (2011) 1034-1038. [39]I.A. Blech, Electromigration in thin aluminum films on titanium nitride, J. Appl. Phys. 47 (1976) 1203-1208. [40]P.R. Besser, M.C. Madden, P.A. Flinn, In situ scanning electron microscopy observation of the dynamic behavior of electromigration voids in passivated aluminum lines, J. Appl. Phys. 72 (1992) 3792-3797. [41]J.C. Doan, J.C. Bravman, P.A. Flinn, T. N. Marieb, The evolution of the resistance of aluminum interconnects during electromigration, Microelectron. Reliab. 40 (2000) 981-990. [42]I.A. Blech, C. Herring, Stress generation by electromigration, Appl. Phys. Lett. 29 (1976) 131-133. [43]F.Y. Ouyang, K. Chen, K.N. Tu, Y.S. Lai, Effect of current crowding on whisker growth at the anode in flip chip solder joints, Appl. Phys. Lett. 91 (2007) 231919. [44]C.C. Wei, P.C. Liu, C. Chen, K.N. Tu, Electromigration-induced Pb and Sn whisker growth in SnPb solder stripes, J. Mater. Res. 23 (2008) 2017-2022. [45]T.C. Chiu and K.L. Lin, The growth of Sn whiskers with dislocation inclusion upon electromigration through a Cu/Sn3.5Ag/Au solder joint, Scr. Mater. 60 (2009) 1121-1124. [46]R. Delville, B. Malard, J. Pilch, P. Sittner, D. Schryvers, Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy, Acta Mater. 58 (2010) 4503-4515. [47]D. Fabrègue, B. Mouawad, C.R. Hutchinson, Enhanced recovery and recrystallization of metals due to an applied current, Scr. Mater. 92 (2014) 3-6. [48]M.J. Kim, K. Lee, K.H. Oh, I.S. Choi, H.H. Yu, S.T. Hong, H.N. Han, Electric current-induced annealing during uniaxial tension of aluminum alloy, Scr. Mater. 75 (2014) 58-61. [49]R.F. Zhu, J.N Liu, G.Y. Tang, S.Q. Shi, M.W. Fu, Z.T.H. Tse, The improved superelasticity of NiTi alloy via electropulsing treatment for minutes, J. Alloy. Compd. 584 (2014) 225-231. [50]Y. Liu, J. Fan, H. Zhang, W. Jin, H. Dong, B. Xu, Recrystallization and microstructure evolution of the rolled Mg-3Al-1Zn alloy strips under electropulsing treatment, J. Alloy. Compd. 622 (2015) 229-235. [51]Z.S. Xu, Z.H. Lai, Y.X. Chen, Effect of electric current on the recrystallization behavior of cold worked α-Ti, Scr. Metall. 22 (1988) 187-190. [52]J.W. Park, H.J. Jeong, S.W. Jin, M.J. Kim, K. Lee, J.J. Kim, S.T. Hong, H.N. Han, Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy, Mater. Charact. 133 (2017) 70-76. [53]K. Huang, C. Cayron, R.E. Logé, The surprising influence of continuous alternating electric current on recrystallization behaviour of a cold-rolled Aluminium alloy, Mater. Charact. 129 (2017) 121-126. [54]Y.T. Chiu, K.L. Lin, Y.S. Lai, Dissolution of Sn in a SnPb solder bump under current stressing, J. Appl. Phys. 111 (2012) 043517. [55]Y.T. Chiu, C.H. Liu, K.L. Lin, Y.S. Lai, Supersaturation induced by current stressing, Scr. Mater. 65 (2011) 615-617. [56]Y.T. Chiu, K.L. Lin, A.T. Wu, W.L. Jang, C.L. Dong, Y.S. Lai, Electrorecrystallization of metal alloy, J. Alloy. Compd. 549 (2013) 190-194. [57]W.Y Chen, T.C. Chiu, K.L. Lin, Y.S. Lai, Electrorecrystallization of intermetallic compound in the Sn0.7Cu solder joint, Intermetallics 26 (2012) 40-43. [58]W.Y. Chen, T.C. Chiu, K.L. Lin, A.T. Wu, W.L. Jang, C.L. Dong, H.Y. Lee, Anisotropic dissolution behavior of the second phase in SnCu solder alloys under current stress, Scr. Mater. 68 (2013) 317-320. [59]T.C. Chiu, Y.T. Chiu, K.L. Lin, Electro-dissolution of the Bi second phase in Sn5Bi solder alloy, Mater. Lett. 160 (2015) 309-313. [60]T.H. Wang, K.L. Lin, The dissolution and supersaturation of Zn in the Sn9Zn solder under current stressing, J. Electron. Mater. 45 (2016) 164-171. [61]X. Xu, Y. Zhao, X. Wang, Y. Zhang, Y. Ning, Effect of rapid solid-solution induced by electropulsing on the microstructure and mechanical properties in 7075 Al alloy, Mater. Sci. Eng. A 654 (2016) 278-281. [62]J. Zhao, J.E. Garay, U. Anselmi-Tamburini, Z.A. Munir, Directional electromigration-enhanced interdiffususion in the Cu-Ni system, J. Appl. Phys. 102 (2007) 114902. [63]C.T. Lin, Y.C. Chuang, S.J. Wang, Current density dependence of electromigration-induced flip-chip Cu pad consumption, Appl. Phys. Lett. 89 (2006) 101906. [64]C.Y. Liu, L. Ke, Y.C. Chuang, S.J. Wang, Study of electromigration-induced Cu consumption in the flip-chip Sn/Cu solder bumps, J. Appl. Phys. 100 (2006) 083702. [65]J.F. Zhao, C. Unuvar, U. Anselmi-Tamburini, Z.A. Munir, Kinetics of current-enhanced dissolution of nickel in liquid aluminum, Acta Mater. 55 (2007) 5592-5600. [66]B. Chao, S.H. Chae, X. Zhang, K.H. Lu, M. Ding, J. Im, P.S. Ho, Electromigration enhanced intermetallic growth and void formation in Pb-free solder joints, J. Appl. Phys. 100 (2006) 084909. [67]C.Y. Liu, J.T. Chen, Y.C. Chuang, L. Ke, S.J. Wang, Electromigration-induced Kirkendall voids at the Cu/Cu3Sn interface in flip-chip Cu/Sn/Cu joints, Appl. Phys. Lett. 90 (2007) 112114. [68]Y. Jung and J. Yu, Electromigration induced Kirkendall void growth in Sn-3.5Ag/Cu solder joints, J. Appl. Phys. 115 (2014) 083708. [69]R. An, Y. Tia, R. Zhang, C. Wang, Electromigration-induced intermetallic growth and voids formation in symmetrical Cu/Sn/Cu and Cu/Intermetallic compounds (IMCs)/Cu joints, J. Mater. Sci. Mater. Electron. 26 (2015) 2674-2681. [70]H. Gan and K.N. Tu, Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples, J. Appl. Phys. 97 (2005) 063514. [71]M.O. Alam, B.Y. Wu, Y.C. Chan, K.N. Tu, High electric current density-induced interfacial reactions in micro ball grid array (μBGA) solder joints, Acta Mater. 54 (2006) 613-621. [72]Y.D. Lu, X.Q. He, Y.F. En, X. Wang, Z.Q. Zhuang, Polarity effect of electromigration on intermetallic compound formation in SnPb solder joints, Acta Mater. 57 (2009) 2560-2566. [73]N. Bertolino, J. Garay, U. Anselmi-Tamburini, Z.A. Munir, High-flux current effects in interfacial reactions in Au-A1 multilayers, Philos. Mag. B 82 (2002) 969-985. [74]J.E. Garay, U. Anselmi-Tamburini, Z.A. Munir, Enhanced growth of intermetallic phases in the Ni-Ti system by current effects, Acta Mater. 51 (2003) 4487-4495. [75]J.R Friedman, J.E. Garay, U. Anselmi-Tamburini, Z.A. Munir, Modified interfacial reactions in Ag-Zn multilayers under the influence of high DC currents, Intermetallics 12 (2004) 589-597. [76]H. Ma, A. Kunwar, J. Sun, B. Guo, H. Ma, In situ study on the increase of intermetallic compound thickness at anode of molten tin due to electromigration of copper, Scr. Mater. 107 (2015) 88-91. [77]H.T. Orchard and A.L. Greer, Electromigration effects on compound growth at interfaces, Appl. Phys. Lett. 86 (2005) 231906. [78]L.D. Chen, M.L. Huang, S.M. Zhou, Effect of electromigration on intermetallic compound formation in line-type Cu/Sn/Cu interconnect, J. Alloy. Compd. 504 (2010) 535-541. [79]J.H. Ke, H.Y. Chuang, W.L. Shih, C.R. Kao, Mechanism for serrated cathode dissolution in Cu/Sn/Cu interconnect under electron current stressing, Acta Mater. 60 (2012) 2082-2090. [80]J.W. Nah, K.W. Paik, J.O. Suh, K.N. Tu, Mechanism of electromigration-induced failure in the 97Pb-3Sn and 37Pb-63Sn composite solder joints, J. Appl. Phys. 94 (2003) 7560-7566. [81]M.H. Jeong, J.W. Kim, B.H. Kwak, Y.B. Park, Effects of annealing and current stressing on the intermetallic compounds growth kinetics of Cu/thin Sn/Cu bump, Microelectron. Eng. 89 (2012) 50-54. [82]D. Chen, C.E. Ho, J.C. Kuo, Current stressing-induced growth of Cu3Sn in Cu/Sn/Cu solder joints, Mater. Lett. 65 (2011) 1276-1279. [83]K.N. Tu, C.C. Yeh, C.Y. Liu, C. Chen, Effect of current crowding on vacancy diffusion and void formation in electromigration, Appl. Phys. Lett. 76 (2000) 988-990. [84]K.N. Chiang, C.C. Lee, C.C. Lee, K.M. Chen, Current crowding-induced electromigration in SnAg3.0Cu0.5 microbumps, Appl. Phys. Lett. 88 (2006) 072102. [85]E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, H. Balkan, Current-crowding-induced electromigration failure in flip chip solder joints, Appl. Phys. Lett. 80 (2002) 580-582. [86]L. Zhang, S. Ou, J. Huang, K.N. Tu, S. Gee, L. Nguyen, Effect of current crowding on void propagation at the interface between intermetallic compound and solder in flip chip solder joints, Appl. Phys. Lett. 88 (2006) 012106. [87]H. Wang, C. Bruynseraede, K. Maex, Impact of current crowding on electromigration-induced mass transport, Appl. Phys. Lett. 84 (2004) 517-519. [88]H. Ye, C. Basaran, D. Hopkins, Thermomigration in Pb-Sn solder joints under joule heating during electric current stressing, Appl. Phys. Lett. 82 (2003) 1045-1047. [89]J.W. Nah, J.O. Suh, K.N. Tu, Effect of current crowding and Joule heating on electromigration-induced failure in flip chip composite solder joints tested at room temperature, J. Appl. Phys. 98 (2005) 013715. [90]S.W. Liang, S.H. Chiu, C. Chen, Effect of Al-trace degradation on Joule heating during electromigration in flip-chip solder joints, Appl. Phys. Lett. 90 (2007) 082103. [91]K.N. Tu, Y. Liu, M. Li, Effect of Joule heating and current crowding on electromigration in mobile technology, Appl. Phys. Rev. 4 (2017) 011101. [92]X. Gu and Y.C. Chan, Electromigration in line-type Cu/Sn-Bi/Cu solder joints, J. Electron. Mater. 37 (2008) 1721-1726. [93]T.C. Huang, T.L. Yang, J.H. Ke, C.H. Hsueh, C.R. Kao, Effects of Sn grain orientation on substrate dissolution and intermetallic precipitation in solder joints under electron current stressing, Scr. Mater. 80 (2014) 37-40. [94]L. Wang, S. Kitamura, T. Sonoda, K. Obata, S. Tanase, T. Sakai, Electroplated Sn-Zn alloy electrode for Li secondary batteries, J. Electrochem. Soc. 150 (2003) A1346-A1350. [95]Y. Qin, G.D. Wilcox, C. Liu, Electrodeposition and characterisation of Sn-Ag-Cu solder alloys for flip-chip interconnection, Electrochim. Acta 56 (2010) 183-192. [96]W.M. Tang, A.Q. He, Q. Liu, D.G. Ivey, Solid state interfacial reactions in electrodeposited Cu/Sn couples, Trans. Nonferrous Met. Soc. China 20 (2010) 90-96. [97]K.R. Williams, K. Gupta, M. Wasilik, Etch rates for micromachining processing-Part II, J. Microelectromech. Syst. 12 (2003) 761-778. [98]R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, Ohio, USA, 1973, p. 477. [99]N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, H. Tawara, Energy dependence of the ion-induced sputtering yields of monatomic solids, Atom. Data Nucl. Data Tables 31 (1984) 1-80. [100]Y. Yamamura and H. Tawara, Energy dependence of the ion-induced sputtering yields from monatomic solids at normal incidence, Atom. Data Nucl. Data Tables 62 (1996) 149-253. [101]K.N. Tu, Interdiffusion and reaction in bimetallic Cu-Sn thin films, Acta Metall. 21 (1973) 347-354. [102]K.N. Tu and R.D. Thompson, Kinetics of interfacial reaction in bimetallic Cu-Sn thin films, Acta Metall. 30 (1982) 947-952. [103]K.N. Tu, Cu/Sn interfacial reactions: thin-film case versus bulk case, Mater. Chem. Phys. 46 (1996) 217-223. [104]M.L. Huang and F. Yang, Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate, Sci Rep 4 (2014) 7117. [105]H. Liu, K. Wang, K.E. Aasmundtveit, N. Hoivik, Intermetallic compound formation mechanisms for Cu-Sn solid-liquid interdiffusion bonding, J. Electron. Mater. 41 (2012) 2453-2462. [106]Y.H. Liao, C.L. Liang, K.L. Lin, A.T. Wu, High dislocation density of tin induced by electric current, AIP Adv. 5 (2015) 127210. [107]J.Y. He, K.L. Lin, A.T. Wu, The diminishing of crystal structure of Sn9Zn alloy due to electrical current stressing, J. Alloy. Compd. 619 (2015) 372-377. [108]H.C. Huang, K.L. Lin, A.T. Wu, Disruption of crystalline structure of Sn3.5Ag induced by electric current, J. Appl. Phys. 119 (2016) 115102. [109]C.L. Liang, S.W. Lee, K.L. Lin, The mechanism of an increase in electrical resistance in Al thin film induced by current stressing, Thin Solid Films 636 (2017) 164-170. [110]P.C. Liang, K.L. Lin, Non-deformation recrystallization of metal with electric current stressing, J. Alloy. Compd. 722 (2017) 690-697. [111]J.E. Garay, S.C. Glade, U. Anselmi-Tamburini, P. Asoka-Kumar, Z.A. Munir, Electric current enhanced defect mobility in Ni3Ti intermetallics, Appl. Phys. Lett. 85 (2004) 573-575. [112]J.R. Lloyd, Electromigration in integrated circuit conductors, J. Phys. D-Appl. Phys. 32 (1999) R109-R118. [113]S.W. Chen, C.M. Chen, W.C. Liu, Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions, J. Electron. Mater. 27 (1998) 1193-1199. [114]J. Shen, Z.M. Cao, D.J. Zhai, M.L. Zhao, P.P. He, Effect of isothermal aging and low density current on intermetallic compound growth rate in lead-free solder interface, Microelectron. Reliab. 54 (2014) 252-258. [115]L.H. Xu, J.H. L. Pang, K.N. Tu, Effect of electromigration-induced back stress gradient on nanoindentation marker movement in SnAgCu solder joints, Appl. Phys. Lett. 89 (2006) 221909. [116]D. Li, P. Franke, S. Fürtauer, D. Cupid, H. Flandorfer, The Cu-Sn phase diagram part II: New thermodynamic assessment, Intermetallics 34 (2013) 148-158. [117]G. Ghosh and M. Asta, Phase stability, phase transformations, and elastic properties of Cu6Sn5: Ab initio calculations and experimental results, J. Mater. Res. 20 (2005) 3102-3117. [118]T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Mater. Sci. Eng. R 49 (2005) 1-60. [119]G. Zeng, S.D. McDonald, J.J. Read, Q. Gu, K. Nogita, Kinetics of the polymorphic phase transformation of Cu6Sn5, Acta Mater. 69 (2014) 135-148. [120]K. Nogita, C.M. Gourlay, S.D. McDonald, Y.Q. Wu, J. Read, Q.F. Gu, Kinetics of the η-η' transformation in Cu6Sn5, Scr. Mater. 65 (2001) 922-925. [121]C.Y. Liu, Y.C. Hsu, Y.J. Hu, T.S. Huang, C.T. Lu, A.T. Wu, Back-Fill Sn flux against current-stressing at cathode micro Cu/Sn interface, ECS Solid State Lett. 3 (2014) 17-19. [122]C.K. Lin, C.M. Liu, C. Chen, Formation of Sn-rich phases via the decomposition of Cu6Sn5 compounds during current stressing, Mater. Lett. 124 (2014) 261-263. [123]A.T. Wu, K.N. Tu, J.R. Lloyd, N. Tamura, B.C. Valek, C.R. Kao, Electromigration-induced microstructure evolution in tin studied by synchrotron x-ray microdiffraction, Appl. Phys. Lett. 85 (2004) 2490-2492. [124]A.T. Wu, A.M. Gusak, K.N. Tu, C.R. Kao, Electromigration-induced grain rotation in anisotropic conducting beta tin, Appl. Phys. Lett. 86 (2005) 241902. [125]A.T. Wu and Y.C. Hsieh, Direct observation and kinetic analysis of grain rotation in anisotropic tin under electromigration, Appl. Phys. Lett. 92 (2008) 121921. [126]X. Xu, Y. Zhao, B. Ma, J. Zhang, M. Zhang, Rapid grain refinement of 2024 Al alloy through recrystallization induced by electropulsing, Mater. Sci. Eng. A 612 (2014) 223-226. [127]C.L. Liang and K.L. Lin, The microstructure and property variations of metals induced by electric current treatment: A review, Mater. Charact. 145 (2018) 545-555. [128]Y. Jing, G. Sheng, G. Zhao, Influence of rapid solidification on microstructure, thermodynamic characteristic and the mechanical properties of solder/Cu joints of Sn-9Zn alloy, Mater. Des. 52 (2013) 92-97. [129]W. Peng and M.E. Marques, Effect of thermal aging on drop performance of chip scale packages with SnAgCu solder joints on Cu pads, J. Electron. Mater. 36 (2007) 1679-1690. [130]G. Zhao, G. Sheng, J. Luo, X. Yuan, Solder characteristics of a rapidly solidified Sn-9Zn-0.1Cr alloy and mechanical properties of Cu/Solder/Cu joints, J. Electron. Mater. 41 (2012) 2100-2106. [131]J.W. Yoon, S.B. Jung, Investigation of interfacial reactions between Sn-5Bi solder and Cu substrate, J. Alloy. Compd. 359 (2003) 202-208. [132]B.F. Dyson, T.R. Anthony, D. Turnbull, Interstitial diffusion of copper in tin, J. Appl. Phys. 38 (1967) 3408. [133]J.H. Ke, T.L. Yang, Y.S. Lai, C.R. Kao, Analysis and experimental verification of the competing degradation mechanisms for solder joints under electron current stressing, Acta Mater. 59 (2011) 2462-2468. [134]K. Lee, K.S. Kim, Y. Tsukada, K. Suganuma, K. Yamanaka, S. Kuritani, M. Ueshima, Influence of crystallographic orientation of Sn-Ag-Cu on electromigration in flip-chip joint, Microelectron. Reliab. 51 (2011) 2290-2297. [135]K.N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects, J. Appl. Phys. 94 (2003) 5451-5473. [136]L.H. Ahrens, The use of ionization potentials Part 1. Ionic radii of the elements, Geochim. Cosmochim. Acta 2 (1952) 155-169. [137]Y. Yang, Y.Z. Li, H. Lu, C. Yu, J.M. Chen, Interdiffusion at the interface between Sn-based solders and Cu substrate, Microelectron. Reliab. 53 (2013) 327-333. [138]Y. Yuan, Y. Guan, D. Li, N. Moelans, Investigation of diffusion behavior in Cu-Sn solid state diffusion couples, J. Alloy. Compd. 661 (2016) 282-293. [139]B. Chao, S.H. Chae, X.F. Zhang, K.H. Lu, J. Im, P.S. Ho, Investigation of diffusion and electromigration parameters for Cu-Sn intermetallic compounds in Pb-free solders using simulated annealing, Acta Mater. 55 (2007) 2805-2814. [140]Y.T. Huang, H.H. Hsu, A.T. Wu, Electromigration-induced back stress in critical solder length for three-dimensional integrated circuits, J. Appl. Phys. 115 (2014) 034904.
|