跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁鍵隴
研究生(外文):Chien-LungLiang
論文名稱:銅/錫/銅接點之室溫電遷移材料反應行為研究
論文名稱(外文):The Material Interaction Behaviors in a Cu/Sn/Cu Interconnect Induced by Room Temperature Electromigration
指導教授:林光隆
指導教授(外文):Kwang-Lung Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:140
中文關鍵詞:室溫電遷移非熱效應銅/錫/銅接點材料反應介穩態非晶質界面層介金屬化合物再結晶過飽和擴散
外文關鍵詞:Room temperature electromigrationAthermal effectCu/Sn/Cu interconnectMaterial interactionMeta-stable amorphous interphaseIntermetallic compound (IMC)RecrystallizationSupersaturationDiffusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的是為了釐清電遷移(Electromigration)的基礎非熱(Athermal)效應對銅/錫/銅接點的材料反應行為。電遷移實驗在室溫環境下進行(約29.3oC),並透過薄膜接點結構設計以為達到最佳了解非熱效應之方法,除此之外,本研究透過磁控濺鍍(Magnetron sputtering)技術製作出無介金屬化合物(Intermetallic compound, IMC)的金屬界面以觀察銅/錫界面的原子級材料反應行為,室溫電遷移所產生的材料反應行為則利用球面像差修正掃描穿透式電子顯微鏡進行觀察(Spherical aberration corrected scanning transmission electron microscope, Cs-corrected STEM)。
本研究發現室溫電遷移初期(1 h)會於無介金屬化合物的銅/錫界面產生材料反應並生成非晶質銅錫界面層(Amorphous CuSn interphase),其中內部含有奈米級銅結晶組織。這個非晶質界面層是由銅/錫界面原生的界面扭曲層(Interfacial distortion zone)轉變而成,此介穩態(Meta-stable)非晶質銅錫界面層會進一步於長時間室溫電遷移(81 h)後轉換成結晶態高溫相Cu6Sn5介金屬化合物作為一個相對穩定的銅/錫材料反應生成物。除了介金屬化合物生成外,本研究亦於銅/錫界面觀察到一特殊再結晶(Recrystallization)行為,本研究認為此再結晶行為是除了生成介金屬化合物外另一種發生於介穩態非晶質界面層的應力釋放(Stress relaxation)機制,且再結晶錫的界面層則被視為另一種室溫電遷移下穩定的銅/錫材料反應生成物。室溫電遷移除了對銅/錫界面產生材料反應行為外,亦對錫基地相產生銅過飽和(Supersaturation)現象,此現象使錫基地相成為一介穩態組織,本研究發現過飽和的程度受電遷移時間與試片位置(陰陽極)影響。本研究所觀察到的非晶質銅錫界面層生成、高溫相Cu6Sn5介金屬化合物生成、銅/錫界面再結晶、以及銅在錫中的過飽和現象均由電遷移的非熱效應所產生,而非電遷移伴隨的焦耳熱效應所致,本研究詳細探討與說明這些電遷移的基礎非熱效應與其機制中被。
The aim of the present study is to clarify the fundamental athermal effects of electromigration on the material interaction behaviors in a Cu/Sn/Cu interconnect. The electromigration experiment was conducted under a room temperature ambient condition, approximately at 29.3oC, through a thin film interconnect structure design to best reveal the athermal behaviors. In addition, an intermetallic compound (IMC)-free metallic interface was fabricated using a magneton sputtering technique to visualize the atomic-scale Cu/Sn interaction behavior. The material interaction behaviors under room temperature electromigration were investigated using a spherical aberration corrected scanning transmission electron microscope (Cs-corrected STEM).
The early stage room temperature electromigration at the IMC-free Cu/Sn interface within 1 h was found to trigger the Cu/Sn interaction and formed an amorphous CuSn interphase embedded with nano-scale Cu crystalline cells. This amorphous interphase was derived from the original interfacial distortion zone across the as-annealed Cu/Sn interface. The meta-stable amorphous CuSn interphase will further transform into a crystalline high-temperature η-Cu6Sn5 IMC as a relatively stable material reaction product under a long-term room temperature electromigration for up to 81 h. Besides the IMC formation, a particular athermal recrystallization behavior was found at the Cu/Sn interface and was proposed to be another stress relaxation mechanism that may occur within the meta-stable amorphous interphase to relief the accumulated high strain energy. The recrystallized Sn interphase is considered as another stable material reaction product formed under room temperature electromigration. The room temperature electromigration was also found to result in the accumulation of Cu atoms in the Sn matrix and thus the formation of a meta-stable Cu-in-Sn solid-solution, revealing the occurrence of non-equilibrium supersaturation behavior. The extent of supersaturation in the metal matrix was controlled by electromigration periods and geometrical (cathode/anode side) parameters. The formation of the meta-stable amorphous CuSn interphase, high-temperature η-Cu6Sn5 IMC, recrystallized Sn interphase, as well as the occurrence of the non-equilibrium supersaturation behavior resulted from the athermal behavior induced by electromigration, rather than the thermal Joule heating effect. The fundamental athermal behaviors induced by electromigration were established in the present study, and their governing mechanisms were also disclosed.
Table of Contents
中文摘要 I
Abstract II
Acknowledgements III
Table of Contents IV
List of Figures VI
List of Tables XIV
Chapter 1 Introduction 1
1.1 Solder interconnects in microelectronic packaging 1
1.2 Cu/Sn interaction behavior during liquid-state soldering reaction 3
1.2.1 IMC formation and growth 3
1.2.2 Early stage interdiffusion and IMC nucleation 6
1.3 Material interaction behavior induced by electromigration 9
1.3.1 In bulk metals 11
1.3.2 At metallic interfaces 18
1.4 Research motivation and purpose 24
Chapter 2 Experimental procedures 25
2.1 Experimental design 25
2.2 Cu/Sn/Cu interconnect fabrication 27
2.3 Room temperature electromigration experiment 32
2.4 STEM analyses of the Cu/Sn/Cu interconnect 34
Chapter 3 Results and discussion 35
3.1 The formation of amorphous CuSn interphase at an IMC-free Cu/Sn interface during early stage room temperature electromigration: A meta-stable material state 35
3.1.1 The as-annealed Cu/Sn interface: A thermal benchmark 37
3.1.2 The meta-stable amorphous interphase formed during early stage room temperature electromigration 44
3.1.3 The mechanism of the meta-stable amorphous interphase formation 69
3.1.4 Summary 73
3.2 The formation of high-temperature Cu6Sn5 IMC at the Cu/Sn interface during room temperature electromigration: A stable material state 74
3.2.1 The high-temperature IMC formed during room temperature electromigration 74
3.2.2 The mechanism of the high-temperature IMC formation 89
3.2.3 Summary 91
3.3 The formation of recrystallized Sn interphase at the Cu/Sn interface during room temperature electromigration: A stable material state 93
3.3.1 The recrystallized interphase formed during room temperature electromigration 93
3.3.2 The mechanism of the recrystallized interphase formation 101
3.3.3 Summary 104
3.4 The non-equilibrium supersaturation behavior in the Cu/Sn/Cu interconnect induced by room temperature electromigration 105
3.4.1 The Cu concentration in the Sn matrix of the as-annealed Cu/Sn/Cu interconnect: A thermal benchmark 105
3.4.2 The non-equilibrium supersaturation behavior induced by room temperature electromigration 106
3.4.3 The mechanism of the non-equilibrium supersaturation behavior 116
3.4.4 Summary 124
Chapter 4 Conclusions 125
References 129
Lists of Publications 139
[1]W.W. Lee, L.T. Nguyen, G.S. Selvaduray, Solder joint fatigue models: review and applicability to chip scale packages, Microelectron. Reliab. 40 (2000) 231-244.
[2]M. Abtew and G. Selvaduray, Lead-free solders in microelectronics, Mater. Sci. Eng. R 27 (2000) 95-141.
[3]J. Glazer, Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: A review, J. Electron. Mater. 23 (1994) 693-700.
[4]K.N. Tu, Reliability challenges in 3D IC packaging technology, Microelectron. Reliab. 51 (2011) 517-523.
[5]J.H. Lau, Evolution, challenge, and outlook of TSV, 3D IC integration and 3d silicon integration, International Symposium on Advanced Packaging Materials (APM) (2011) 462-488.
[6]K.N. Tu, H.Y. Hsiao, C. Chen, Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy, Microelectron. Reliab. 53 (2013) 2-6.
[7]H. Huebner, S. Penka, B. Barchmann, M. Eigner, W. Gruber, M. Nobis, S. Janka, G. Kristen, M. Schneegans, Microcontacts with sub-30 μm pitch for 3D chip-on-chip integration, Microelectron. Eng. 83 (2006) 2155-2162.
[8]C.L. Liang, K.L. Lin, J.W. Peng, Microstructural evolution of intermetallic compounds in TCNCP Cu pillar solder joints, J. Electron. Mater. 45 (2016) 51-56.
[9]C.W. Chen, T.C. Chiu, Y.T. Chiu, C.W. Lee, K.L. Lin, Current induced segregation of intermetallic compounds in three-dimensional integrated circuit microbumps, Intermetallics 85 (2017) 117-124.
[10]K. Zeng and K.N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology, Mater. Sci. Eng. R 38 (2002) 55-105.
[11]K.N. Tu, A.M. Gusak, M. Li, Physics and materials challenges for lead-free solders, J. Appl. Phys. 93 (2003) 1335-1353.
[12]Y.C. Chan and D. Yang, Failure mechanisms of solder interconnects under current stressing in advanced electronic packages, Prog. Mater. Sci. 55 (2010) 428-475.
[13]J.H. Lau and Y.H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York, USA, 1997, Chapter 3.
[14]C.Y. Liu, C. Chen, A.K. Mal, K.N. Tu, Direct correlation between mechanical failure and metallurgical reaction in flip chip solder joints, J. Appl. Phys. 85 (1999) 3882-3886.
[15]S.K. Kang, W.K. Choi, M.J. Yim, D.Y. Shih, Studies of the mechanical and electrical properties of lead-free solder joints, J. Electron. Mater. 31 (2002) 1292-1303.
[16]K.N. Tu, Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions, Phys. Rev. B 49 (1994) 2030-2034.
[17]T. B. Massalski, Binary Alloy Phase Diagrams, Volume 1, ASM, Metal Park, Ohio, USA, 1986, p. 965.
[18]J.O.G. Parent, D.D.L. Chung, I.M. Bernstein, Effects of intermetallic formation at the interface between copper and lead-tin solder, J. Mater. Sci. 23 (1988) 2564-2572.
[19]H.K. Kim and K.N. Tu, Rate of consumption of Cu in soldering accompanied by ripening, Appl. Phys. Lett. 67 (1995) 2002-2004.
[20]S.K. Kang, R.S. Rai, S. Purushothaman, Interfacial reactions during soldering with lead-tin eutectic and lead(Pb)-free, tin-rich solders, J. Electron. Mater. 25 (1996) 1113-1120.
[21]S. Bader, W. Gust, H. Hieber, Rapid formation of intermetallic compounds by interdiffusion in the Cu-Sn and Ni-Sn systems, Acta Metall. Mater. 43 (1995) 329-337.
[22]R.A. Lord and A. Umantsev, Early stages of soldering reactions, J. Appl. Phys. 98 (2005) 063525.
[23]H.K. Kim, H.K. Liou, K.N. Tu, Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu, Appl. Phys. Lett. 66 (1995) 2337-2339.
[24]H.K. Kim, K.N. Tu, P.A. Totta, Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joints on Si wafers, Appl. Phys. Lett. 68 (1996) 2204-2206.
[25]M. Schaefer, R.A. Fournelle, J. Liang, Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control, J. Electron. Mater. 27 (1998) 1167-1176.
[26]J. Gorlich, G. Schmitz, K.N. Tu, On the mechanism of the binary Cu/Sn solder reaction, Appl. Phys. Lett. 86 (2005) 053106.
[27]D. Ma, W.D. Wang, S.K. Lahiri, Scallop formation and dissolution of Cu-Sn intermetallic compound during solder reflow, J. Appl. Phys. 91 (2002) 3312-3317.
[28]A.M. Guask and K.N. Tu, Kinetic theory of flux-driven ripening, Phys. Rev. B 66 (2002) 115403.
[29]C.H. Yu and K.L. Lin, The atomic-scale studies of the behavior of the crystal dissolution in a molten metal, Chem. Phys. Lett. 418 (2006) 433-436.
[30]K.L. Lin, Y.W. Lin, C.H. Yu, The interphases formed during the very early stage liquid solder/metal substrate interaction of the soldering process, JOM 64 (2012) 1184-1189.
[31]C.H. Yu and K.L. Lin, Early dissolution behavior of copper in a molten Sn-Zn-Ag solder, J. Mater. Res. 20 (2005) 666-671.
[32]C.H. Yu and K.L. Lin, Early stage soldering reaction and interfacial microstructure formed between molten Sn-Zn-Ag solder and Cu substrate, J. Mater. Res. 20 (2005) 1242-1249.
[33]C.C. Pan, C.H. Yu, K.L. Lin, The amorphous origin and the nucleation of intermetallic compounds formed at the interface during the soldering of Sn-3.0Ag-0.5Cu on a Cu substrate, Appl. Phys. Lett. 93 (2008) 061912.
[34]C.C. Panand K.L. Lin. The interfacial amorphous double layer and the homogeneous nucleation in reflow of a Sn-Zn solder on Cu substrate, J. Appl. Phys. 109 (2011) 103513.
[35]M. Tammaro, Investigation of the temperature dependence in Black’s equation using microscopic electromigration modeling, J. Appl. Phys. 86 (1999) 3612-3615.
[36]K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K.N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper, Science 321 (2008) 1066-1069.
[37]R. Zhu, Y. Jiang, L. Guan, H. Li, G. Tang, Difference in recrystallization between electropulsing-treated and furnace-treated NiTi alloy, J. Alloy. Compd. 658 (2016) 548-554.
[38]G. Hu, Y. Zhu, G. Tang, C. Shek, J. Liu, Effect of electropulsing on recrystallization and mechanical properties of silicon steel strips, J. Mater. Sci. Technol. 27 (2011) 1034-1038.
[39]I.A. Blech, Electromigration in thin aluminum films on titanium nitride, J. Appl. Phys. 47 (1976) 1203-1208.
[40]P.R. Besser, M.C. Madden, P.A. Flinn, In situ scanning electron microscopy observation of the dynamic behavior of electromigration voids in passivated aluminum lines, J. Appl. Phys. 72 (1992) 3792-3797.
[41]J.C. Doan, J.C. Bravman, P.A. Flinn, T. N. Marieb, The evolution of the resistance of aluminum interconnects during electromigration, Microelectron. Reliab. 40 (2000) 981-990.
[42]I.A. Blech, C. Herring, Stress generation by electromigration, Appl. Phys. Lett. 29 (1976) 131-133.
[43]F.Y. Ouyang, K. Chen, K.N. Tu, Y.S. Lai, Effect of current crowding on whisker growth at the anode in flip chip solder joints, Appl. Phys. Lett. 91 (2007) 231919.
[44]C.C. Wei, P.C. Liu, C. Chen, K.N. Tu, Electromigration-induced Pb and Sn whisker growth in SnPb solder stripes, J. Mater. Res. 23 (2008) 2017-2022.
[45]T.C. Chiu and K.L. Lin, The growth of Sn whiskers with dislocation inclusion upon electromigration through a Cu/Sn3.5Ag/Au solder joint, Scr. Mater. 60 (2009) 1121-1124.
[46]R. Delville, B. Malard, J. Pilch, P. Sittner, D. Schryvers, Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy, Acta Mater. 58 (2010) 4503-4515.
[47]D. Fabrègue, B. Mouawad, C.R. Hutchinson, Enhanced recovery and recrystallization of metals due to an applied current, Scr. Mater. 92 (2014) 3-6.
[48]M.J. Kim, K. Lee, K.H. Oh, I.S. Choi, H.H. Yu, S.T. Hong, H.N. Han, Electric current-induced annealing during uniaxial tension of aluminum alloy, Scr. Mater. 75 (2014) 58-61.
[49]R.F. Zhu, J.N Liu, G.Y. Tang, S.Q. Shi, M.W. Fu, Z.T.H. Tse, The improved superelasticity of NiTi alloy via electropulsing treatment for minutes, J. Alloy. Compd. 584 (2014) 225-231.
[50]Y. Liu, J. Fan, H. Zhang, W. Jin, H. Dong, B. Xu, Recrystallization and microstructure evolution of the rolled Mg-3Al-1Zn alloy strips under electropulsing treatment, J. Alloy. Compd. 622 (2015) 229-235.
[51]Z.S. Xu, Z.H. Lai, Y.X. Chen, Effect of electric current on the recrystallization behavior of cold worked α-Ti, Scr. Metall. 22 (1988) 187-190.
[52]J.W. Park, H.J. Jeong, S.W. Jin, M.J. Kim, K. Lee, J.J. Kim, S.T. Hong, H.N. Han, Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy, Mater. Charact. 133 (2017) 70-76.
[53]K. Huang, C. Cayron, R.E. Logé, The surprising influence of continuous alternating electric current on recrystallization behaviour of a cold-rolled Aluminium alloy, Mater. Charact. 129 (2017) 121-126.
[54]Y.T. Chiu, K.L. Lin, Y.S. Lai, Dissolution of Sn in a SnPb solder bump under current stressing, J. Appl. Phys. 111 (2012) 043517.
[55]Y.T. Chiu, C.H. Liu, K.L. Lin, Y.S. Lai, Supersaturation induced by current stressing, Scr. Mater. 65 (2011) 615-617.
[56]Y.T. Chiu, K.L. Lin, A.T. Wu, W.L. Jang, C.L. Dong, Y.S. Lai, Electrorecrystallization of metal alloy, J. Alloy. Compd. 549 (2013) 190-194.
[57]W.Y Chen, T.C. Chiu, K.L. Lin, Y.S. Lai, Electrorecrystallization of intermetallic compound in the Sn0.7Cu solder joint, Intermetallics 26 (2012) 40-43.
[58]W.Y. Chen, T.C. Chiu, K.L. Lin, A.T. Wu, W.L. Jang, C.L. Dong, H.Y. Lee, Anisotropic dissolution behavior of the second phase in SnCu solder alloys under current stress, Scr. Mater. 68 (2013) 317-320.
[59]T.C. Chiu, Y.T. Chiu, K.L. Lin, Electro-dissolution of the Bi second phase in Sn5Bi solder alloy, Mater. Lett. 160 (2015) 309-313.
[60]T.H. Wang, K.L. Lin, The dissolution and supersaturation of Zn in the Sn9Zn solder under current stressing, J. Electron. Mater. 45 (2016) 164-171.
[61]X. Xu, Y. Zhao, X. Wang, Y. Zhang, Y. Ning, Effect of rapid solid-solution induced by electropulsing on the microstructure and mechanical properties in 7075 Al alloy, Mater. Sci. Eng. A 654 (2016) 278-281.
[62]J. Zhao, J.E. Garay, U. Anselmi-Tamburini, Z.A. Munir, Directional electromigration-enhanced interdiffususion in the Cu-Ni system, J. Appl. Phys. 102 (2007) 114902.
[63]C.T. Lin, Y.C. Chuang, S.J. Wang, Current density dependence of electromigration-induced flip-chip Cu pad consumption, Appl. Phys. Lett. 89 (2006) 101906.
[64]C.Y. Liu, L. Ke, Y.C. Chuang, S.J. Wang, Study of electromigration-induced Cu consumption in the flip-chip Sn/Cu solder bumps, J. Appl. Phys. 100 (2006) 083702.
[65]J.F. Zhao, C. Unuvar, U. Anselmi-Tamburini, Z.A. Munir, Kinetics of current-enhanced dissolution of nickel in liquid aluminum, Acta Mater. 55 (2007) 5592-5600.
[66]B. Chao, S.H. Chae, X. Zhang, K.H. Lu, M. Ding, J. Im, P.S. Ho, Electromigration enhanced intermetallic growth and void formation in Pb-free solder joints, J. Appl. Phys. 100 (2006) 084909.
[67]C.Y. Liu, J.T. Chen, Y.C. Chuang, L. Ke, S.J. Wang, Electromigration-induced Kirkendall voids at the Cu/Cu3Sn interface in flip-chip Cu/Sn/Cu joints, Appl. Phys. Lett. 90 (2007) 112114.
[68]Y. Jung and J. Yu, Electromigration induced Kirkendall void growth in Sn-3.5Ag/Cu solder joints, J. Appl. Phys. 115 (2014) 083708.
[69]R. An, Y. Tia, R. Zhang, C. Wang, Electromigration-induced intermetallic growth and voids formation in symmetrical Cu/Sn/Cu and Cu/Intermetallic compounds (IMCs)/Cu joints, J. Mater. Sci. Mater. Electron. 26 (2015) 2674-2681.
[70]H. Gan and K.N. Tu, Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples, J. Appl. Phys. 97 (2005) 063514.
[71]M.O. Alam, B.Y. Wu, Y.C. Chan, K.N. Tu, High electric current density-induced interfacial reactions in micro ball grid array (μBGA) solder joints, Acta Mater. 54 (2006) 613-621.
[72]Y.D. Lu, X.Q. He, Y.F. En, X. Wang, Z.Q. Zhuang, Polarity effect of electromigration on intermetallic compound formation in SnPb solder joints, Acta Mater. 57 (2009) 2560-2566.
[73]N. Bertolino, J. Garay, U. Anselmi-Tamburini, Z.A. Munir, High-flux current effects in interfacial reactions in Au-A1 multilayers, Philos. Mag. B 82 (2002) 969-985.
[74]J.E. Garay, U. Anselmi-Tamburini, Z.A. Munir, Enhanced growth of intermetallic phases in the Ni-Ti system by current effects, Acta Mater. 51 (2003) 4487-4495.
[75]J.R Friedman, J.E. Garay, U. Anselmi-Tamburini, Z.A. Munir, Modified interfacial reactions in Ag-Zn multilayers under the influence of high DC currents, Intermetallics 12 (2004) 589-597.
[76]H. Ma, A. Kunwar, J. Sun, B. Guo, H. Ma, In situ study on the increase of intermetallic compound thickness at anode of molten tin due to electromigration of copper, Scr. Mater. 107 (2015) 88-91.
[77]H.T. Orchard and A.L. Greer, Electromigration effects on compound growth at interfaces, Appl. Phys. Lett. 86 (2005) 231906.
[78]L.D. Chen, M.L. Huang, S.M. Zhou, Effect of electromigration on intermetallic compound formation in line-type Cu/Sn/Cu interconnect, J. Alloy. Compd. 504 (2010) 535-541.
[79]J.H. Ke, H.Y. Chuang, W.L. Shih, C.R. Kao, Mechanism for serrated cathode dissolution in Cu/Sn/Cu interconnect under electron current stressing, Acta Mater. 60 (2012) 2082-2090.
[80]J.W. Nah, K.W. Paik, J.O. Suh, K.N. Tu, Mechanism of electromigration-induced failure in the 97Pb-3Sn and 37Pb-63Sn composite solder joints, J. Appl. Phys. 94 (2003) 7560-7566.
[81]M.H. Jeong, J.W. Kim, B.H. Kwak, Y.B. Park, Effects of annealing and current stressing on the intermetallic compounds growth kinetics of Cu/thin Sn/Cu bump, Microelectron. Eng. 89 (2012) 50-54.
[82]D. Chen, C.E. Ho, J.C. Kuo, Current stressing-induced growth of Cu3Sn in Cu/Sn/Cu solder joints, Mater. Lett. 65 (2011) 1276-1279.
[83]K.N. Tu, C.C. Yeh, C.Y. Liu, C. Chen, Effect of current crowding on vacancy diffusion and void formation in electromigration, Appl. Phys. Lett. 76 (2000) 988-990.
[84]K.N. Chiang, C.C. Lee, C.C. Lee, K.M. Chen, Current crowding-induced electromigration in SnAg3.0Cu0.5 microbumps, Appl. Phys. Lett. 88 (2006) 072102.
[85]E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, H. Balkan, Current-crowding-induced electromigration failure in flip chip solder joints, Appl. Phys. Lett. 80 (2002) 580-582.
[86]L. Zhang, S. Ou, J. Huang, K.N. Tu, S. Gee, L. Nguyen, Effect of current crowding on void propagation at the interface between intermetallic compound and solder in flip chip solder joints, Appl. Phys. Lett. 88 (2006) 012106.
[87]H. Wang, C. Bruynseraede, K. Maex, Impact of current crowding on electromigration-induced mass transport, Appl. Phys. Lett. 84 (2004) 517-519.
[88]H. Ye, C. Basaran, D. Hopkins, Thermomigration in Pb-Sn solder joints under joule heating during electric current stressing, Appl. Phys. Lett. 82 (2003) 1045-1047.
[89]J.W. Nah, J.O. Suh, K.N. Tu, Effect of current crowding and Joule heating on electromigration-induced failure in flip chip composite solder joints tested at room temperature, J. Appl. Phys. 98 (2005) 013715.
[90]S.W. Liang, S.H. Chiu, C. Chen, Effect of Al-trace degradation on Joule heating during electromigration in flip-chip solder joints, Appl. Phys. Lett. 90 (2007) 082103.
[91]K.N. Tu, Y. Liu, M. Li, Effect of Joule heating and current crowding on electromigration in mobile technology, Appl. Phys. Rev. 4 (2017) 011101.
[92]X. Gu and Y.C. Chan, Electromigration in line-type Cu/Sn-Bi/Cu solder joints, J. Electron. Mater. 37 (2008) 1721-1726.
[93]T.C. Huang, T.L. Yang, J.H. Ke, C.H. Hsueh, C.R. Kao, Effects of Sn grain orientation on substrate dissolution and intermetallic precipitation in solder joints under electron current stressing, Scr. Mater. 80 (2014) 37-40.
[94]L. Wang, S. Kitamura, T. Sonoda, K. Obata, S. Tanase, T. Sakai, Electroplated Sn-Zn alloy electrode for Li secondary batteries, J. Electrochem. Soc. 150 (2003) A1346-A1350.
[95]Y. Qin, G.D. Wilcox, C. Liu, Electrodeposition and characterisation of Sn-Ag-Cu solder alloys for flip-chip interconnection, Electrochim. Acta 56 (2010) 183-192.
[96]W.M. Tang, A.Q. He, Q. Liu, D.G. Ivey, Solid state interfacial reactions in electrodeposited Cu/Sn couples, Trans. Nonferrous Met. Soc. China 20 (2010) 90-96.
[97]K.R. Williams, K. Gupta, M. Wasilik, Etch rates for micromachining processing-Part II, J. Microelectromech. Syst. 12 (2003) 761-778.
[98]R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, Ohio, USA, 1973, p. 477.
[99]N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, H. Tawara, Energy dependence of the ion-induced sputtering yields of monatomic solids, Atom. Data Nucl. Data Tables 31 (1984) 1-80.
[100]Y. Yamamura and H. Tawara, Energy dependence of the ion-induced sputtering yields from monatomic solids at normal incidence, Atom. Data Nucl. Data Tables 62 (1996) 149-253.
[101]K.N. Tu, Interdiffusion and reaction in bimetallic Cu-Sn thin films, Acta Metall. 21 (1973) 347-354.
[102]K.N. Tu and R.D. Thompson, Kinetics of interfacial reaction in bimetallic Cu-Sn thin films, Acta Metall. 30 (1982) 947-952.
[103]K.N. Tu, Cu/Sn interfacial reactions: thin-film case versus bulk case, Mater. Chem. Phys. 46 (1996) 217-223.
[104]M.L. Huang and F. Yang, Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate, Sci Rep 4 (2014) 7117.
[105]H. Liu, K. Wang, K.E. Aasmundtveit, N. Hoivik, Intermetallic compound formation mechanisms for Cu-Sn solid-liquid interdiffusion bonding, J. Electron. Mater. 41 (2012) 2453-2462.
[106]Y.H. Liao, C.L. Liang, K.L. Lin, A.T. Wu, High dislocation density of tin induced by electric current, AIP Adv. 5 (2015) 127210.
[107]J.Y. He, K.L. Lin, A.T. Wu, The diminishing of crystal structure of Sn9Zn alloy due to electrical current stressing, J. Alloy. Compd. 619 (2015) 372-377.
[108]H.C. Huang, K.L. Lin, A.T. Wu, Disruption of crystalline structure of Sn3.5Ag induced by electric current, J. Appl. Phys. 119 (2016) 115102.
[109]C.L. Liang, S.W. Lee, K.L. Lin, The mechanism of an increase in electrical resistance in Al thin film induced by current stressing, Thin Solid Films 636 (2017) 164-170.
[110]P.C. Liang, K.L. Lin, Non-deformation recrystallization of metal with electric current stressing, J. Alloy. Compd. 722 (2017) 690-697.
[111]J.E. Garay, S.C. Glade, U. Anselmi-Tamburini, P. Asoka-Kumar, Z.A. Munir, Electric current enhanced defect mobility in Ni3Ti intermetallics, Appl. Phys. Lett. 85 (2004) 573-575.
[112]J.R. Lloyd, Electromigration in integrated circuit conductors, J. Phys. D-Appl. Phys. 32 (1999) R109-R118.
[113]S.W. Chen, C.M. Chen, W.C. Liu, Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions, J. Electron. Mater. 27 (1998) 1193-1199.
[114]J. Shen, Z.M. Cao, D.J. Zhai, M.L. Zhao, P.P. He, Effect of isothermal aging and low density current on intermetallic compound growth rate in lead-free solder interface, Microelectron. Reliab. 54 (2014) 252-258.
[115]L.H. Xu, J.H. L. Pang, K.N. Tu, Effect of electromigration-induced back stress gradient on nanoindentation marker movement in SnAgCu solder joints, Appl. Phys. Lett. 89 (2006) 221909.
[116]D. Li, P. Franke, S. Fürtauer, D. Cupid, H. Flandorfer, The Cu-Sn phase diagram part II: New thermodynamic assessment, Intermetallics 34 (2013) 148-158.
[117]G. Ghosh and M. Asta, Phase stability, phase transformations, and elastic properties of Cu6Sn5: Ab initio calculations and experimental results, J. Mater. Res. 20 (2005) 3102-3117.
[118]T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Mater. Sci. Eng. R 49 (2005) 1-60.
[119]G. Zeng, S.D. McDonald, J.J. Read, Q. Gu, K. Nogita, Kinetics of the polymorphic phase transformation of Cu6Sn5, Acta Mater. 69 (2014) 135-148.
[120]K. Nogita, C.M. Gourlay, S.D. McDonald, Y.Q. Wu, J. Read, Q.F. Gu, Kinetics of the η-η' transformation in Cu6Sn5, Scr. Mater. 65 (2001) 922-925.
[121]C.Y. Liu, Y.C. Hsu, Y.J. Hu, T.S. Huang, C.T. Lu, A.T. Wu, Back-Fill Sn flux against current-stressing at cathode micro Cu/Sn interface, ECS Solid State Lett. 3 (2014) 17-19.
[122]C.K. Lin, C.M. Liu, C. Chen, Formation of Sn-rich phases via the decomposition of Cu6Sn5 compounds during current stressing, Mater. Lett. 124 (2014) 261-263.
[123]A.T. Wu, K.N. Tu, J.R. Lloyd, N. Tamura, B.C. Valek, C.R. Kao, Electromigration-induced microstructure evolution in tin studied by synchrotron x-ray microdiffraction, Appl. Phys. Lett. 85 (2004) 2490-2492.
[124]A.T. Wu, A.M. Gusak, K.N. Tu, C.R. Kao, Electromigration-induced grain rotation in anisotropic conducting beta tin, Appl. Phys. Lett. 86 (2005) 241902.
[125]A.T. Wu and Y.C. Hsieh, Direct observation and kinetic analysis of grain rotation in anisotropic tin under electromigration, Appl. Phys. Lett. 92 (2008) 121921.
[126]X. Xu, Y. Zhao, B. Ma, J. Zhang, M. Zhang, Rapid grain refinement of 2024 Al alloy through recrystallization induced by electropulsing, Mater. Sci. Eng. A 612 (2014) 223-226.
[127]C.L. Liang and K.L. Lin, The microstructure and property variations of metals induced by electric current treatment: A review, Mater. Charact. 145 (2018) 545-555.
[128]Y. Jing, G. Sheng, G. Zhao, Influence of rapid solidification on microstructure, thermodynamic characteristic and the mechanical properties of solder/Cu joints of Sn-9Zn alloy, Mater. Des. 52 (2013) 92-97.
[129]W. Peng and M.E. Marques, Effect of thermal aging on drop performance of chip scale packages with SnAgCu solder joints on Cu pads, J. Electron. Mater. 36 (2007) 1679-1690.
[130]G. Zhao, G. Sheng, J. Luo, X. Yuan, Solder characteristics of a rapidly solidified Sn-9Zn-0.1Cr alloy and mechanical properties of Cu/Solder/Cu joints, J. Electron. Mater. 41 (2012) 2100-2106.
[131]J.W. Yoon, S.B. Jung, Investigation of interfacial reactions between Sn-5Bi solder and Cu substrate, J. Alloy. Compd. 359 (2003) 202-208.
[132]B.F. Dyson, T.R. Anthony, D. Turnbull, Interstitial diffusion of copper in tin, J. Appl. Phys. 38 (1967) 3408.
[133]J.H. Ke, T.L. Yang, Y.S. Lai, C.R. Kao, Analysis and experimental verification of the competing degradation mechanisms for solder joints under electron current stressing, Acta Mater. 59 (2011) 2462-2468.
[134]K. Lee, K.S. Kim, Y. Tsukada, K. Suganuma, K. Yamanaka, S. Kuritani, M. Ueshima, Influence of crystallographic orientation of Sn-Ag-Cu on electromigration in flip-chip joint, Microelectron. Reliab. 51 (2011) 2290-2297.
[135]K.N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects, J. Appl. Phys. 94 (2003) 5451-5473.
[136]L.H. Ahrens, The use of ionization potentials Part 1. Ionic radii of the elements, Geochim. Cosmochim. Acta 2 (1952) 155-169.
[137]Y. Yang, Y.Z. Li, H. Lu, C. Yu, J.M. Chen, Interdiffusion at the interface between Sn-based solders and Cu substrate, Microelectron. Reliab. 53 (2013) 327-333.
[138]Y. Yuan, Y. Guan, D. Li, N. Moelans, Investigation of diffusion behavior in Cu-Sn solid state diffusion couples, J. Alloy. Compd. 661 (2016) 282-293.
[139]B. Chao, S.H. Chae, X.F. Zhang, K.H. Lu, J. Im, P.S. Ho, Investigation of diffusion and electromigration parameters for Cu-Sn intermetallic compounds in Pb-free solders using simulated annealing, Acta Mater. 55 (2007) 2805-2814.
[140]Y.T. Huang, H.H. Hsu, A.T. Wu, Electromigration-induced back stress in critical solder length for three-dimensional integrated circuits, J. Appl. Phys. 115 (2014) 034904. 
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊