跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許知克
研究生(外文):Hizkia AlphaDewanto
論文名稱:CALPHAD熱力學輔助分析合金元素對SUJ2軸承鋼凝固與偏析行為之影響
論文名稱(外文):CALPHAD Assisted Analyses of Alloying Elements on Solidification and Segregation of the SUJ2 Bearing Steels
指導教授:林士剛
指導教授(外文):Shih-kang Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:尖端材料國際碩士學位學程
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:94
中文關鍵詞:中心偏析雪明碳鐵型碳化物平衡分配係數高碳鉻軸承鋼凝固過程
外文關鍵詞:center segregationcementite-type carbideequilibrium partition coefficientshigh carbon chromium bearing steelsolidification process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高碳鉻軸承鋼SUJ2在製造過程中,由於鋼鐵的非平衡凝固造成碳化物帶的產生,對產品品質造成負面影響。因此,本研究使用熱力學計算方法 (Calculation of Phase Diagram, CALPHAD) 搭配高週波感應高溫熔煉實驗,探討碳化物帶的生成機制與消除碳化物帶的方法。
利用熱力學計算軟體模擬鋼鐵非平衡凝固,結果顯示鉻的偏析加強了雪明碳鐵的生成,其原因為鉻在雪明碳鐵中的溶解度大於沃斯田鐵和肥粒鐵,而鉻在鋼鐵中為置換型原子,故熱處理很難有效減緩鉻偏析的情況,因此,本研究計算並分析不同元素的添加對於鉻偏析的影響,並從中挑選出鋯、鈦、鉭三種元素做更進一步的探討,計算結果顯示鋯和鉭的添加可以降低鉻在鋼液中的最大溶解度,而鉭和鈦的添加可以降低凝固過程中雪明碳鐵的生成量,而實驗觀察結果顯示有摻雜鋯的SUJ2軸承鋼可以最有效地降低鋯的偏析與碳化物的生成,此外,根據EPMA區域掃描分析得出結論,在連續鑄造中,將SUJ2軸承鋼添加可降低鉻在鋼液中的最大溶解度的元素,對於抑制雪明碳鐵帶具有顯著的影響。
In the mass production of steel, in the case of high-carbon and high-chromium steel, SUJ2, carbide band will form as a result of non-equilibrium cooling during steel production. Using combined investigation of CALPHAD (phase diagram calculation) and experiments, the cause of carbide band formation is analyzed and the solution of the problem is investigated. By CALPHAD analysis, mainly using non-equilibrium cooling simulations, it is found that chromium (Cr) segregation strengthen cementite presence in the steel, since chromium is dissolved in cementite in larger concentration than in austenite or ferrite. Combined with Cr status as substitutional atom in steel, heat treatment is almost useless to reduce Cr segregation and therefore eliminate carbide presence, as confirmed by the composition (EPMA) mapping of as-rolled SUJ2 specimen. By CALPHAD calculation, several common steel alloying elements are calculated, and from calculation result zirconium, titanium, and tantalum are chosen for further investigation. Zirconium and tantalum reduce maximum chromium concentration in liquid steel, meanwhile tantalum and titanium reduce amount of cementite formed during solidification. After experimental observations, it is found that the zirconium doped SUJ2 specimen yield best reduction of chromium segregation and carbide presence. From EPMA mapping, it is concluded that addition of element that reduce maximum chromium in liquid phase will have a profound effect on cementite band reduction in SUJ2 production through continuous casting.
ABSTRACT ii
ACKNOWLEDGEMENTS iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES 1
CHAPTER 1. INTRODUCTION 2
1.1. Introduction 2
1.2. Goals 3
CHAPTER 2. LITERATURE REVIEW 4
2.1 Phase diagrams and phase equilibria 4
2.1.1 Gibbs’ Phase Rule 4
2.1.2 Lever rule 6
2.1.3 Metastable Phase Diagram 8
2.2 SUJ2 Bearing Steel 10
2.3 Industrial Production Method of SUJ2 Steel 12
2.4 Segregation Problem in Steel 13
2.5 Influence of Steel Alloyings 24
2.6 Calculation of Phase Diagram (CALPHAD) 27
2.6.1. Scheil Solidification 28
2.7. Recent Developments 29
CHAPTER 3. EXPERIMENTAL PROCEDURES 32
3.1. Schematic Diagram of Research 32
3.2. Calculation of Phase Diagram (CALPHAD) 33
3.2 Experimental Observation 36
3.3. Experimental apparatus 39
3.2.1 Electron Probe Micro Analysis (EPMA) 39
3.2.2. Induction Furnace 40
3.2.3. Box Furnace 41
CHAPTER 4. RESULTS AND DISCUSSION 43
4.1 Liquidus Projection of the Fe-Cr-C Ternary System and the Superimposed Solidification Path of SUJ2 Steels 43
4.2 CALPHAD-type Thermodynamic Analyses on the Alloying Effects 47
4.3. Experimental Results 70
4.3 Discussion 83
CHAPTER 5. CONCLUSIONS 89
CHAPTER 6 REFERENCES 90
[1] S.L. Liang, Ideal Spheroid Annealing Technique for Bearing Steel, China Steel Company.
[2] F. N. Rhines, Phase Diagrams in Metallurgy. New York, United States: McGraw-Hill Book company, Inc., 1956.
[3] J. W. Gibbs, On the Equilibrium of Heterogeneous Substances, Transactions of the Connecticut Academy of Arts and Sciences, 1875-1878.
[4] W. D. Callister, Materials Science and Engineering: An Introduction, 7 ed.: John Wiley & Sons, Inc., 2006.
[5] Retrieved from: http://www.1111metallurgy.nist.gov
[6] Retrieved from: https://www.tf.uni-kiel.de/matwis/amat/iss/index.html
[7] H. Fredriksson and U. Akerlind, Materials Processing during Casting: John Wiley & Sons, Ltd, 2006.
[8] Production flow chart. Available: http://www.csc.com.tw/csc_e/pd/prs.htm
[9] J.J. Burton, E.S. Machlin, Prediction of Segregation to Alloy Surfaces from Bulk Phase Diagrams, Physical Review Letters, vol. 37, no. 21, November 1976.
[10] J.S. Kirkaldy, J. von Destinon-Forstmann, and R.J. Brigham: Can. Met.
Q., 1962, vol. 1, pp. 59-81.
[11] M.C. Flemings: Solidification Processing, McGraw-Hill, Inc., New York, NY, 1974.
[12] M.C. Flemings and G.E. Nereo: Trans. TMS-AIME, 1967, vol. 239,
pp. 1449-61.
[13] R.M. Fisher, G.R. Speich, L.J. Cuddy, and H. Hu: Proc. Darken Conf. “Physical Chemistry in Metallurgy, US Steel, Monroeville, PA, 1976, pp. 463-88.
[14] A. Suzuki, T. Suzuki, Y. Nagaoka, and Y. Iawata: J. Jpn. Inst. Met., 1968, vol. 32, pp. 1301-05.
[15] E. Essadiqi, L.E. Collins, M.T. Shehata, and L.K. Chiang: 2nd Canada–Japan Symp. on Modern Steelmaking and Casting Techniques, J.J. Jonas, J.D. Boyd, and N. Sano, eds., Canadian Institute of Mining, Metallurgy, and Petroleum, Montreal, 1994, pp. 251-64.
[16] W.C. Leslie: Trans. ISS, 1983, vol. 2, pp. 1-24.
[17] J. Dyck, R.H. Frost, D.K. Matlock, G. Krauss, W.E. Heitmann, and D. Bhatta-charya: Mechanical Working and Steel Processing Proceedings, ISS, Warrendale, PA, 1988, pp. 83-94.
[18] G. Krauss, “Solidification, Segregation, and Banding in Carbon and Alloy Steels, Metallurgical and Materials Transactions B, vol. 34B, December 2003, pp. 781-792
[19] J. Black: Master’s Thesis, Colorado School of Mines, Golden, CO, 1998.
[20] W.C. Leslie: The Physical Metallurgy of Steels, Tech Books, New York, NY, 1981
[21] G. Krauss: Steels: Heat Treatment and Processing Principles, ASM INTERNATIONAL, Materials Park, OH, 1990.
[22] R.M. Fisher, G.R. Speich, L.J. Cuddy, and H. Hu: Proc. Darken Conf. Physical Chemistry in Metallurgy, US Steel, Monroeville, PA, 1976, pp. 463-88.
[23] S.W. Thompson and P.R. Howell: Mater. Sci. Technol., 1992, vol. 8, pp. 777-84.
[24] J.S. Kirkaldy, R.J. Brigham, H.A. Domian, and R.G. Ward: Can. Metall. Q., 1963, vol. 2, pp. 233-41.
[25] Y. Sawada, R.P. Foley, S.W. Thompson, and G. Krauss: 35th MWSP Conf. Proc., ISS-AIME, Warrendale, PA, 1994, vol. XXXI, pp. 263-86.
[26] J. Dyck, R.H. Frost, D.K. Matlock, G. Krauss, W.E. Heitmann, and D. Bhattacharya: Mechanical Working and Steel Processing Proceedings, ISS, Warrendale, PA, 1988, pp. 83-94.
[27] A.W. Cramb: Casting of Near Net Shape Products, TMS, Warrendale, PA, 1988, pp. 673-82.
[28] L.E. Samuels: Light Microscopy of Carbon Steels, ASM INTERNATIONAL, Materials Park, OH, 1999, pp. 110-24.
[29] P.G. Bastien: J. Iron Steel Inst., 1957, vol. 187, pp. 281-91.
[30] C.F. Jatczak, D.J. Girardi, and E.S. Rowland: Trans. ASM, 1956, vol. 48, pp. 279-303.
[31] E.T. Turkdogan and R.A. Grange: J. Iron Steel Inst., 1970, vol. 20B, pp. 482-94.
[32] R. Grossterlinden, R. Kawalla, U. Lotter, and H. Pircher: Steel Res., 1992, vol. 63, pp. 331-36.
[33] S.W. Thompson and P.R. Howell: Mater. Sci. Technol., 1992, vol. 8, pp. 777-84.
[34] J.D. Verhoeven: J. Mater. Eng. Performance, 2000, vol. 9, pp. 286-95.
[35] Maalekian, Mehran: The Effects of Alloying Elements on Steels (I), 2007, Christian Doppler Laboratory for Early Stages of Precipitation, Technische Universität Graz.
[36] Bain, E.C., Alloying Elements in Steels, ASM, Cleveland, Ohio, USA (1939).
[37] Totten, G.E., Howes, M.A.H, Steel Heat Treatment Handbook, Marcel Dekker, Inc., USA (1997).
[38] Z.-K. Liu, First-Principles Calculations and CALPHAD Modeling of Thermodynamics, Journal of Phase Equilibria and Diffusion, vol. 30, pp. 517-534, 2009.
[39] JIS G4805: High carbon chromium bearing steels, 1999, p1739-1740.
[40] Lin Guo-Sheng et.al., Improvement of High Quality Bearing Steel Production, Session C7, pp. 334-335.
[41] Kim K.H., Park S.D., Bae C.M., Met. Mater. Int., Vol. 20, No. 2 (2014), pp. 207-213
[42] E. Eriir et. al., 2017, IOP Conf. Ser.: Mater. Sci. Eng., 179, 012021.
[43] Matthias et. al.: 9th ECCC European Continuous Casting Conference – ECCC 2017 Proceedings, ASMET, Vienna, Austria, 2017, pp 48-56.
[44] M. Fornaiser et.al.: 9th ECCC European Continuous Casting Conference – ECCC 2017 Proceedings, ASMET, Vienna, Austria, 2017, pp 209-218.
[45] Lee S.M., Moon S.W., Lee S.H.: 9th ECCC European Continuous Casting Conference – ECCC 2017 Proceedings, ASMET, Vienna, Austria, 2017, pp 237-247.
[46] K. Herzong et.al.: 9th ECCC European Continuous Casting Conference – ECCC 2017 Proceedings, ASMET, Vienna, Austria, 2017, pp 413 – 422.
[47] H.D. Brody and M. C. Flemings: Trans. TMS-AIME 236 (1966) 615-624.
[48] T. W. Clyne and W. Kurz: Metall. Trans. A 12A (1981) 965-971.
[49] Reed, S. J. B., 2005, Electron Microprobe Analysis and Scanning Electron Microscopy in Geology (2nd Ed.), Cambridge University Press.
[50] Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D.C., Lyman, C. E., Lifshin, E., Sawyer, L. C., and Michael, J.R., 2003, Scanning Electron Microscopy and X-Ray Microanalysis: A text for biologists, materials scientists, and geologists (3rd Ed.), Plenum Press
[51] Greenwood, Norman N., 1997, Chemistry of Elements (2nd Ed.), Butterworth-Heinemann.
[52] S.G. Lin, CALPHAD-assisted Morphology Control of Manganese Sulfide Inclusions in Free-Cutting Steels, National Cheng Kung University, Tainan, Taiwan, 2016.
[53] Porter, D. A., and Easterling, K. E., Phase Transformations in Metals and Alloys (2nd Edition), Chapman & Hall, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top