|
[1]Ü. Özgür et al., A comprehensive review of ZnO materials and devices, JOURNAL OF APPLIED PHYSICS, vol. 98, 2005. [2]S. A. Wilson et al., New materials for micro-scale sensors and actuators, Materials Science and Engineering: R: Reports, vol. 56, no. 1-6, pp. 1-129, 2007. [3]Z. Shao and X. Li, Direct-current piezoelectric nanogenerator based on p-Si/n-ZnO heterojunction, Physica E: Low-dimensional Systems and Nanostructures, vol. 77, pp. 44-47, 2016. [4]C. Y. Liu, H. Y. Xu, Y. Sun, J. G. Ma, and Y. C. Liu, ZnO ultraviolet random laser diode on metal copper substrate, Opt Express, vol. 22, no. 14, pp. 16731-7, Jul 14 2014. [5]B. Xu, J.-L. Zhao, J.-M. Zhang, X.-W. Sun, F.-W. Zhuge, and X.-M. Li, ZnO Nano-arrays on High Power Blue LED Chip for Enhanced Light Extraction Efficiency, Journal of Inorganic Materials, vol. 27, no. 7, pp. 716-720, 2012. [6]N. AL-HARDAN, M. J. ABDULLAH, A. A. AZIZ, and H. AHMAD, ZnO Gas Sensor for Testing Vinegar Acid Concentrations, Sains Malaysiana, vol. 40, no. 1, pp. 67-70, 2011. [7]K. Higaki et al., High Power Durability of Diamond Surface Acoustic Wave Filter IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 44, no. 6, pp. 1395-1400, 1997. [8]X. L. Zhang, K. S. Hui, and K. N. Hui, High photo-responsivity ZnO UV detectors fabricated by RF reactive sputtering, Materials Research Bulletin, vol. 48, no. 2, pp. 305-309, 2013. [9]Q. Wang, D. Yang, Y. Qiu, X. Zhang, W. Song, and L. Hu, Two-dimensional ZnO nanosheets grown on flexible ITO-PET substrate for self-powered energy-harvesting nanodevices, Applied Physics Letters, vol. 112, no. 6, p. 063906, 2018. [10]M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering, Adv Mater, vol. 21, no. 5, pp. 593-6, Feb 2 2009. [11]Y. Y. Chen, C. H. Wang, G. S. Chen, Y. C. Li, and C.-P. Liu, Self-powered n-Mg x Zn 1-x O/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect, Nano Energy, vol. 11, pp. 533-539, 2015. [12]J. Wu et al., Small band gap bowing in In1−xGaxN alloys, Applied Physics Letters, vol. 80, no. 25, pp. 4741-4743, 2002. [13]W. F. Yang, B. Liu, R. Chen, L. M. Wong, S. J. Wang, and H. D. Sun, Pulsed laser deposition of high-quality ZnCdO epilayers and ZnCdO/ZnO single quantum well on sapphire substrate, Applied Physics Letters, vol. 97, no. 6, p. 061911, 2010. [14]V. Bhosle, A. Tiwari, and J. Narayan, Electrical properties of transparent and conducting Ga doped ZnO, Journal of Applied Physics, vol. 100, no. 3, p. 033713, 2006. [15]J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, p-Type ZnO materials: Theory, growth, properties and devices, Progress in Materials Science, vol. 58, no. 6, pp. 874-985, 2013. [16]Y. C. Yang, C. Song, F. Zeng, F. Pan, Y. N. Xie, and T. Liu, V5+ ionic displacement induced ferroelectric behavior in V-doped ZnO films, Applied Physics Letters, vol. 90, no. 24, p. 242903, 2007. [17]S. Goel, N. Sinha, H. Yadav, A. J. Joseph, and B. Kumar, 2D porous nanosheets of Y-doped ZnO for dielectric and ferroelectric applications, Journal of Materials Science: Materials in Electronics, vol. 29, no. 16, pp. 13818-13832, 2018. [18]P. Sigmund, Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets, Physical Review, vol. 184, no. 2, pp. 383-416, 1969. [19]D. E. Harrison, Theory of the Sputtering Process, Physical Review, vol. 102, no. 6, pp. 1473-1480, 1956. [20]K. H. Kingdon and I. Langmuir, The Removal of Thorium from the Surface of a Thoriated Tungsten Filament by Positive Ion Bombardment, Physical Review, vol. 22, no. 2, pp. 148-160, 1923. [21]E. B. Henschke, New Collision Theory of Cathode Sputtering of Metals at Low Ion Energies, Physical Review, vol. 106, no. 4, pp. 737-753, 1957. [22]M. Ohring, 2nd, Ed. Materials Science of Thin Films. Academic Press, 2001. [23]T. Kawaharamura, Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow, Japanese Journal of Applied Physics, vol. 53, no. 5S1, p. 05FF08, 2014. [24]S. Hussain et al., Synthesis and characterization of large-area and continuous MoS2 atomic layers by RF magnetron sputtering, Nanoscale, vol. 8, no. 7, pp. 4340-7, Feb 21 2016. [25]R. Bosco, J. Van Den Beucken, S. Leeuwenburgh, and J. Jansen, Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces, Coatings, vol. 2, no. 3, pp. 95-119, 2012. [26]P. J. Kelly and R. D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, vol. 56, pp. 159-172, 2000. [27]C. Pan et al., Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging, Adv Mater, vol. 28, no. 8, pp. 1535-52, Feb 24 2016. [28]A. Janotti and C. G. Van de Walle, Fundamentals of zinc oxide as a semiconductor, Reports on Progress in Physics, vol. 72, no. 12, p. 126501, 2009. [29]A. Janotti and C. G. Van de Walle, Native point defects in ZnO, Physical Review B, vol. 76, no. 16, 2007. [30]S. Brahma, J. Khatei, S. Sunkara, K. Y. Lo, and S. A. Shivashankar, Self-assembled ZnO nanoparticles on ZnO microsheet: ultrafast synthesis and tunable photoluminescence properties, Journal of Physics D: Applied Physics, vol. 48, no. 22, p. 225305, 2015. [31]Y. Liu, S. Niu, Q. Yang, B. D. Klein, Y. S. Zhou, and Z. L. Wang, Theoretical study of piezo-phototronic nano-LEDs, Adv Mater, vol. 26, no. 42, pp. 7209-16, Nov 12 2014. [32]A. Onodera, Novel Ferroelectricity in II-VI Semiconductor ZnO, Ferroelectrics, vol. 267, no. 1, pp. 131-137, 2010. [33]H. IWANAGA, A. KUNISHIGE, and S. TAKEUCHI, Anisotropic thermal expansion in wurtzite-type crystals, JOURNAL OF MATERIALS SCIENCE, vol. 35, pp. 2451-2454, 2000. [34]M.-H. Zhao, Z.-L. Wang, and S. X. Mao, Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope, Nano Letters, vol. 4, no. 4, pp. 587-590, 2004. [35]J. A. Christman, R. R. Woolcott, A. I. Kingon, and R. J. Nemanich, Piezoelectric measurements with atomic force microscopy, Applied Physics Letters, vol. 73, no. 26, pp. 3851-3853, 1998. [36]J. Curie and P. Curie, Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées, Bulletin de la Société minéralogique de France, vol. 3, no. 4, pp. 90-93, 1880. [37]W. Voigt, Lehrbuch der kristallphysik: (mit ausschluss der kristalloptik). B.G. Teubner, 1910. [38]X. Zhu, Piezoelectric ceramic materials: Processing, properties, characterization, and applications, Nova Science Publishers, Inc., 2009. [39]D. Hu, M. Yao, Y. Fan, C. Ma, M. Fan, and M. Liu, Strategies to achieve high performance piezoelectric nanogenerators, Nano Energy, vol. 55, pp. 288-304, 2019. [40]O. Ambacher et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures, Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, 1999. [41]Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications, Journal of Physics: Condensed Matter, vol. 16, no. 25, pp. R829-R858, 2004. [42]H. Khanbareh, Expanding the Functionality of Piezo-Particulate Composites. 2016. [43]Z. L. Wang et al., Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces, Advanced Functional Materials, vol. 14, no. 10, pp. 943-956, 2004. [44]F. R. Fan, W. Tang, and Z. L. Wang, Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics, Adv Mater, vol. 28, no. 22, pp. 4283-305, Jun 2016. [45]P.-K. Chang and Y.-C. Chen, The study of BZT thin film deposited on ITO substrate by RF magnetron sputtering, Department of Electrical Engineering, National Sun Yat-Sen University, 2017. [46]N. Izyumskaya, Y. I. Alivov, S. J. Cho, H. Morkoç, H. Lee, and Y. S. Kang, Processing, Structure, Properties, and Applications of PZT Thin Films, Critical Reviews in Solid State and Materials Sciences, vol. 32, no. 3-4, pp. 111-202, 2007. [47]G. H. Haertling, Ferroelectric Ceramics: History and Technology, JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 82, no. 4, pp. 797-818, 1999. [48]N. Setter et al., Ferroelectric thin films: Review of materials, properties, and applications, Journal of Applied Physics, vol. 100, no. 5, p. 051606, 2006. [49]Z. Gao et al., Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor, J Appl Phys, vol. 105, no. 11, p. 113707, Jun 1 2009. [50]R. Yu, S. Niu, C. Pan, and Z. L. Wang, Piezotronic effect enhanced performance of Schottky-contacted optical, gas, chemical and biological nanosensors, Nano Energy, vol. 14, pp. 312-339, 2015. [51]C. Tang, M. J. Spencer, and A. S. Barnard, Activity of ZnO polar surfaces: an insight from surface energies, Phys Chem Chem Phys, vol. 16, no. 40, pp. 22139-44, Oct 28 2014. [52]C. R. Bowen, H. A. Kim, P. M. Weaver, and S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energy Environ. Sci., vol. 7, no. 1, pp. 25-44, 2014. [53]J. Tichý, J. r. Erhart, E. Kittinger, and J. Pˇrívratská, Fundamentals of Piezoelectric Sensorics- Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials. Springer, 2010. [54]L. Huo, D. Chen, Q. Kong, H. Li, and G. Song, Smart washer—a piezoceramic-based transducer to monitor looseness of bolted connection, Smart Materials and Structures, vol. 26, no. 2, p. 025033, 2017. [55]R. E. Eitel, NOVEL PIEZOELECTRIC CERAMICS- DEVELOPMENT OF HIGH TEMPERATURE, HIGH PERFORMANCE PIEZOELECTRICS ON THE BASIS OF STRUCTURE, Department of Materials Science and Engineering, The Pennsylvania State University, 2003. [56]M. Scarafagio et al., Ultrathin Eu- and Er-Doped Y2O3 Films with Optimized Optical Properties for Quantum Technologies, The Journal of Physical Chemistry C, vol. 123, no. 21, pp. 13354-13364, 2019. [57]H. Schumann and I. L. Fedushkin, Scandium, Yttrium & The Lanthanides: Organometallic Chemistry. 2006. [58]S. Delice, M. Isik, and N. M. Gasanly, Effect of heating rate on thermoluminescence characteristics of Y2O3 nanoparticles, Journal of Luminescence, vol. 212, pp. 233-237, 2019. [59]N. Sinha et al., Y-doped ZnO nanosheets: Gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator, Ceramics International, vol. 44, no. 7, pp. 8582-8590, 2018. [60]K. ABDALLA, ENERGY POLICIES AND SUSTAINABLE DEVELOPMENT, INTERNATIONAL JOURNAL OF GLOBAL ENERGY ISSUES, vol. 4, pp. 270-274, 1992. [61]P. Glynne-Jones and N. M. White, Self-powered systems: a review of energy sources, Sensor Review, vol. 21, pp. 91-97, 2001. [62]Z. L. Wang, Nanogenerators and Nanopiezotronics, presented at the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 2007. [63]Y. Hu and Z. L. Wang, Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors, Nano Energy, vol. 14, pp. 3-14, 2015. [64]Z. L. Wang and J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science2006, vol. 312. [65]M. Umeda, K. Nakamura, and S. Ueha, Energy Storage Characteristics of a Piezo-Generator using Impact Induced Vibration, Japanese Journal of Applied Physics, vol. 26, no. Part 1, No. 5B, pp. 3146-3151, 1997. [66]F.-R. Fan, Z.-Q. Tian, and Z. Lin Wang, Flexible triboelectric generator, Nano Energy, vol. 1, no. 2, pp. 328-334, 2012. [67]Y. Yang et al., Pyroelectric nanogenerators for harvesting thermoelectric energy, Nano Lett, vol. 12, no. 6, pp. 2833-8, Jun 13 2012. [68]Y. Zi et al., Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing, Adv Mater, vol. 27, no. 14, pp. 2340-7, Apr 8 2015. [69]Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, and Z. L. Wang, Self-powered system with wireless data transmission, Nano Lett, vol. 11, no. 6, pp. 2572-7, Jun 8 2011. [70]Z. L. Wang, X. Wang, J. Song, J. Liu, and Y. Gao, Piezoelectric Nanogenerators for Self-Powered Nanodevices, IEEE Pervasive Computing vol. 7, no. 1, pp. 49-55, 2008. [71]G. Mantini, Y. Gao, A. D’Amico, C. Falconi, and Z. L. Wang, Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire, Nano Research, vol. 2, no. 8, pp. 624-629, 2009. [72]R. Tao, G. Ardila, L. Montès, and M. Mouis, Modeling of semiconducting piezoelectric nanowires for mechanical energy harvesting and mechanical sensing, Nano Energy, vol. 14, pp. 62-76, 2015. [73]J. Liu et al., Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator, NANO LETTERS, vol. 8, no. 1, pp. 328-332, 2008. [74]H.-J. Shin et al., Control of Electronic Structure of Graphene by Various Dopants and Their Effects on a Nanogenerator, J. Am. Chem. Soc., vol. 132, pp. 15603-15609, 2010. [75]B. Kumar and S.-W. Kim, Recent advances in power generation through piezoelectric nanogenerators, Journal of Materials Chemistry, vol. 21, no. 47, p. 18946, 2011. [76]C.-H. Wang et al., Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration, Advanced Energy Materials, vol. 4, no. 16, p. 1400392, 2014. [77]B. Kumar and S.-W. Kim, Energy harvesting based on semiconducting piezoelectric ZnO nanostructures, Nano Energy, vol. 1, no. 3, pp. 342-355, 2012. [78]H.-K. Park et al., Charge-Generating Mode Control in High-Performance Transparent Flexible Piezoelectric Nanogenerators, Advanced Functional Materials, vol. 21, no. 6, pp. 1187-1193, 2011. [79]M. Kumar, H. Jeong, A. Kumar, B. P. Singh, and D. Lee, Magnetron-sputtered high performance Y-doped ZnO thin film transistors fabricated at room temperature, Materials Science in Semiconductor Processing, vol. 71, pp. 204-208, 2017. [80]J. H. Park et al., Analysis of oxygen vacancy in Co-doped ZnO using the electron density distribution obtained using MEM, Nanoscale Res Lett, vol. 10, p. 186, 2015. [81]Y.-R. Luo, Bond Dissociation Energies, ed, 2009. [82]J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division, Perkin-Elmer Corporation, 1992. [83]D. P.Drolet, D. M.Manuta, A. J.Lees, A.D.Katnani, and G. J.Coyle, FT-IR and XPS study of copper(II) complexes of imidazole and benzimidazole, Inorganica Chimica Acta, vol. 146, no. 2, pp. 173-180, 1988. [84]S. Heo et al., Effects of Y contents on surface, structural, optical, and electrical properties for Y-doped ZnO thin films, Thin Solid Films, vol. 558, pp. 27-30, 2014. [85]G. Turgut, S. Duman, and E. F. Keskenler, The influence of Y contribution on crystallographic, topographic and optical properties of ZnO: A heterojunction diode application, Superlattices and Microstructures, vol. 86, pp. 363-371, 2015. [86]S. K. Sharma and D. Y. Kim, Microstructure and Optical Properties of Yttrium-doped Zinc Oxide (YZO) Nanobolts Synthesized by Hydrothermal Method, Journal of Materials Science & Technology, vol. 32, no. 1, pp. 12-16, 2016. [87]S. Goel, N. Sinha, H. Yadav, A. J. Joseph, and B. Kumar, Experimental investigation on the structural, dielectric, ferroelectric and piezoelectric properties of La doped ZnO nanoparticles and their application in dye-sensitized solar cells, Physica E: Low-dimensional Systems and Nanostructures, vol. 91, pp. 72-81, 2017. [88]M. A. Lahmer, The effect of doping with rare earth elements (Sc, Y, and La) on the stability, structural, electronic and photocatalytic properties of the O-terminated ZnO surface; A first-principles study, Applied Surface Science, vol. 457, pp. 315-322, 2018. [89]J. H. Choi, H. Tabata, and T. Kawai, Initial preferred growth in zinc oxide thin films on Si andamorphous substrates by a pulsed laser deposition, Journal of Crystal Growth vol. 226, pp. 493-500, 2001. [90]S. Yu and L. Yu, Effects of fatigue and damage on the hysteresis loops of ferroelectric ceramics, Microsystem Technologies, vol. 15, no. 1, pp. 33-38, 2008. [91]Y. C. Yang, C. Song, X. H. Wang, F. Zeng, and F. Pan, Cr-substitution-induced ferroelectric and improved piezoelectric properties of Zn1−xCrxO films, Journal of Applied Physics, vol. 103, no. 7, p. 074107, 2008. [92]M. Laurenti, M. Castellino, D. Perrone, A. Asvarov, G. Canavese, and A. Chiolerio, Lead-free piezoelectrics: V(3+) to V(5+) ion conversion promoting the performances of V-doped Zinc Oxide, Sci Rep, vol. 7, p. 41957, Feb 6 2017. [93]J. T. Luo, X. Y. Zhu, G. Chen, F. Zeng, and F. Pan, Influence of the Mn concentration on the electromechanical response d33 of Mn-doped ZnO films, physica status solidi (RRL) - Rapid Research Letters, vol. 4, no. 8-9, pp. 209-211, 2010. [94]Y. Chen, J. Liu, J. Yu, Y. Guo, and Q. Sun, Symmetry-breaking induced large piezoelectricity in Janus tellurene materials, Phys Chem Chem Phys, vol. 21, no. 3, pp. 1207-1216, Jan 17 2019. [95]I. IZZUDDIN, M. H. H. JUMALI, Z. ZALITA, J. N. HUWAIDA, and R. AWANG, Influence of Crystal Structural Orientation on Impedance and Piezoelectric Properties of KNN Ceramic Prepared using Sol-Gel Method, Sains Malaysiana, vol. 45, no. 8, pp. 1281-1287, 2016. [96]J. Molarius, J. Kaitila, T. Pensala, and M. Ylilammi, Piezoelectric ZnO films by r.f. sputtering, Journal of Materials Science: Materials in Electronics, vol. 14, no. 5-7, pp. 431-435, 2003. [97]T. Kamohara, M. Akiyama, N. Ueno, K. Nonaka, and N. Kuwano, Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes, Thin Solid Films, vol. 515, no. 11, pp. 4565-4569, 2007. [98]W. W. Qin et al., Microstructure-related piezoelectric properties of a ZnO film grown on a Si substrate, Ceramics International, vol. 42, no. 15, pp. 16927-16934, 2016. [99]X. B. Wang, C. Song, D. M. Li, K. W. Geng, F. Zeng, and F. Pan, The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film, Applied Surface Science, vol. 253, no. 3, pp. 1639-1643, 2006. [100]X. B. Wang, D. M. Li, F. Zeng, and F. Pan, Microstructure and properties of Cu-doped ZnO films prepared by dc reactive magnetron sputtering, Journal of Physics D: Applied Physics, vol. 38, no. 22, pp. 4104-4108, 2005. [101]Y. Zhang et al., Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators, ACS Appl Mater Interfaces, vol. 8, no. 2, pp. 1381-7, Jan 20 2016. [102]J.-Q. Wen, J.-M. Zhang, and Z.-Q. Li, Structural and electronic properties of Y doped ZnO with different Y concentration, Optik, vol. 156, pp. 297-302, 2018. [103]Y. C. Yang, C. Song, X. H. Wang, F. Zeng, and F. Pan, Giant piezoelectric d33 coefficient in ferroelectric vanadium doped ZnO films, Applied Physics Letters, vol. 92, no. 1, p. 012907, 2008. [104]A. L. Kholkin, E. K. Akdogan, A. Safari, P. F. Chauvy, and N. Setter, Characterization of the effective electrostriction coefficients in ferroelectric thin films, Journal of Applied Physics, vol. 89, no. 12, pp. 8066-8073, 2001. [105]T. S. v. d. Heever and W. J. Perold, The influence of resistance and carrier concentration on the output voltage of a ZnO nanogenerator, van den Heever and Perold Micro and Nano Systems Letters, vol. 1, no. 4, 2013.
|