|
1.H. Zhang, G. Cargill III, Y. Ge, A. Maniatty, and W. Liu, Strain evolution in Al conductor lines during electromigration, Journal of Applied Physics, 104(12), 123533. (2008) 2.H.B. Huntington and A.R. Grone, Current-induced marker motion in gold wires, Journal of Physics and Chemistry of Solids, 20(1–2), 76-87. (1961) 3.W.-W. Shen and K.-N. Chen, Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV), Nanoscale Research Letters, 12(1), 56. (2017) 4.D. Shahrjerdi and S.W. Bedell, Extremely Flexible Nanoscale Ultrathin Body Silicon Integrated Circuits on Plastic, Nano Letters, 13(1), 315-320. (2013) 5.K.N. Tu, Y. Liu, and M. Li, Effect of Joule heating and current crowding on electromigration in mobile technology, Applied Physics Reviews, 4(1), 011101. (2017) 6.A. Lancaster and M. Keswani, Integrated circuit packaging review with an emphasis on 3D packaging, Integration, 60, 204-212. (2018) 7.C.Y. Liu, C. Chen, and K.N. Tu, Electromigration in Sn–Pb solder strips as a function of alloy composition, Journal of Applied Physics, 88(10), 5703-5709. (2000) 8.S.-W. Chen, C.-M. Chen, and W.-C. Liu, Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions, Journal of Electronic Materials, 27(11), 1193-1199. (1998) 9.H. Gan and K.N. Tu, Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples, Journal of Applied Physics, 97(6), 063514. (2005) 10.R.S. Sorbello, Theory of electromigration, Solid State Physics, 51, 159-231. (1997) 11.C. Bosvieux and J. Friedel, Sur l'electrolyse des alliages metalliques, Journal of Physics and Chemistry of Solids, 23(1–2), 123-136. (1962) 12.Y.T. Chiu, C.H. Liu, K.L. Lin, and Y.S. Lai, Supersaturation induced by current stressing, Scripta Materialia, 65(7), 615-617. (2011) 13.Y. Jiang, G. Tang, C. Shek, Y. Zhu, and Z. Xu, On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17Al12 phase in an aged Mg–9Al–1Zn alloy, Acta Materialia, 57(16), 4797-4808. (2009) 14.C.M. Chen and S.W. Chen, Electromigration effect upon the Zn/Ni and Bi/Ni interfacial reactions, Journal of Electronic Materials, 29(10), 1222-1228. (2000) 15.P.-C. Wang, G. Cargill III, I. Noyan, and C.-K. Hu, Electromigration-induced stress in aluminum conductor lines measured by x-ray microdiffraction, Applied Physics Letters, 72(11), 1296-1298. (1998) 16.H.-K. Kao, G.S.C. III, F. Giuliani, and C.-K. Hu, Relationship between copper concentration and stress during electromigration in an Al(0.25 at. % Cu) conductor line, Journal of Applied Physics, 93(5), 2516-2527. (2003) 17.K. Chen, N. Tamura, M. Kunz, K.N. Tu, and Y.-S. Lai, In situ measurement of electromigration-induced transient stress in Pb-free Sn–Cu solder joints by synchrotron radiation based x-ray polychromatic microdiffraction, Journal of Applied Physics, 106(2), 023502. (2009) 18.B.C. Valek, N. Tamura, R. Spolenak, W.A. Caldwell, A.A. MacDowell, R.S. Celestre, H.A. Padmore, J.C. Bravman, B.W. Batterman, W.D. Nix, and J.R. Patel, Early stage of plastic deformation in thin films undergoing electromigration, Journal of Applied Physics, 94(6), 3757-3761. (2003) 19.A.S. Budiman, W.D. Nix, N. Tamura, B.C. Valek, K. Gadre, J. Maiz, R. Spolenak, and J.R. Patel, Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction, Applied Physics Letters, 88(23), 233515. (2006) 20.Y.-T. Chiu, K.-L. Lin, A.T. Wu, W.-L. Jang, C.-L. Dong, and Y.-S. Lai, Electrorecrystallization of Metal Alloy, Journal of Alloys and Compounds, 549, 190-194. (2013) 21.A.T. Wu, A.M. Gusak, K.N. Tu, and C.R. Kao, Electromigration-induced grain rotation in anisotropic conducting beta tin, Applied Physics Letters, 86(24), 241902. (2005) 22.N. Bekiaris, Z. Wu, H. Ren, M. Naik, J.H. Park, M. Lee, T.H. Ha, W. Hou, J.R. Bakke, M. Gage, Y. Wang, and J. Tang. Cobalt fill for advanced interconnects. in 2017 IEEE International Interconnect Technology Conference (IITC). (2017) 23.S.-k. Lin, C.-y. Yeh, and M.-j. Wang, On the formation mechanism of solid-solution Cu-to-Cu joints in the Cu/Ni/Ga/Ni/Cu system, Materials Characterization, 137, 14-23. (2018) 24.S.-k. Lin, H.-m. Chang, C.-l. Cho, Y.-c. Liu, and Y.-k. Kuo, Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits, Electronic Materials Letters, 11(4), 687-694. (2015) 25.S.-k. Lin, M.-j. Wang, C.-y. Yeh, H.-m. Chang, and Y.-c. Liu, High-strength and thermal stable Cu-to-Cu joint fabricated with transient molten Ga and Ni under-bump-metallurgy, Journal of Alloys and Compounds, 702, 561-567. (2017) 26.S.-k. Lin, C.-l. Cho, and H.-m. Chang, Interfacial Reactions in Cu/Ga and Cu/Ga/Cu Couples, Journal of Electronic Materials, 43(1), 204-211. (2014) 27.S.-k. Lin, S. Nagao, E. Yokoi, C. Oh, H. Zhang, Y.-c. Liu, S.-g. Lin, and K. Suganuma, Nano-volcanic Eruption of Silver, Scientific Reports, 6, 34769. (2016) 28.S.W. Chen, C.M. Chen, and W.C. Liu, Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions, Journal of Electronic Materials, 27(11), 1193-1198. (1998) 29.S.K. Lin, C.K. Yeh, W. Xie, Y.C. Liu, and M. Yoshimura, Ab initio-aided CALPHAD thermodynamic modeling of the Sn-Pb binary system under current stressing, Scientific Reports, 3. (2013) 30.J.-Y. He, K.-L. Lin, and A.T. Wu, The diminishing of crystal structure of Sn9Zn alloy due to electrical current stressing, Journal of Alloys and Compounds, 619, 372-377. (2015) 31.Y. Mei, G.Q. Lu, X. Chen, S. Luo, and D. Ibitayo, Migration of Sintered Nanosilver Die-Attach Material on Alumina Substrate Between 250 and 400C in Dry Air, IEEE Transactions on Device and Materials Reliability, 11(2), 316-322. (2011) 32.P.S. Ho and T. Kwok, Electromigration in metals, Reports on Progress in Physics, 52(3), 301. (1989) 33.F.M. D'Heurle and R. Rosenberg, Electromigration in Thin Films, in Physics of Thin Films, G. Hass, M.H. Francombe, and R.W. Hoffman, Editors. 1973, Elsevier. p. 257-310. 34.K.-N. Tu, Fundamentals of electromigration, in Solder Joint Technology. 2007, Springer. p. 211-243. 35.H.B. Huntington, 6 - Electromigration in Metals, in Diffusion in Solids, A.S. Nowick and J.J. Burton, Editors. 1975, Academic Press. p. 303-352. 36.A. Lodder, Electromigration theory unified, EPL (Europhysics Letters), 72(5), 774. (2005) 37.A. Lodder, Direct Force Controversy in Electromigration Exit, Defect and Diffusion Forum, 261-262, 77-84. (2007) 38.R.S. Sorbello, A pseudopotential based theory of the driving forces for electromigration in metals, Journal of Physics and Chemistry of Solids, 34(6), 937-950. (1973) 39.J.P. Dekker, A. Lodder, and J. van Ek, Theory for the electromigration wind force in dilute alloys, Physical Review B, 56(19), 12167-12177. (1997) 40.A. Lodder, Electron-impurity scattering in dilute alloys with lattice distortion. I. General theory, Journal of Physics F: Metal Physics, 6(10), 1885. (1976) 41.J.P. Dekker and A. Lodder, Calculated electromigration wind force in face-centered-cubic and body-centered-cubic metals, Journal of Applied Physics, 84(4), 1958-1962. (1998) 42.J.P. Dekker, P. Gumbsch, E. Arzt, and A. Lodder, Calculation of the electromigration wind force in Al alloys, Physical Review B, 59(11), 7451-7457. (1999) 43.I.A. Blech and E.S. Meieran, Direct transmission electron microscope observation of electrotransport in Al thin films, Applied Physics Letters, 11(8), 263-266. (1967) 44.I.A. Blech and E.S. Meieran, Electromigration in Thin Al Films, Journal of Applied Physics, 40(2), 485-491. (1969) 45.I.A. Blech, Electromigration in thin aluminum films on titanium nitride, Journal of Applied Physics, 47(4), 1203-1208. (1976) 46.I.A. Blech and C. Herring, Stress generation by electromigration, Applied Physics Letters, 29(3), 131-133. (1976) 47.H.U. Schreiber, Reduced aluminium electromigration in future integrated circuits — A problem of test procedure and threshold mechanisms, Thin Solid Films, 175, 29-36. (1989) 48.C.C. Wei and C.Y. Liu, Electromigration Studies of Sn(Cu) and Sn(Ni) Alloy Stripes, Journal of Materials Research, 20(08), 2072-2079. (2005) 49.Y. Li and D. Goyal, 3D Microelectronic Packaging: From Fundamentals to Applications. Vol. 57. 2017: Springer. 50.R. Frankovic and G.H. Bernstein, Electromigration drift and threshold in Cu thin-film interconnects, IEEE Transactions on Electron Devices, 43(12), 2233-2239. (1996) 51.D. Ney, X. Federspiel, V. Girault, O. Thomas, and P. Gergaud, Stress-induced electromigration backflow effect in copper interconnects, IEEE Transactions on Device and Materials Reliability, 6(2), 175-180. (2006) 52.L. Arnaud, T. Berger, and G. Reimbold, Evidence of grain-boundary versus interface diffusion in electromigration experiments in copper damascene interconnects, Journal of Applied Physics, 93(1), 192-204. (2003) 53.Y. Chai, P.C. Chan, Y. Fu, Y. Chuang, and C. Liu, Electromigration studies of Cu/carbon nanotube composite interconnects using Blech structure, IEEE electron device letters, 29(9), 1001-1003. (2008) 54.E.T. Ogawa, A.J. Bierwag, K.-D. Lee, H. Matsuhashi, P.R. Justison, A.N. Ramamurthi, P.S. Ho, V.A. Blaschke, D. Griffiths, A. Nelsen, M. Breen, and R.H. Havemann, Direct observation of a critical length effect in dual-damascene Cu/oxide interconnects, Applied Physics Letters, 78(18), 2652-2654. (2001) 55.P.-C. Wang and R.G. Filippi, Electromigration threshold in copper interconnects, Applied Physics Letters, 78(23), 3598-3600. (2001) 56.R. Frankovic, G.H. Bernstein, and J.J. Clement, Pulsed-current duty cycle dependence of electromigration-induced stress generation in aluminum conductors, IEEE Electron Device Letters, 17(5), 244-246. (1996) 57.R.G. Filippi, G.A. Biery, and M.H. Wood, Evidence of The Electromigration Short-Length Effect in Aluminum-Based Metallurgy With Tungsten Diffusion Barriers, MRS Proceedings, 309, 141. (1993) 58.E. Glickman, N. Osipov, A. Ivanov, and M. Nathan, Diffusional creep as a stress relaxation mechanism in electromigration, Journal of applied physics, 83(1), 100-107. (1998) 59.L. Klinger, E. Glickman, A. Katsman, and L. Levin, Time dependence of stress and hillock distributions during electromigration in thin metal film interconnections, Materials Science and Engineering: B, 23(1), 15-18. (1994) 60.E. Glickman and M. Nathan, Creep-controlled electromigration in near-threshold interconnects, Microelectronic engineering, 50(1-4), 329-334. (2000) 61.R. Kirchheim, Stress and electromigration in Al-lines of integrated circuits, Acta Metallurgica et Materialia, 40(2), 309-323. (1992) 62.M.A. Korhonen, P. Bo/rgesen, K.N. Tu, and C.Y. Li, Stress evolution due to electromigration in confined metal lines, Journal of Applied Physics, 73(8), 3790-3799. (1993) 63.J.J. Clement and C.V. Thompson, Modeling electromigration‐induced stress evolution in confined metal lines, Journal of Applied Physics, 78(2), 900-904. (1995) 64.Y.J. Park and C.V. Thompson, The effects of the stress dependence of atomic diffusivity on stress evolution due to electromigration, Journal of Applied Physics, 82(9), 4277-4281. (1997) 65.J.R. Lloyd, Electromigration and mechanical stress, Microelectronic Engineering, 49(1), 51-64. (1999) 66.M. Sarychev, Y.V. Zhitnikov, L. Borucki, C.-L. Liu, and T. Makhviladze, General model for mechanical stress evolution during electromigration, Journal of Applied Physics, 86(6), 3068-3075. (1999) 67.K.N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects, Journal of Applied Physics, 94(9), 5451-5473. (2003) 68.H. Zhang and G. Cargill, Electromigration-induced strain relaxation in Cu conductor lines, Journal of Materials Research, 26(04), 498-502. (2011) 69.B.C. Valek, J.C. Bravman, N. Tamura, A.A. MacDowell, R.S. Celestre, H.A. Padmore, R. Spolenak, W.L. Brown, B.W. Batterman, and J.R. Patel, Electromigration-induced plastic deformation in passivated metal lines, Applied Physics Letters, 81(22), 4168-4170. (2002) 70.N. Tamura, R.S. Celestre, A.A. MacDowell, H.A. Padmore, R. Spolenak, B.C. Valek, N.M. Chang, A. Manceau, and J.R. Patel, Submicron x-ray diffraction and its applications to problems in materials and environmental science, Review of Scientific Instruments, 73(3), 1369-1372. (2002) 71.K. Chen, N. Tamura, B.C. Valek, and K.N. Tu, Plastic deformation in Al (Cu) interconnects stressed by electromigration and studied by synchrotron polychromatic x-ray microdiffraction, Journal of Applied Physics, 104(1), 013513. (2008) 72.A.T. Wu, K.N. Tu, J.R. Lloyd, N. Tamura, B.C. Valek, and C.R. Kao, Electromigration-induced microstructure evolution in tin studied by synchrotron x-ray microdiffraction, Applied Physics Letters, 85(13), 2490-2492. (2004) 73.S.-k. Lin, Y.-c. Liu, S.-J. Chiu, Y.-T. Liu, and H.-Y. Lee, The electromigration effect revisited: non-uniform local tensile stress-driven diffusion, Scientific Reports, 7(1), 3082. (2017) 74.C.M. Tan and A. Roy, Electromigration in ULSI interconnects, Materials Science and Engineering: R: Reports, 58(1), 1-75. (2007) 75.H. Shibata, M. Murota, and K. Hashimoto, The Effects of Al(111) Crystal Orientation on Electromigration in Half-Micron Layered Al Interconnects, Japanese Journal of Applied Physics, 32(Part 1, No. 10), 4479-4484. (1993) 76.S. Vaidya and A.K. Sinha, Effect of texture and grain structure on electromigration in Al-0.5%Cu thin films, Thin Solid Films, 75(3), 253-259. (1981) 77.M.J. Attardo and R. Rosenberg, Electromigration Damage in Aluminum Film Conductors, 8th Reliability Physics Symposium, 41(6), 2381-2386. (1970) 78.C. Kim and J.W.M. Jr., The influence of Cu precipitation on electromigration failure in Al‐Cu‐Si, Journal of Applied Physics, 72(5), 1837-1845. (1992) 79.E.G. Colgan and K.P. Rodbell, The role of Cu distribution and Al2Cu precipitation on the electromigration reliability of submicrometer Al(Cu) lines, Journal of Applied Physics, 75(7), 3423-3434. (1994) 80.A.J. Learn, Effect of structure and processing on electromigration‐induced failure in anodized aluminum, Journal of Applied Physics, 44(3), 1251-1258. (1973) 81.X.Y. Liu, C.L. Liu, and L.J. Borucki, A new investigation of copper's role in enhancing Al–Cu interconnect electromigration resistance from an atomistic view, Acta Materialia, 47(11), 3227-3231. (1999) 82.K. Tu, Electromigration in stressed thin films, Physical Review B, 45(3), 1409. (1992) 83.H. Conrad, Effects of electric current on solid state phase transformations in metals, Materials Science and Engineering: A, 287(2), 227-237. (2000) 84.B.J. Ruszkiewicz, T. Grimm, I. Ragai, L. Mears, and J.T. Roth, A Review of Electrically-Assisted Manufacturing With Emphasis on Modeling and Understanding of the Electroplastic Effect, Journal of Manufacturing Science and Engineering-Transactions of the Asme, 139(11). (2017) 85.O.A. Troitskii, Electromechanical effect in metals, Pis'ma Zhurn. Experim. Teor. Fiz., 10, 18-22. (1969) 86.K. Okazaki, M. Kagawa, and H. Conrad, A study of the electroplastic effect in metals, Scripta Metallurgica, 12(11), 1063-1068. (1978) 87.H. Conrad, N. Karam, and S. Mannan, Effect of electric current pulses on the recrystallization of copper, Scripta Metallurgica, 17(3), 411-416. (1983) 88.V.L.A. Silveira, R.A.F.O. Fortes, and W.A. Mannheimer, A comment on “effect of electric current pulses on the recrystallization of copper, Scripta Metallurgica, 17(11), 1381-1382. (1983) 89.J.P. Barnak, A.F. Sprecher, and H. Conrad, Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing, Scripta Metallurgica et Materialia, 32(6), 879-884. (1995) 90.Y. Cao, L. He, Y. Zhou, P. Wang, and J. Cui, Contributions to yield strength in an ultrafine grained 1050 aluminum alloy after DC current annealing, Materials Science and Engineering: A, 674(Supplement C), 193-202. (2016) 91.F. Yang and G. Zhao, Effect of Electric Current on Nanoindentation of Copper, Nanoscience and Nanotechnology Letters, 2(4), 322-326. (2010) 92.G. Zhao and F. Yang, Effect of alternating electric current on the nanoindentation of copper, Applied Physics A, 109(3), 553-559. (2012) 93.G. Zhao and F. Yang, Effect of DC current on tensile creep of pure tin, Materials Science and Engineering: A, 591, 97-104. (2014) 94.R. Chen and F. Yang, Effect of DC Current on the Creep Deformation of Tin, Journal of Electronic Materials, 39(12), 2611-2617. (2010) 95.R. Chen and F. Yang, Effect of electric current on the creep deformation of lead, Materials Science and Engineering: A, 528(6), 2319-2325. (2011) 96.H. Conrad, Electroplasticity in metals and ceramics, Materials Science and Engineering: A, 287(2), 276-287. (2000) 97.S.-T. Hong, Y.-H. Jeong, M.N. Chowdhury, D.-M. Chun, M.-J. Kim, and H.N. Han, Feasibility of electrically assisted progressive forging of aluminum 6061-T6 alloy, CIRP Annals, 64(1), 277-280. (2015) 98.Z. Zimniak and G. Radkiewicz, The electroplastic effect in the cold-drawing of copper wires for the automotive industry, Archives of Civil and Mechanical Engineering, 8(2), 173-179. (2008) 99.G. Tang, J. Zhang, Y. Yan, H. Zhou, and W. Fang, The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire, Journal of Materials Processing Technology, 137(1), 96-99. (2003) 100.M.-S. Kim, N.T. Vinh, H.-H. Yu, S.-T. Hong, H.-W. Lee, M.-J. Kim, H.N. Han, and J.T. Roth, Effect of electric current density on the mechanical property of advanced high strength steels under quasi-static tensile loads, International Journal of Precision Engineering and Manufacturing, 15(6), 1207-1213. (2014) 101.J.-H. Roh, J.-J. Seo, S.-T. Hong, M.-J. Kim, H.N. Han, and J.T. Roth, The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current, International Journal of Plasticity, 58(Supplement C), 84-99. (2014) 102.Z. Xu, H. Wang, Z. Sun, Y. Ye, and G. Tang, Effect of electropulsing-assisted turning process on AISI 5120 cementation steel, Materials Science and Technology, 33(12), 1454-1460. (2017) 103.J. Kuang, X. Li, R. Zhang, Y. Ye, A.A. Luo, and G. Tang, Enhanced rollability of Mg3Al1Zn alloy by pulsed electric current: a comparative study, Materials & Design, 100(Supplement C), 204-216. (2016) 104.H.-D. Nguyen-Tran, H.-S. Oh, S.-T. Hong, H.N. Han, J. Cao, S.-H. Ahn, and D.-M. Chun, A review of electrically-assisted manufacturing, International Journal of Precision Engineering and Manufacturing-Green Technology, 2(4), 365-376. (2015) 105.A.F. Sprecher, S.L. Mannan, and H. Conrad, Overview no. 49: On the mechanisms for the electroplastic effect in metals, Acta Metallurgica, 34(7), 1145-1162. (1986) 106.H. Conrad, A. Sprecher, W. Cao, and X. Lu, Electroplasticity—the effect of electricity on the mechanical properties of metals, Jom, 42(9), 28-33. (1990) 107.W.A. Salandro, J.J. Jones, C. Bunget, L. Mears, and J.T. Roth, Applications of Electrically Assisted Manufacturing, in Electrically Assisted Forming. 2015, Springer. p. 255-311. 108.L. Guan, G. Tang, and P.K. Chu, Recent advances and challenges in electroplastic manufacturing processing of metals, Journal of Materials Research, 25(7), 1215-1224. (2011) 109.G. Tang, M. Zheng, Y. Zhu, J. Zhang, W. Fang, and Q. Li, The application of the electro-plastic technique in the cold-drawing of steel wires, Journal of Materials Processing Technology, 84(1–3), 268-270. (1998) 110.M.-J. Kim, M.-G. Lee, K. Hariharan, S.-T. Hong, I.-S. Choi, D. Kim, K.H. Oh, and H.N. Han, Electric current–assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension, International Journal of Plasticity, 94(Supplement C), 148-170. (2017) 111.W.-Y. Chen, T.-C. Chiu, K.-L. Lin, A.T. Wu, W.-L. Jang, C.-L. Dong, and H.-Y. Lee, Anisotropic dissolution behavior of the second phase in SnCu solder alloys under current stress, Scripta Materialia, 68(5), 317-320. (2013) 112.Y.-T. Chiu, K.-L. Lin, A.T. Wu, W.-L. Jang, C.-L. Dong, and Y.-S. Lai, Electrorecrystallization of Metal Alloy, Journal of Alloys and Compounds, 549(Supplement C), 190-194. (2013) 113.J. Kuang, T.S.E. Low, S.R. Niezgoda, X. Li, Y. Geng, A.A. Luo, and G. Tang, Abnormal texture development in magnesium alloy Mg–3Al–1Zn during large strain electroplastic rolling: Effect of pulsed electric current, International Journal of Plasticity, 87(Supplement C), 86-99. (2016) 114.H. Lv, R. Zhou, L. Li, H. Ni, J. Zhu, and T. Feng, Effect of Electric Current Pulse on Microstructure and Corrosion Resistance of Hypereutectic High Chromium Cast Iron, Materials, 11(11), 2220. (2018) 115.Y. Feng and Z. Tan, Effect of pulse current quenching on microstructure and properties of steel for ecological building, Jinshu Rechuli/Heat Treatment of Metals, 43(4), 173-178. (2018) 116.V. Stolyarov, Features of Electroplastic Effect in Alloys with Martensite Transformation, Acta Metallurgica Sinica (English Letters), 31(12), 1305-1310. (2018) 117.Y. Jiang, G. Tang, C. Shek, Y. Zhu, L. Guan, S. Wang, and Z. Xu, Improved ductility of aged Mg-9Al-1Zn alloy strip by electropulsing treatment, Journal of materials research, 24(5), 1810-1814. (2009) 118.Y. Jiang, G. Tang, C. Shek, and Y. Zhu, Effect of electropulsing treatment on microstructure and tensile fracture behavior of aged Mg–9Al–1Zn alloy strip, Applied Physics A, 97(3), 607-615. (2009) 119.Y. Zhu, S. To, W.B. Lee, X. Liu, Y. Jiang, and G. Tang, Electropulsing-induced phase transformations in a Zn–Al-based alloy, Journal of materials research, 24(8), 2661-2669. (2009) 120.W. Zhang, M. Sui, Y. Zhou, and D. Li, Evolution of microstructures in materials induced by electropulsing, Micron, 34(3-5), 189-198. (2003) 121.W. Zhang, M.L. Sui, K.Y. Hu, D.X. Li, X.N. Guo, G.H. He, and B.L. Zhou, Formation of nanophases in a Cu–Zn alloy under high current density electropulsing, Journal of Materials Research, 15(10), 2065-2068. (2011) 122.S. To, Y. Zhu, W. Lee, X. Liu, Y. Jiang, and G. Tang, Effects of current density on electropulsing-induced phase transformations in a Zn–Al based alloy, Applied Physics A, 96(4), 939-944. (2009) 123.Y. Dolinsky and T. Elperin, Thermodynamics of phase transitions in current-carrying conductors, Physical Review B, 47(22), 14778-14785. (1993) 124.Y. Dolinsky and T. Elperin, Thermodynamics of nucleation in current-carrying conductors, Physical Review B, 50(1), 52. (1994) 125.K.N. Tu, Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions, Physical Review B, 49(3), 2030-2034. (1994) 126.W.C. Liu, S.W. Chen, and C.M. Chen, The Al/Ni interfacial reactions under the influence of electric current, Journal of Electronic Materials, 27(1), L6-L9. (1998) 127.N. Bertolino, J. Garay, U. Anselmi-Tamburini, and Z.A. Munir, High-flux current effects in interfacial reactions in Au–Al multilayers, TPHB, 82(8), 969-985. (2002) 128.C.M. Hsu, D.S.H. Wong, and S.W. Chen, Generalized phenomenological model for the effect of electromigration on interfacial reaction, Journal of Applied Physics, 102(2), 023715-023715-7. (2007) 129.C.-k. Yeh, Phase stabilities of Pb-Sn and Bi-Ni alloys under current stressing: An ab initio-aided CALPHAD study, in Materials science and engineering. 2013, National Cheng Kung University. p. 170. 130.C.-M. Chen and S.-W. Chen, - Electromigration effect upon the Zn/Ni and Bi/Ni interfacial reactions, - 29(- 10). (2000) 131.C.M. Chen and S.W. Chen, Electric current effects on Sn/Ag interfacial reactions, Journal of Electronic Materials, 28(7), 902-906. (1999) 132.C.-m. Chen, 電遷移對無鉛銲料與基材界面反應之影響, in Chemical engineering. 2002, National Tsing Hua University: Hsinchu, Taiwan. 133.H. Gan and K.N. Tu, Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples, Journal of Applied Physics, 97(6). (2005) 134.J.E. Garay, U. Anselmi-Tamburini, and Z.A. Munir, Enhanced growth of intermetallic phases in the Ni–Ti system by current effects, Acta Materialia, 51(15), 4487-4495. (2003) 135.J.R. Friedman, J.E. Garay, U. Anselmi-Tamburini, and Z.A. Munir, Modified interfacial reactions in Ag-Zn multilayers under the influence of high DC currents, Intermetallics, 12(6), 589-597. (2004) 136.A. Kumar, M. He, Z. Chen, and P.S. Teo, Effect of electromigration on interfacial reactions between electroless Ni-P and Sn-3.5% Ag solder, Thin Solid Films, 462, 413-418. (2004) 137.M. Braunovic and N. Alexandrov, Intermetallic compounds at Al-to-Cu electrical interfaces - effect of temperature and electric-current, Ieee Transactions on Components Packaging and Manufacturing Technology Part A, 17(1), 78-85. (1994) 138.M.Y. Du, C.M. Chen, and S.W. Chen, Effects upon interfacial reactions by electric currents of reversing directions, Materials Chemistry and Physics, 82(3), 818-825. (2003) 139.W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of materials research, 19(01), 3-20. (2004) 140.G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B, 54(16), 11169-11186. (1996) 141.J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, 77(18), 3865-3868. (1996) 142.P.E. Blöchl, Projector augmented-wave method, Physical Review B, 50(24), 17953-17979. (1994) 143.H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B, 13(12), 5188-5192. (1976) 144.F. Pedregosa, Ga, #235, l. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, #201, and d. Duchesnay, Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825-2830. (2011) 145.D. Morgan, B. Afflerbach, R. Jacobs, T. Mayeshiba, and H. Wu. MAterials Simulation Toolkit – Machine Learning (MAST-ML). 2017; Available from: https://github.com/uw-cmg/MAST-ML. 146.Raschka, MLxtend: Providing machine learning and data science utilities and extensions to Python's scientific computing stack, Journal of Open Source Software, 3(24). (2018) 147.J. Shi and H.B. Huntington, Electromigration of gold and silver in single crystal tin, Journal of Physics and Chemistry of Solids, 48(8), 693-696. (1987) 148.H.R. Patil and H.B. Huntington, Electromigration and associated void formation in silver, Journal of Physics and Chemistry of Solids, 31(3), 463-474. (1970) 149.D.A. Golopentia and H.B. Huntington, A study of electromigration of nickel in lead, Journal of Physics and Chemistry of Solids, 39(9), 975-984. (1978) 150.G.A. Sullivan, Search for reversal in copper electromigration, Journal of Physics and Chemistry of Solids, 28(2), 347-350. (1967) 151.A.R. Grone, Current-induced marker motion in copper, Journal of Physics and Chemistry of Solids, 20(1), 88-93. (1961) 152.A. Lodding, Current induced motion of lattice defects in indium metal, Journal of Physics and Chemistry of Solids, 26(1), 143-151. (1965) 153.A. Gangulee and F.M. D'Heurle, Anomalous large grains in alloyed aluminum thin films II. Electromigration and diffusion in thin films with very large grains, Thin Solid Films, 16(2), 227-236. (1973) 154.H.M. Gilder and D. Lazarus, Effect of High Electronic Current Density on the Motion of Au195 and Sb125 in Gold, Physical Review, 145(2), 507-518. (1966) 155.K.L. Tai, P.H. Sun, and M. Ohring, Lateral self-diffusion and electromigration in thin metal films, Thin Solid Films, 25(2), 343-352. (1975) 156.M. Hsieh, H. Huntington, and R. Jeffery, Electromigration of Au and Ag in Pb, Cryst. Lattice Defects, 7(1), 9-22. (1977) 157.D.C. Yeh and H.B. Huntington, Extreme Fast-Diffusion System: Nickel in Single-Crystal Tin, Physical Review Letters, 53(15), 1469-1472. (1984) 158.Y. Serruys, Electromigration du niobium-95 et du tantale-182 dans le niobium, Scripta Metallurgica, 16(4), 365-366. (1982) 159.J. Wohlgemuth, Electromigration in polycrystalline and single crystal magnesium, Journal of Physics and Chemistry of Solids, 36(10), 1025-1031. (1975) 160.P.S. Ho, Solute Effects on Electromigration, Physical Review B, 8(10), 4534-4539. (1973) 161.A. Gangulee and F.M. d'Heurle, Mass transport during electromigration in aluminum-magnesium thin films, Thin Solid Films, 25(2), 317-325. (1975) 162.H. Nakajima and H.B. Huntington, Electromigration of cadmiun in lead, Journal of Physics and Chemistry of Solids, 42(3), 171-184. (1981) 163.N. Van Doan, Effet de valence en electromigration dans l'argent, Journal of Physics and Chemistry of Solids, 31(9), 2079-2085. (1970) 164.A.H. Verbruggen and R. Griessen, Experimental evidence for nonintegral direct-force valence in electromigration, Physical Review B, 32(2), 1426-1429. (1985) 165.P. Dayal and L.S. Darken, Migration of carbon in steel under the influence of direct current, JOM, 2(9), 1156-1158. (1950) 166.R.E. Einziger and H.B. Huntington, Electromigration and permeation of hydrogen and deuterium in silver, Journal of Physics and Chemistry of Solids, 35(12), 1563-1573. (1974) 167.V. Sidorenko, R. Kripyakevich, and B. Kachmar, Fiz.-Khim. Mekhan. Mater., 6, 187. (1970) 168.J.F. Marech, amp, and eacute, C. R. Acad. Sci. Paris, 281, 449. (1975) 169.L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, A general-purpose machine learning framework for predicting properties of inorganic materials, npj Computational Materials, 2, 16028. (2016) 170.S. Seabold and J. Perktold. Statsmodels: Econometric and statistical modeling with python. in Proceedings of the 9th Python in Science Conference. SciPy society Austin. (2010) 171.J. Fox, Applied regression analysis and generalized linear models. 2015: Sage Publications. 172.G. DiGiacomo, P. Peressini, and R. Rutledge, Diffusion coefficient and electromigration velocity of copper in thin silver films, Journal of Applied Physics, 45(4), 1626-1629. (1974) 173.C.W. Park and R.W. Vook, Electromigration-resistant Cu-Pd alloy films, Thin Solid Films, 226(2), 238-247. (1993) 174.K.L. Lee, C.K. Hu, and K.N. Tu, In situ scanning electron microscope comparison studies on electromigration of Cu and Cu(Sn) alloys for advanced chip interconnects, Journal of Applied Physics, 78(7), 4428-4437. (1995) 175.N. Tamura, A.A. MacDowell, R. Spolenak, B.C. Valek, J.C. Bravman, W.L. Brown, R.S. Celestre, H.A. Padmore, B.W. Batterman, and J.R. Patel, Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films, Journal of Synchrotron Radiation, 10(2), 137-143. (2003) 176.A.T. Wu, C.-N. Siao, C.-S. Ku, and H.-Y. Lee, In situ observation of stress evolution in pure tin strip under electromigration using synchrotron radiation x-ray, Journal of Materials Research, 25(02), 292-295. (2010) 177.Y. Takahashi, Y. Nishino, H. Furukawa, H. Kubo, K. Yamauchi, T. Ishikawa, and E. Matsubara, Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy, Journal of Applied Physics, 105(12), 124911. (2009) 178.R.A. Kirby and T. A. Hahn, Standard Reference Material 736, Copper—Thermal Expansion, (NBS Certificate of Analysis). (1969) 179.C. Kittel, Introduction to solid state physics. 2005, Hoboken, NJ: Wiley. 180.J.-M. Zhang, Y. Zhang, K.-W. Xu, and V. Ji, Young's modulus surface and Poisson's ratio curve for cubic metals, Journal of Physics and Chemistry of Solids, 68(4), 503-510. (2007) 181.M.W. Lane, E.G. Liniger, and J.R. Lloyd, Relationship between interfacial adhesion and electromigration in Cu metallization, Journal of Applied Physics, 93(3), 1417-1421. (2003) 182.S. Hideki, M. Masayuki, and H. Kazuhiko, The effects of Al(111) crystal orientation on electromigration in half-micron layered Al interconnects, Japanese Journal of Applied Physics, 32(10R), 4479. (1993) 183.S. Vaidya and A. Sinha, Effect of texture and grain structure on electromigration in Al-0.5% Cu thin films, Thin Solid Films, 75(3), 253-259. (1981) 184.M. Attardo and R. Rosenberg, Electromigration damage in aluminum film conductors, Journal of Applied Physics, 41(6), 2381-2386. (1970) 185.F.M. Heurle, N.G. Ainslie, A. Gangulee, and M.C. Shine, Activation energy for electromigration failure in aluminum films containing copper, Journal of Vacuum Science & Technology, 9(1), 289-293. (1972) 186.E. Colgan and K. Rodbell, The role of Cu distribution and Al2Cu precipitation on the electromigration reliability of submicrometer Al (Cu) lines, Journal of applied physics, 75(7), 3423-3434. (1994) 187.K.-C. Chen, W.-W. Wu, C.-N. Liao, L.-J. Chen, and K. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper, Science, 321(5892), 1066-1069. (2008) 188.J. Cho and C.V. Thompson, Grain size dependence of electromigration‐induced failures in narrow interconnects, Applied Physics Letters, 54(25), 2577-2579. (1989) 189.K.-C. Chen, C.-N. Liao, W.-W. Wu, and L.-J. Chen, In-situ Microscopic Study of Cu Intragranular Electromigration, MRS Proceedings, 907. (2011) 190.J. Kuang, X. Du, X. Li, Y. Yang, A.A. Luo, and G. Tang, Athermal influence of pulsed electric current on the twinning behavior of Mg–3Al–1Zn alloy during rolling, Scripta Materialia, 114(Supplement C), 151-155. (2016) 191.P. Liang and K.-L. Lin, Non-deformation recrystallization of metal with electric current stressing, Journal of Alloys and Compounds, 722, 690-697. (2017) 192.K.K. Mirpuri and J.A. Szpunar. Orientation and microstructure dependence of electromigration damage in damascene Cu interconnect lines. in Materials Science Forum. Trans Tech Publ. (2005) 193.M. Meyers, O. Vöhringer, and V. Lubarda, The onset of twinning in metals: a constitutive description, Acta materialia, 49(19), 4025-4039. (2001) 194.I. Wolfram Research, Wolfram|Alpha Knowledgebase. 2016: Champaign, IL 195.F.C. Nix and D. MacNair, The Thermal Expansion of Pure Metals: Copper, Gold, Aluminum, Nickel, and Iron, Physical Review, 60(8), 597-605. (1941) 196.K. Davoudi, Temperature dependence of the yield strength of aluminum thin films: Multiscale modeling approach, Scripta Materialia, 131(Supplement C), 63-66. (2017) 197.Y.A. Chang and L. Himmel, Temperature Dependence of the Elastic Constants of Cu, Ag, and Au above Room Temperature, Journal of Applied Physics, 37(9), 3567-3572. (1966) 198.Z. Huang, L.Y. Gu, and J.R. Weertman, Temperature dependence of hardness of nanocrystalleve copper in low-temperature range, Scripta Materialia, 37(7), 1071-1075. (1997) 199.K. Zhang, J.R. Weertman, and J.A. Eastman, The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper, Applied Physics Letters, 85(22), 5197-5199. (2004) 200.T.-H. Fang, C.-I. Weng, and J.-G. Chang, Molecular dynamics analysis of temperature effects on nanoindentation measurement, Materials Science and Engineering: A, 357(1–2), 7-12. (2003) 201.M. Haghshenas, V. Bhakhri, R. Oviasuyi, and R.J. Klassen, Effect of temperature and strain rate on the mechanisms of indentation deformation of magnesium, MRS Communications, 5(3), 513-518. (2015) 202.P.K. Krishnamoorthy and S.C. Sircar, Oxidation kinetics of copper in the thin film range, Acta Metallurgica, 17(8), 1009-1012. (1969) 203.T.R. Simes, S.G. Mellor, and D.A. Hills, A note on the influence of residual stress on measured hardness, The Journal of Strain Analysis for Engineering Design, 19(2), 135-137. (1984) 204.T.Y. Tsui, W.C. Oliver, and G.M. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy, Journal of Materials Research, 11(3), 752-759. (2011) 205.R. Cammarata and K. Sieradzki, Effects of surface stress on the elastic moduli of thin films and superlattices, Physical Review Letters, 62(17), 2005. (1989) 206.X. Zhu, X. Gao, H. Song, G. Han, and D.-Y. Lin, Effects of vacancies on the mechanical properties of zirconium: An ab initio investigation, Materials & Design, 119, 30-37. (2017)
|