跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉禹辰
研究生(外文):Yu-chenLiu
論文名稱:電流效應對材料晶格穩定性影響
論文名稱(外文):Electric current effect upon materials lattice stability
指導教授:林士剛
指導教授(外文):Shih-kang Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:257
中文關鍵詞:電遷移效應機器學習同步輻射X光臨場實驗第一原理計算有效電荷晶格應變
外文關鍵詞:electromigration effectmachine learningsynchrotron radiation-based X-rayin situ experimentsfirst principles calculationeffective chargelattice strain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電遷移效應係指電流誘發的原子擴散現象,富饒基礎學理探究及產業科技上的應用。探討電遷移效應的理論模型自1960年起相繼被提出,包含Huntington等人提出的碰撞模型、Bosvieux等人提出的電荷極化模型、Sorbello提出的以贗勢法為基礎的理論模型,此些模型用以描述電流之於金屬內原子的作用力關係。Blech, Korhonen, Clement,等人則奠基於前述微觀作用力之理論模型,進而推導出巨觀上因電遷移效應造成的導線應力隨空間、時間的變化,及解釋著名的Blech效應。儘管上述的數學模型可以完整的描述實驗上觀察到具方向性的現象如孔洞/突起物生成、界面反應上的極化效應,但卻不能有效解釋非方向性的現象如合金過飽和現象、界面反應上的非極化效應。由此,現存電遷移理論模式似乎尚不全解釋所有觀測到的現象,而電流誘導之材料晶格相穩定性變化之基礎研究亦有待系統性理解。因此,本論文利用臨場通電同步輻射X光、臨場通電電子顯微鏡、臨場通電奈米壓痕試驗,並結合第一原理計算、機器學習技法、有限元素分析法,旨在重新檢視材料晶格相穩定性變化的機制。本論文首先利用機器學習技法建立有效電荷之理論模型,並重新解析有效電荷之物理意義,並提出新穎的觀點。本論文隨後在臨場實驗的觀測下,發現電流將誘發晶格產生非均勻的本質晶格應變,且該應變將顯著的提升原子擴散係數。我們發現當晶格應變來到一個臨界值時,原子擴散將被顯著的觀測到。進一步,由於電流誘發晶格形變,我們以臨場通電背向散射電子繞射圖譜並結合傳統機械力學的理論成功預測電流誘發形變。以施密德定律分析通電誘發之凸塊及雙晶形變生成,認為電流誘發凸塊生長係藉由滑移形變生成,當晶格受力達一臨界值時,材料便以應力釋放的方式誘發擴散發生,形成凸塊;當電流密度提高時,雙晶形變被觀察到。藉此,通電將如傳統應力理論行為誘發彈性/滑移/雙晶形變之轉換。更進一步,本論文建構以虎克定律為基礎定性模型以計算在面心立方晶體中發生電遷移的臨界應變值,該理論計算與實驗相當吻合。總結而言,本研究認為材料在通電初期會誘發本質且非均勻之晶格應變,非均勻的晶格應變提供擴散驅動力且該應變將增加擴散係數,當晶格應變累積到一臨界值時,應力釋放誘發之擴散現象會顯著發生,且該應力釋放將遵守傳統機械應力理論。本研究因此提出電流誘發形變可與傳統機械力學以相同脈絡討論,並認為誘發電致擴散的關鍵因子並不只有電性,更包含了材料的機械性質。本論文作者希望能藉由此論文的研究能提供通電對材料晶格穩定性之影響理論基礎,並能提供關鍵因子以協助次世代電子連結材料之設計。
Electromigration (EM) effect is the atomic diffusion induced by electric current. It involves both fundamental and technology interests. Theoretical models including the ballistic model, charge polarization model, and pseudopotential-based analytical model, have been proposed by Huntington el al., Bosvieux et al., and Sorbello, respectively, to tack on the EM effect microscopically. Macroscopic stress models proposed subsequently by Blech et al., Korhonen et al., Clement et al., etc., describes the critical points for EM occurrence, and stress evolution during EM. These models intend to reasonably interpret directional phenomena including the voids/hillocks formation, and polarity effect; however, they fail to explain the non-directional phenomena including the supersaturation effect, and non-polarity effect. It seems that some parts of the existing EM theories are missing to well and generally explain all the phenomena. The fundamental understanding to the electric current-induced lattice stability change is urgent to be pursued. In this study, in situ electric current synchrotron radiation-based X-ray diffraction (XRD), in situ electric current scanning electron microscopic (SEM) equipped with electron backscattering diffraction pattern (EBSD), in situ nano indentation were employed with combination of first principles calculation, machine learning method and finite element analysis to study the lattice stability change induced by electric current. This study first developed a machine learning model to explore the effective charge and deciphered the complex physic of it. We then found that electric current would induce intrinsic non-uniform lattice strain, which would significantly increase the atomic diffusivity. When the lattice strain exceeded a critical value, diffusion was significantly observed. The electric current-induced deformation was able to be predicted by applying the theories from conventional solid mechanics. Hillock formation and twin deformation were analyzed by using Schmid’s Law, which suggested the elastic/slip/twin transition induced by electric current. Hillock formation was identified as a slip deformation and was likely to result from the stress relaxation-induced diffusion. Twin deformation was found induced at higher current density. The Hooke’s Law was further employed to establish a qualitative model to predict the EM occurrence in face-centered cubic metals. The model worked well to describe the critical lattice strain for EM occurrence. It is remarkable to suggest that not only the electrical properties, but the mechanical properties of materials govern the EM-resistance. The electric current-induced deformation can be discussed in the same context with the conventional solid mechanics. The author hopes that the study provides a fundamental understanding to the electric current-induced lattice stability change and may provide new guideline for next-generation interconnection materials’ design.
CHAPTER I: INTRODUCTION 1
I.1 Background 1
CHAPTER II: LITERATURE REVIEW 5
II.1 EM effect in Back-end-of-line (BEOL) processing of Integrated Circuits 5
II.2 EM effect in the electronic packaging materials 7
II.3 Theoretical models for EM 11
II.4 Effective charge 28
II.5 EM occurrence induced stress evolution 32
II.6 EM-induced lattice deformation measurement 43
II.7 Correlation between the EM occurrence and mechanical properties 51
II.8 Electroplastic effect 52
II.9 Electric current effect upon phase stability change 55
II.10 Summary 63
II.11 Objectives of the present thesis 64
CHAPTER III: RESEARCH METHODOLOGIES 66
III.1 In situ current stressing synchrotron radiation-based X-ray techniques 66
III.2 In situ current stressing scanning electron microscopy 67
III.3 In situ current stressing nano-indentation 68
III.4 Ab initio calculations 70
III.5 Finite-element analysis 70
III.6 Machine learning method 72
III.7 Sample preparation 89
CHAPTER IV: RESULTS AND DISCUSSIONS 90
IV.1 Exploring effective charge in electromigration using machine learning 90
IV.2 The electromigration effect revisited: non-uniform local tensile stress-driven diffusion 114
IV.3 Electric current-induced elastic/slip/twin deformation of Cu 149
IV.4 In situ investigation on the isotropy of the electric current-induced lattice strain 180
IV.5 Electric current-induced lattice strain in fcc metals and electromigration occurrence 188
IV.6 The Blech effect revisited – critical voltage drop induced electromigration occurrence 198
IV.7 Gradient electro-hardening of copper revealed by in situ nano-indentation 226
IV.8 General model for electric current-induced materials lattice stability change 239
CHAPTER V: CONCLUSION 242
Reference 243
1.H. Zhang, G. Cargill III, Y. Ge, A. Maniatty, and W. Liu, Strain evolution in Al conductor lines during electromigration, Journal of Applied Physics, 104(12), 123533. (2008)
2.H.B. Huntington and A.R. Grone, Current-induced marker motion in gold wires, Journal of Physics and Chemistry of Solids, 20(1–2), 76-87. (1961)
3.W.-W. Shen and K.-N. Chen, Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV), Nanoscale Research Letters, 12(1), 56. (2017)
4.D. Shahrjerdi and S.W. Bedell, Extremely Flexible Nanoscale Ultrathin Body Silicon Integrated Circuits on Plastic, Nano Letters, 13(1), 315-320. (2013)
5.K.N. Tu, Y. Liu, and M. Li, Effect of Joule heating and current crowding on electromigration in mobile technology, Applied Physics Reviews, 4(1), 011101. (2017)
6.A. Lancaster and M. Keswani, Integrated circuit packaging review with an emphasis on 3D packaging, Integration, 60, 204-212. (2018)
7.C.Y. Liu, C. Chen, and K.N. Tu, Electromigration in Sn–Pb solder strips as a function of alloy composition, Journal of Applied Physics, 88(10), 5703-5709. (2000)
8.S.-W. Chen, C.-M. Chen, and W.-C. Liu, Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions, Journal of Electronic Materials, 27(11), 1193-1199. (1998)
9.H. Gan and K.N. Tu, Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples, Journal of Applied Physics, 97(6), 063514. (2005)
10.R.S. Sorbello, Theory of electromigration, Solid State Physics, 51, 159-231. (1997)
11.C. Bosvieux and J. Friedel, Sur l'electrolyse des alliages metalliques, Journal of Physics and Chemistry of Solids, 23(1–2), 123-136. (1962)
12.Y.T. Chiu, C.H. Liu, K.L. Lin, and Y.S. Lai, Supersaturation induced by current stressing, Scripta Materialia, 65(7), 615-617. (2011)
13.Y. Jiang, G. Tang, C. Shek, Y. Zhu, and Z. Xu, On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17Al12 phase in an aged Mg–9Al–1Zn alloy, Acta Materialia, 57(16), 4797-4808. (2009)
14.C.M. Chen and S.W. Chen, Electromigration effect upon the Zn/Ni and Bi/Ni interfacial reactions, Journal of Electronic Materials, 29(10), 1222-1228. (2000)
15.P.-C. Wang, G. Cargill III, I. Noyan, and C.-K. Hu, Electromigration-induced stress in aluminum conductor lines measured by x-ray microdiffraction, Applied Physics Letters, 72(11), 1296-1298. (1998)
16.H.-K. Kao, G.S.C. III, F. Giuliani, and C.-K. Hu, Relationship between copper concentration and stress during electromigration in an Al(0.25 at. % Cu) conductor line, Journal of Applied Physics, 93(5), 2516-2527. (2003)
17.K. Chen, N. Tamura, M. Kunz, K.N. Tu, and Y.-S. Lai, In situ measurement of electromigration-induced transient stress in Pb-free Sn–Cu solder joints by synchrotron radiation based x-ray polychromatic microdiffraction, Journal of Applied Physics, 106(2), 023502. (2009)
18.B.C. Valek, N. Tamura, R. Spolenak, W.A. Caldwell, A.A. MacDowell, R.S. Celestre, H.A. Padmore, J.C. Bravman, B.W. Batterman, W.D. Nix, and J.R. Patel, Early stage of plastic deformation in thin films undergoing electromigration, Journal of Applied Physics, 94(6), 3757-3761. (2003)
19.A.S. Budiman, W.D. Nix, N. Tamura, B.C. Valek, K. Gadre, J. Maiz, R. Spolenak, and J.R. Patel, Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction, Applied Physics Letters, 88(23), 233515. (2006)
20.Y.-T. Chiu, K.-L. Lin, A.T. Wu, W.-L. Jang, C.-L. Dong, and Y.-S. Lai, Electrorecrystallization of Metal Alloy, Journal of Alloys and Compounds, 549, 190-194. (2013)
21.A.T. Wu, A.M. Gusak, K.N. Tu, and C.R. Kao, Electromigration-induced grain rotation in anisotropic conducting beta tin, Applied Physics Letters, 86(24), 241902. (2005)
22.N. Bekiaris, Z. Wu, H. Ren, M. Naik, J.H. Park, M. Lee, T.H. Ha, W. Hou, J.R. Bakke, M. Gage, Y. Wang, and J. Tang. Cobalt fill for advanced interconnects. in 2017 IEEE International Interconnect Technology Conference (IITC). (2017)
23.S.-k. Lin, C.-y. Yeh, and M.-j. Wang, On the formation mechanism of solid-solution Cu-to-Cu joints in the Cu/Ni/Ga/Ni/Cu system, Materials Characterization, 137, 14-23. (2018)
24.S.-k. Lin, H.-m. Chang, C.-l. Cho, Y.-c. Liu, and Y.-k. Kuo, Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits, Electronic Materials Letters, 11(4), 687-694. (2015)
25.S.-k. Lin, M.-j. Wang, C.-y. Yeh, H.-m. Chang, and Y.-c. Liu, High-strength and thermal stable Cu-to-Cu joint fabricated with transient molten Ga and Ni under-bump-metallurgy, Journal of Alloys and Compounds, 702, 561-567. (2017)
26.S.-k. Lin, C.-l. Cho, and H.-m. Chang, Interfacial Reactions in Cu/Ga and Cu/Ga/Cu Couples, Journal of Electronic Materials, 43(1), 204-211. (2014)
27.S.-k. Lin, S. Nagao, E. Yokoi, C. Oh, H. Zhang, Y.-c. Liu, S.-g. Lin, and K. Suganuma, Nano-volcanic Eruption of Silver, Scientific Reports, 6, 34769. (2016)
28.S.W. Chen, C.M. Chen, and W.C. Liu, Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions, Journal of Electronic Materials, 27(11), 1193-1198. (1998)
29.S.K. Lin, C.K. Yeh, W. Xie, Y.C. Liu, and M. Yoshimura, Ab initio-aided CALPHAD thermodynamic modeling of the Sn-Pb binary system under current stressing, Scientific Reports, 3. (2013)
30.J.-Y. He, K.-L. Lin, and A.T. Wu, The diminishing of crystal structure of Sn9Zn alloy due to electrical current stressing, Journal of Alloys and Compounds, 619, 372-377. (2015)
31.Y. Mei, G.Q. Lu, X. Chen, S. Luo, and D. Ibitayo, Migration of Sintered Nanosilver Die-Attach Material on Alumina Substrate Between 250 and 400C in Dry Air, IEEE Transactions on Device and Materials Reliability, 11(2), 316-322. (2011)
32.P.S. Ho and T. Kwok, Electromigration in metals, Reports on Progress in Physics, 52(3), 301. (1989)
33.F.M. D'Heurle and R. Rosenberg, Electromigration in Thin Films, in Physics of Thin Films, G. Hass, M.H. Francombe, and R.W. Hoffman, Editors. 1973, Elsevier. p. 257-310.
34.K.-N. Tu, Fundamentals of electromigration, in Solder Joint Technology. 2007, Springer. p. 211-243.
35.H.B. Huntington, 6 - Electromigration in Metals, in Diffusion in Solids, A.S. Nowick and J.J. Burton, Editors. 1975, Academic Press. p. 303-352.
36.A. Lodder, Electromigration theory unified, EPL (Europhysics Letters), 72(5), 774. (2005)
37.A. Lodder, Direct Force Controversy in Electromigration Exit, Defect and Diffusion Forum, 261-262, 77-84. (2007)
38.R.S. Sorbello, A pseudopotential based theory of the driving forces for electromigration in metals, Journal of Physics and Chemistry of Solids, 34(6), 937-950. (1973)
39.J.P. Dekker, A. Lodder, and J. van Ek, Theory for the electromigration wind force in dilute alloys, Physical Review B, 56(19), 12167-12177. (1997)
40.A. Lodder, Electron-impurity scattering in dilute alloys with lattice distortion. I. General theory, Journal of Physics F: Metal Physics, 6(10), 1885. (1976)
41.J.P. Dekker and A. Lodder, Calculated electromigration wind force in face-centered-cubic and body-centered-cubic metals, Journal of Applied Physics, 84(4), 1958-1962. (1998)
42.J.P. Dekker, P. Gumbsch, E. Arzt, and A. Lodder, Calculation of the electromigration wind force in Al alloys, Physical Review B, 59(11), 7451-7457. (1999)
43.I.A. Blech and E.S. Meieran, Direct transmission electron microscope observation of electrotransport in Al thin films, Applied Physics Letters, 11(8), 263-266. (1967)
44.I.A. Blech and E.S. Meieran, Electromigration in Thin Al Films, Journal of Applied Physics, 40(2), 485-491. (1969)
45.I.A. Blech, Electromigration in thin aluminum films on titanium nitride, Journal of Applied Physics, 47(4), 1203-1208. (1976)
46.I.A. Blech and C. Herring, Stress generation by electromigration, Applied Physics Letters, 29(3), 131-133. (1976)
47.H.U. Schreiber, Reduced aluminium electromigration in future integrated circuits — A problem of test procedure and threshold mechanisms, Thin Solid Films, 175, 29-36. (1989)
48.C.C. Wei and C.Y. Liu, Electromigration Studies of Sn(Cu) and Sn(Ni) Alloy Stripes, Journal of Materials Research, 20(08), 2072-2079. (2005)
49.Y. Li and D. Goyal, 3D Microelectronic Packaging: From Fundamentals to Applications. Vol. 57. 2017: Springer.
50.R. Frankovic and G.H. Bernstein, Electromigration drift and threshold in Cu thin-film interconnects, IEEE Transactions on Electron Devices, 43(12), 2233-2239. (1996)
51.D. Ney, X. Federspiel, V. Girault, O. Thomas, and P. Gergaud, Stress-induced electromigration backflow effect in copper interconnects, IEEE Transactions on Device and Materials Reliability, 6(2), 175-180. (2006)
52.L. Arnaud, T. Berger, and G. Reimbold, Evidence of grain-boundary versus interface diffusion in electromigration experiments in copper damascene interconnects, Journal of Applied Physics, 93(1), 192-204. (2003)
53.Y. Chai, P.C. Chan, Y. Fu, Y. Chuang, and C. Liu, Electromigration studies of Cu/carbon nanotube composite interconnects using Blech structure, IEEE electron device letters, 29(9), 1001-1003. (2008)
54.E.T. Ogawa, A.J. Bierwag, K.-D. Lee, H. Matsuhashi, P.R. Justison, A.N. Ramamurthi, P.S. Ho, V.A. Blaschke, D. Griffiths, A. Nelsen, M. Breen, and R.H. Havemann, Direct observation of a critical length effect in dual-damascene Cu/oxide interconnects, Applied Physics Letters, 78(18), 2652-2654. (2001)
55.P.-C. Wang and R.G. Filippi, Electromigration threshold in copper interconnects, Applied Physics Letters, 78(23), 3598-3600. (2001)
56.R. Frankovic, G.H. Bernstein, and J.J. Clement, Pulsed-current duty cycle dependence of electromigration-induced stress generation in aluminum conductors, IEEE Electron Device Letters, 17(5), 244-246. (1996)
57.R.G. Filippi, G.A. Biery, and M.H. Wood, Evidence of The Electromigration Short-Length Effect in Aluminum-Based Metallurgy With Tungsten Diffusion Barriers, MRS Proceedings, 309, 141. (1993)
58.E. Glickman, N. Osipov, A. Ivanov, and M. Nathan, Diffusional creep as a stress relaxation mechanism in electromigration, Journal of applied physics, 83(1), 100-107. (1998)
59.L. Klinger, E. Glickman, A. Katsman, and L. Levin, Time dependence of stress and hillock distributions during electromigration in thin metal film interconnections, Materials Science and Engineering: B, 23(1), 15-18. (1994)
60.E. Glickman and M. Nathan, Creep-controlled electromigration in near-threshold interconnects, Microelectronic engineering, 50(1-4), 329-334. (2000)
61.R. Kirchheim, Stress and electromigration in Al-lines of integrated circuits, Acta Metallurgica et Materialia, 40(2), 309-323. (1992)
62.M.A. Korhonen, P. Bo/rgesen, K.N. Tu, and C.Y. Li, Stress evolution due to electromigration in confined metal lines, Journal of Applied Physics, 73(8), 3790-3799. (1993)
63.J.J. Clement and C.V. Thompson, Modeling electromigration‐induced stress evolution in confined metal lines, Journal of Applied Physics, 78(2), 900-904. (1995)
64.Y.J. Park and C.V. Thompson, The effects of the stress dependence of atomic diffusivity on stress evolution due to electromigration, Journal of Applied Physics, 82(9), 4277-4281. (1997)
65.J.R. Lloyd, Electromigration and mechanical stress, Microelectronic Engineering, 49(1), 51-64. (1999)
66.M. Sarychev, Y.V. Zhitnikov, L. Borucki, C.-L. Liu, and T. Makhviladze, General model for mechanical stress evolution during electromigration, Journal of Applied Physics, 86(6), 3068-3075. (1999)
67.K.N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects, Journal of Applied Physics, 94(9), 5451-5473. (2003)
68.H. Zhang and G. Cargill, Electromigration-induced strain relaxation in Cu conductor lines, Journal of Materials Research, 26(04), 498-502. (2011)
69.B.C. Valek, J.C. Bravman, N. Tamura, A.A. MacDowell, R.S. Celestre, H.A. Padmore, R. Spolenak, W.L. Brown, B.W. Batterman, and J.R. Patel, Electromigration-induced plastic deformation in passivated metal lines, Applied Physics Letters, 81(22), 4168-4170. (2002)
70.N. Tamura, R.S. Celestre, A.A. MacDowell, H.A. Padmore, R. Spolenak, B.C. Valek, N.M. Chang, A. Manceau, and J.R. Patel, Submicron x-ray diffraction and its applications to problems in materials and environmental science, Review of Scientific Instruments, 73(3), 1369-1372. (2002)
71.K. Chen, N. Tamura, B.C. Valek, and K.N. Tu, Plastic deformation in Al (Cu) interconnects stressed by electromigration and studied by synchrotron polychromatic x-ray microdiffraction, Journal of Applied Physics, 104(1), 013513. (2008)
72.A.T. Wu, K.N. Tu, J.R. Lloyd, N. Tamura, B.C. Valek, and C.R. Kao, Electromigration-induced microstructure evolution in tin studied by synchrotron x-ray microdiffraction, Applied Physics Letters, 85(13), 2490-2492. (2004)
73.S.-k. Lin, Y.-c. Liu, S.-J. Chiu, Y.-T. Liu, and H.-Y. Lee, The electromigration effect revisited: non-uniform local tensile stress-driven diffusion, Scientific Reports, 7(1), 3082. (2017)
74.C.M. Tan and A. Roy, Electromigration in ULSI interconnects, Materials Science and Engineering: R: Reports, 58(1), 1-75. (2007)
75.H. Shibata, M. Murota, and K. Hashimoto, The Effects of Al(111) Crystal Orientation on Electromigration in Half-Micron Layered Al Interconnects, Japanese Journal of Applied Physics, 32(Part 1, No. 10), 4479-4484. (1993)
76.S. Vaidya and A.K. Sinha, Effect of texture and grain structure on electromigration in Al-0.5%Cu thin films, Thin Solid Films, 75(3), 253-259. (1981)
77.M.J. Attardo and R. Rosenberg, Electromigration Damage in Aluminum Film Conductors, 8th Reliability Physics Symposium, 41(6), 2381-2386. (1970)
78.C. Kim and J.W.M. Jr., The influence of Cu precipitation on electromigration failure in Al‐Cu‐Si, Journal of Applied Physics, 72(5), 1837-1845. (1992)
79.E.G. Colgan and K.P. Rodbell, The role of Cu distribution and Al2Cu precipitation on the electromigration reliability of submicrometer Al(Cu) lines, Journal of Applied Physics, 75(7), 3423-3434. (1994)
80.A.J. Learn, Effect of structure and processing on electromigration‐induced failure in anodized aluminum, Journal of Applied Physics, 44(3), 1251-1258. (1973)
81.X.Y. Liu, C.L. Liu, and L.J. Borucki, A new investigation of copper's role in enhancing Al–Cu interconnect electromigration resistance from an atomistic view, Acta Materialia, 47(11), 3227-3231. (1999)
82.K. Tu, Electromigration in stressed thin films, Physical Review B, 45(3), 1409. (1992)
83.H. Conrad, Effects of electric current on solid state phase transformations in metals, Materials Science and Engineering: A, 287(2), 227-237. (2000)
84.B.J. Ruszkiewicz, T. Grimm, I. Ragai, L. Mears, and J.T. Roth, A Review of Electrically-Assisted Manufacturing With Emphasis on Modeling and Understanding of the Electroplastic Effect, Journal of Manufacturing Science and Engineering-Transactions of the Asme, 139(11). (2017)
85.O.A. Troitskii, Electromechanical effect in metals, Pis'ma Zhurn. Experim. Teor. Fiz., 10, 18-22. (1969)
86.K. Okazaki, M. Kagawa, and H. Conrad, A study of the electroplastic effect in metals, Scripta Metallurgica, 12(11), 1063-1068. (1978)
87.H. Conrad, N. Karam, and S. Mannan, Effect of electric current pulses on the recrystallization of copper, Scripta Metallurgica, 17(3), 411-416. (1983)
88.V.L.A. Silveira, R.A.F.O. Fortes, and W.A. Mannheimer, A comment on “effect of electric current pulses on the recrystallization of copper, Scripta Metallurgica, 17(11), 1381-1382. (1983)
89.J.P. Barnak, A.F. Sprecher, and H. Conrad, Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing, Scripta Metallurgica et Materialia, 32(6), 879-884. (1995)
90.Y. Cao, L. He, Y. Zhou, P. Wang, and J. Cui, Contributions to yield strength in an ultrafine grained 1050 aluminum alloy after DC current annealing, Materials Science and Engineering: A, 674(Supplement C), 193-202. (2016)
91.F. Yang and G. Zhao, Effect of Electric Current on Nanoindentation of Copper, Nanoscience and Nanotechnology Letters, 2(4), 322-326. (2010)
92.G. Zhao and F. Yang, Effect of alternating electric current on the nanoindentation of copper, Applied Physics A, 109(3), 553-559. (2012)
93.G. Zhao and F. Yang, Effect of DC current on tensile creep of pure tin, Materials Science and Engineering: A, 591, 97-104. (2014)
94.R. Chen and F. Yang, Effect of DC Current on the Creep Deformation of Tin, Journal of Electronic Materials, 39(12), 2611-2617. (2010)
95.R. Chen and F. Yang, Effect of electric current on the creep deformation of lead, Materials Science and Engineering: A, 528(6), 2319-2325. (2011)
96.H. Conrad, Electroplasticity in metals and ceramics, Materials Science and Engineering: A, 287(2), 276-287. (2000)
97.S.-T. Hong, Y.-H. Jeong, M.N. Chowdhury, D.-M. Chun, M.-J. Kim, and H.N. Han, Feasibility of electrically assisted progressive forging of aluminum 6061-T6 alloy, CIRP Annals, 64(1), 277-280. (2015)
98.Z. Zimniak and G. Radkiewicz, The electroplastic effect in the cold-drawing of copper wires for the automotive industry, Archives of Civil and Mechanical Engineering, 8(2), 173-179. (2008)
99.G. Tang, J. Zhang, Y. Yan, H. Zhou, and W. Fang, The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire, Journal of Materials Processing Technology, 137(1), 96-99. (2003)
100.M.-S. Kim, N.T. Vinh, H.-H. Yu, S.-T. Hong, H.-W. Lee, M.-J. Kim, H.N. Han, and J.T. Roth, Effect of electric current density on the mechanical property of advanced high strength steels under quasi-static tensile loads, International Journal of Precision Engineering and Manufacturing, 15(6), 1207-1213. (2014)
101.J.-H. Roh, J.-J. Seo, S.-T. Hong, M.-J. Kim, H.N. Han, and J.T. Roth, The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current, International Journal of Plasticity, 58(Supplement C), 84-99. (2014)
102.Z. Xu, H. Wang, Z. Sun, Y. Ye, and G. Tang, Effect of electropulsing-assisted turning process on AISI 5120 cementation steel, Materials Science and Technology, 33(12), 1454-1460. (2017)
103.J. Kuang, X. Li, R. Zhang, Y. Ye, A.A. Luo, and G. Tang, Enhanced rollability of Mg3Al1Zn alloy by pulsed electric current: a comparative study, Materials & Design, 100(Supplement C), 204-216. (2016)
104.H.-D. Nguyen-Tran, H.-S. Oh, S.-T. Hong, H.N. Han, J. Cao, S.-H. Ahn, and D.-M. Chun, A review of electrically-assisted manufacturing, International Journal of Precision Engineering and Manufacturing-Green Technology, 2(4), 365-376. (2015)
105.A.F. Sprecher, S.L. Mannan, and H. Conrad, Overview no. 49: On the mechanisms for the electroplastic effect in metals, Acta Metallurgica, 34(7), 1145-1162. (1986)
106.H. Conrad, A. Sprecher, W. Cao, and X. Lu, Electroplasticity—the effect of electricity on the mechanical properties of metals, Jom, 42(9), 28-33. (1990)
107.W.A. Salandro, J.J. Jones, C. Bunget, L. Mears, and J.T. Roth, Applications of Electrically Assisted Manufacturing, in Electrically Assisted Forming. 2015, Springer. p. 255-311.
108.L. Guan, G. Tang, and P.K. Chu, Recent advances and challenges in electroplastic manufacturing processing of metals, Journal of Materials Research, 25(7), 1215-1224. (2011)
109.G. Tang, M. Zheng, Y. Zhu, J. Zhang, W. Fang, and Q. Li, The application of the electro-plastic technique in the cold-drawing of steel wires, Journal of Materials Processing Technology, 84(1–3), 268-270. (1998)
110.M.-J. Kim, M.-G. Lee, K. Hariharan, S.-T. Hong, I.-S. Choi, D. Kim, K.H. Oh, and H.N. Han, Electric current–assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension, International Journal of Plasticity, 94(Supplement C), 148-170. (2017)
111.W.-Y. Chen, T.-C. Chiu, K.-L. Lin, A.T. Wu, W.-L. Jang, C.-L. Dong, and H.-Y. Lee, Anisotropic dissolution behavior of the second phase in SnCu solder alloys under current stress, Scripta Materialia, 68(5), 317-320. (2013)
112.Y.-T. Chiu, K.-L. Lin, A.T. Wu, W.-L. Jang, C.-L. Dong, and Y.-S. Lai, Electrorecrystallization of Metal Alloy, Journal of Alloys and Compounds, 549(Supplement C), 190-194. (2013)
113.J. Kuang, T.S.E. Low, S.R. Niezgoda, X. Li, Y. Geng, A.A. Luo, and G. Tang, Abnormal texture development in magnesium alloy Mg–3Al–1Zn during large strain electroplastic rolling: Effect of pulsed electric current, International Journal of Plasticity, 87(Supplement C), 86-99. (2016)
114.H. Lv, R. Zhou, L. Li, H. Ni, J. Zhu, and T. Feng, Effect of Electric Current Pulse on Microstructure and Corrosion Resistance of Hypereutectic High Chromium Cast Iron, Materials, 11(11), 2220. (2018)
115.Y. Feng and Z. Tan, Effect of pulse current quenching on microstructure and properties of steel for ecological building, Jinshu Rechuli/Heat Treatment of Metals, 43(4), 173-178. (2018)
116.V. Stolyarov, Features of Electroplastic Effect in Alloys with Martensite Transformation, Acta Metallurgica Sinica (English Letters), 31(12), 1305-1310. (2018)
117.Y. Jiang, G. Tang, C. Shek, Y. Zhu, L. Guan, S. Wang, and Z. Xu, Improved ductility of aged Mg-9Al-1Zn alloy strip by electropulsing treatment, Journal of materials research, 24(5), 1810-1814. (2009)
118.Y. Jiang, G. Tang, C. Shek, and Y. Zhu, Effect of electropulsing treatment on microstructure and tensile fracture behavior of aged Mg–9Al–1Zn alloy strip, Applied Physics A, 97(3), 607-615. (2009)
119.Y. Zhu, S. To, W.B. Lee, X. Liu, Y. Jiang, and G. Tang, Electropulsing-induced phase transformations in a Zn–Al-based alloy, Journal of materials research, 24(8), 2661-2669. (2009)
120.W. Zhang, M. Sui, Y. Zhou, and D. Li, Evolution of microstructures in materials induced by electropulsing, Micron, 34(3-5), 189-198. (2003)
121.W. Zhang, M.L. Sui, K.Y. Hu, D.X. Li, X.N. Guo, G.H. He, and B.L. Zhou, Formation of nanophases in a Cu–Zn alloy under high current density electropulsing, Journal of Materials Research, 15(10), 2065-2068. (2011)
122.S. To, Y. Zhu, W. Lee, X. Liu, Y. Jiang, and G. Tang, Effects of current density on electropulsing-induced phase transformations in a Zn–Al based alloy, Applied Physics A, 96(4), 939-944. (2009)
123.Y. Dolinsky and T. Elperin, Thermodynamics of phase transitions in current-carrying conductors, Physical Review B, 47(22), 14778-14785. (1993)
124.Y. Dolinsky and T. Elperin, Thermodynamics of nucleation in current-carrying conductors, Physical Review B, 50(1), 52. (1994)
125.K.N. Tu, Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions, Physical Review B, 49(3), 2030-2034. (1994)
126.W.C. Liu, S.W. Chen, and C.M. Chen, The Al/Ni interfacial reactions under the influence of electric current, Journal of Electronic Materials, 27(1), L6-L9. (1998)
127.N. Bertolino, J. Garay, U. Anselmi-Tamburini, and Z.A. Munir, High-flux current effects in interfacial reactions in Au–Al multilayers, TPHB, 82(8), 969-985. (2002)
128.C.M. Hsu, D.S.H. Wong, and S.W. Chen, Generalized phenomenological model for the effect of electromigration on interfacial reaction, Journal of Applied Physics, 102(2), 023715-023715-7. (2007)
129.C.-k. Yeh, Phase stabilities of Pb-Sn and Bi-Ni alloys under current stressing: An ab initio-aided CALPHAD study, in Materials science and engineering. 2013, National Cheng Kung University. p. 170.
130.C.-M. Chen and S.-W. Chen, - Electromigration effect upon the Zn/Ni and Bi/Ni interfacial reactions, - 29(- 10). (2000)
131.C.M. Chen and S.W. Chen, Electric current effects on Sn/Ag interfacial reactions, Journal of Electronic Materials, 28(7), 902-906. (1999)
132.C.-m. Chen, 電遷移對無鉛銲料與基材界面反應之影響, in Chemical engineering. 2002, National Tsing Hua University: Hsinchu, Taiwan.
133.H. Gan and K.N. Tu, Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples, Journal of Applied Physics, 97(6). (2005)
134.J.E. Garay, U. Anselmi-Tamburini, and Z.A. Munir, Enhanced growth of intermetallic phases in the Ni–Ti system by current effects, Acta Materialia, 51(15), 4487-4495. (2003)
135.J.R. Friedman, J.E. Garay, U. Anselmi-Tamburini, and Z.A. Munir, Modified interfacial reactions in Ag-Zn multilayers under the influence of high DC currents, Intermetallics, 12(6), 589-597. (2004)
136.A. Kumar, M. He, Z. Chen, and P.S. Teo, Effect of electromigration on interfacial reactions between electroless Ni-P and Sn-3.5% Ag solder, Thin Solid Films, 462, 413-418. (2004)
137.M. Braunovic and N. Alexandrov, Intermetallic compounds at Al-to-Cu electrical interfaces - effect of temperature and electric-current, Ieee Transactions on Components Packaging and Manufacturing Technology Part A, 17(1), 78-85. (1994)
138.M.Y. Du, C.M. Chen, and S.W. Chen, Effects upon interfacial reactions by electric currents of reversing directions, Materials Chemistry and Physics, 82(3), 818-825. (2003)
139.W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of materials research, 19(01), 3-20. (2004)
140.G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B, 54(16), 11169-11186. (1996)
141.J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, 77(18), 3865-3868. (1996)
142.P.E. Blöchl, Projector augmented-wave method, Physical Review B, 50(24), 17953-17979. (1994)
143.H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B, 13(12), 5188-5192. (1976)
144.F. Pedregosa, Ga, #235, l. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, #201, and d. Duchesnay, Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825-2830. (2011)
145.D. Morgan, B. Afflerbach, R. Jacobs, T. Mayeshiba, and H. Wu. MAterials Simulation Toolkit – Machine Learning (MAST-ML). 2017; Available from: https://github.com/uw-cmg/MAST-ML.
146.Raschka, MLxtend: Providing machine learning and data science utilities and extensions to Python's scientific computing stack, Journal of Open Source Software, 3(24). (2018)
147.J. Shi and H.B. Huntington, Electromigration of gold and silver in single crystal tin, Journal of Physics and Chemistry of Solids, 48(8), 693-696. (1987)
148.H.R. Patil and H.B. Huntington, Electromigration and associated void formation in silver, Journal of Physics and Chemistry of Solids, 31(3), 463-474. (1970)
149.D.A. Golopentia and H.B. Huntington, A study of electromigration of nickel in lead, Journal of Physics and Chemistry of Solids, 39(9), 975-984. (1978)
150.G.A. Sullivan, Search for reversal in copper electromigration, Journal of Physics and Chemistry of Solids, 28(2), 347-350. (1967)
151.A.R. Grone, Current-induced marker motion in copper, Journal of Physics and Chemistry of Solids, 20(1), 88-93. (1961)
152.A. Lodding, Current induced motion of lattice defects in indium metal, Journal of Physics and Chemistry of Solids, 26(1), 143-151. (1965)
153.A. Gangulee and F.M. D'Heurle, Anomalous large grains in alloyed aluminum thin films II. Electromigration and diffusion in thin films with very large grains, Thin Solid Films, 16(2), 227-236. (1973)
154.H.M. Gilder and D. Lazarus, Effect of High Electronic Current Density on the Motion of Au195 and Sb125 in Gold, Physical Review, 145(2), 507-518. (1966)
155.K.L. Tai, P.H. Sun, and M. Ohring, Lateral self-diffusion and electromigration in thin metal films, Thin Solid Films, 25(2), 343-352. (1975)
156.M. Hsieh, H. Huntington, and R. Jeffery, Electromigration of Au and Ag in Pb, Cryst. Lattice Defects, 7(1), 9-22. (1977)
157.D.C. Yeh and H.B. Huntington, Extreme Fast-Diffusion System: Nickel in Single-Crystal Tin, Physical Review Letters, 53(15), 1469-1472. (1984)
158.Y. Serruys, Electromigration du niobium-95 et du tantale-182 dans le niobium, Scripta Metallurgica, 16(4), 365-366. (1982)
159.J. Wohlgemuth, Electromigration in polycrystalline and single crystal magnesium, Journal of Physics and Chemistry of Solids, 36(10), 1025-1031. (1975)
160.P.S. Ho, Solute Effects on Electromigration, Physical Review B, 8(10), 4534-4539. (1973)
161.A. Gangulee and F.M. d'Heurle, Mass transport during electromigration in aluminum-magnesium thin films, Thin Solid Films, 25(2), 317-325. (1975)
162.H. Nakajima and H.B. Huntington, Electromigration of cadmiun in lead, Journal of Physics and Chemistry of Solids, 42(3), 171-184. (1981)
163.N. Van Doan, Effet de valence en electromigration dans l'argent, Journal of Physics and Chemistry of Solids, 31(9), 2079-2085. (1970)
164.A.H. Verbruggen and R. Griessen, Experimental evidence for nonintegral direct-force valence in electromigration, Physical Review B, 32(2), 1426-1429. (1985)
165.P. Dayal and L.S. Darken, Migration of carbon in steel under the influence of direct current, JOM, 2(9), 1156-1158. (1950)
166.R.E. Einziger and H.B. Huntington, Electromigration and permeation of hydrogen and deuterium in silver, Journal of Physics and Chemistry of Solids, 35(12), 1563-1573. (1974)
167.V. Sidorenko, R. Kripyakevich, and B. Kachmar, Fiz.-Khim. Mekhan. Mater., 6, 187. (1970)
168.J.F. Marech, amp, and eacute, C. R. Acad. Sci. Paris, 281, 449. (1975)
169.L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, A general-purpose machine learning framework for predicting properties of inorganic materials, npj Computational Materials, 2, 16028. (2016)
170.S. Seabold and J. Perktold. Statsmodels: Econometric and statistical modeling with python. in Proceedings of the 9th Python in Science Conference. SciPy society Austin. (2010)
171.J. Fox, Applied regression analysis and generalized linear models. 2015: Sage Publications.
172.G. DiGiacomo, P. Peressini, and R. Rutledge, Diffusion coefficient and electromigration velocity of copper in thin silver films, Journal of Applied Physics, 45(4), 1626-1629. (1974)
173.C.W. Park and R.W. Vook, Electromigration-resistant Cu-Pd alloy films, Thin Solid Films, 226(2), 238-247. (1993)
174.K.L. Lee, C.K. Hu, and K.N. Tu, In situ scanning electron microscope comparison studies on electromigration of Cu and Cu(Sn) alloys for advanced chip interconnects, Journal of Applied Physics, 78(7), 4428-4437. (1995)
175.N. Tamura, A.A. MacDowell, R. Spolenak, B.C. Valek, J.C. Bravman, W.L. Brown, R.S. Celestre, H.A. Padmore, B.W. Batterman, and J.R. Patel, Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films, Journal of Synchrotron Radiation, 10(2), 137-143. (2003)
176.A.T. Wu, C.-N. Siao, C.-S. Ku, and H.-Y. Lee, In situ observation of stress evolution in pure tin strip under electromigration using synchrotron radiation x-ray, Journal of Materials Research, 25(02), 292-295. (2010)
177.Y. Takahashi, Y. Nishino, H. Furukawa, H. Kubo, K. Yamauchi, T. Ishikawa, and E. Matsubara, Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy, Journal of Applied Physics, 105(12), 124911. (2009)
178.R.A. Kirby and T. A. Hahn, Standard Reference Material 736, Copper—Thermal Expansion, (NBS Certificate of Analysis). (1969)
179.C. Kittel, Introduction to solid state physics. 2005, Hoboken, NJ: Wiley.
180.J.-M. Zhang, Y. Zhang, K.-W. Xu, and V. Ji, Young's modulus surface and Poisson's ratio curve for cubic metals, Journal of Physics and Chemistry of Solids, 68(4), 503-510. (2007)
181.M.W. Lane, E.G. Liniger, and J.R. Lloyd, Relationship between interfacial adhesion and electromigration in Cu metallization, Journal of Applied Physics, 93(3), 1417-1421. (2003)
182.S. Hideki, M. Masayuki, and H. Kazuhiko, The effects of Al(111) crystal orientation on electromigration in half-micron layered Al interconnects, Japanese Journal of Applied Physics, 32(10R), 4479. (1993)
183.S. Vaidya and A. Sinha, Effect of texture and grain structure on electromigration in Al-0.5% Cu thin films, Thin Solid Films, 75(3), 253-259. (1981)
184.M. Attardo and R. Rosenberg, Electromigration damage in aluminum film conductors, Journal of Applied Physics, 41(6), 2381-2386. (1970)
185.F.M. Heurle, N.G. Ainslie, A. Gangulee, and M.C. Shine, Activation energy for electromigration failure in aluminum films containing copper, Journal of Vacuum Science & Technology, 9(1), 289-293. (1972)
186.E. Colgan and K. Rodbell, The role of Cu distribution and Al2Cu precipitation on the electromigration reliability of submicrometer Al (Cu) lines, Journal of applied physics, 75(7), 3423-3434. (1994)
187.K.-C. Chen, W.-W. Wu, C.-N. Liao, L.-J. Chen, and K. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper, Science, 321(5892), 1066-1069. (2008)
188.J. Cho and C.V. Thompson, Grain size dependence of electromigration‐induced failures in narrow interconnects, Applied Physics Letters, 54(25), 2577-2579. (1989)
189.K.-C. Chen, C.-N. Liao, W.-W. Wu, and L.-J. Chen, In-situ Microscopic Study of Cu Intragranular Electromigration, MRS Proceedings, 907. (2011)
190.J. Kuang, X. Du, X. Li, Y. Yang, A.A. Luo, and G. Tang, Athermal influence of pulsed electric current on the twinning behavior of Mg–3Al–1Zn alloy during rolling, Scripta Materialia, 114(Supplement C), 151-155. (2016)
191.P. Liang and K.-L. Lin, Non-deformation recrystallization of metal with electric current stressing, Journal of Alloys and Compounds, 722, 690-697. (2017)
192.K.K. Mirpuri and J.A. Szpunar. Orientation and microstructure dependence of electromigration damage in damascene Cu interconnect lines. in Materials Science Forum. Trans Tech Publ. (2005)
193.M. Meyers, O. Vöhringer, and V. Lubarda, The onset of twinning in metals: a constitutive description, Acta materialia, 49(19), 4025-4039. (2001)
194.I. Wolfram Research, Wolfram|Alpha Knowledgebase. 2016: Champaign, IL
195.F.C. Nix and D. MacNair, The Thermal Expansion of Pure Metals: Copper, Gold, Aluminum, Nickel, and Iron, Physical Review, 60(8), 597-605. (1941)
196.K. Davoudi, Temperature dependence of the yield strength of aluminum thin films: Multiscale modeling approach, Scripta Materialia, 131(Supplement C), 63-66. (2017)
197.Y.A. Chang and L. Himmel, Temperature Dependence of the Elastic Constants of Cu, Ag, and Au above Room Temperature, Journal of Applied Physics, 37(9), 3567-3572. (1966)
198.Z. Huang, L.Y. Gu, and J.R. Weertman, Temperature dependence of hardness of nanocrystalleve copper in low-temperature range, Scripta Materialia, 37(7), 1071-1075. (1997)
199.K. Zhang, J.R. Weertman, and J.A. Eastman, The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper, Applied Physics Letters, 85(22), 5197-5199. (2004)
200.T.-H. Fang, C.-I. Weng, and J.-G. Chang, Molecular dynamics analysis of temperature effects on nanoindentation measurement, Materials Science and Engineering: A, 357(1–2), 7-12. (2003)
201.M. Haghshenas, V. Bhakhri, R. Oviasuyi, and R.J. Klassen, Effect of temperature and strain rate on the mechanisms of indentation deformation of magnesium, MRS Communications, 5(3), 513-518. (2015)
202.P.K. Krishnamoorthy and S.C. Sircar, Oxidation kinetics of copper in the thin film range, Acta Metallurgica, 17(8), 1009-1012. (1969)
203.T.R. Simes, S.G. Mellor, and D.A. Hills, A note on the influence of residual stress on measured hardness, The Journal of Strain Analysis for Engineering Design, 19(2), 135-137. (1984)
204.T.Y. Tsui, W.C. Oliver, and G.M. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy, Journal of Materials Research, 11(3), 752-759. (2011)
205.R. Cammarata and K. Sieradzki, Effects of surface stress on the elastic moduli of thin films and superlattices, Physical Review Letters, 62(17), 2005. (1989)
206.X. Zhu, X. Gao, H. Song, G. Han, and D.-Y. Lin, Effects of vacancies on the mechanical properties of zirconium: An ab initio investigation, Materials & Design, 119, 30-37. (2017)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top