[1]H. Farahani, R. Wagiran, and M. N. Hamidon, Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review, Sensors, 14, 7881-7939 (2014).
[2]C.-D. Feng, S.-L. Sun, H. Wang, C. U. Segre, and J. R. Stetter, Humidity sensing properties of Nafion and sol-gel derived SiO2/Nafion composite thin films, Sensors and Actuators B: Chemical, 40, 217-222 (1997).
[3]V. K. Tomer, S. Duhan, A. K. Sharma, R. Malik, S. Jangra, S. P. Nehra, and S. Devi, Humidity-Sensing Properties of Ag0 Nanoparticles Supported on WO3-SiO2 with Super Rapid Response and Excellent Stability, European Journal of Inorganic Chemistry, 2015, 5232-5240 (2015).
[4]V. K. Tomer, S. Duhan, P. V. Adhyapak, and I. S. Mulla, Mn-Loaded Mesoporous Silica Nanocomposite: A Highly Efficient Humidity Sensor, Journal of the American Ceramic Society, 98, 741-747 (2015).
[5]V. K. Tomer, S. Duhan, A. K. Sharma, R. Malik, S. P. Nehra, and S. Devi, One pot synthesis of mesoporous ZnO–SiO2 nanocomposite as high performance humidity sensor, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 483, 121-128 (2015).
[6]H. Zhao, T. Zhang, R. Qi, J. Dai, S. Liu, T. Fei, and G. Lu, Development of solution processible organic-inorganic hybrid materials with core-shell framework for humidity monitoring, Sensors and Actuators B: Chemical, 255, 2878-2885 (2018).
[7]T. Zhang, R. Wnag, W. Geng, X. Li, Q. Qi, Y. He, and S. Wang, Study on humidity sensing properties based on composite materials of Li-doped mesoporous silica A-SBA-15, Sensors and Actuators B: Chemical, 128, 482-487 (2008).
[8]L. Liu, L. Y. Kou, Z. C. Zhong, L. Y. Wang, L. F. Liu, and W. Li, Preparation and Humidity Sensing Properties of KCl/MCM-41 Composite, Chinese Physics Letters, 27, 1-4 (2010).
[9]N. Yamazoe and Y. Shimizu, Humidity sensors: Principles and applications, Sensors and Actuators, 10, 379-398 (1986).
[10]K. Suri, S. Annapoorni, A. K. Sarkar, and R. P. Tandon, Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites, Sensors and Actuators B: Chemical, 81, 277-282 (2002).
[11]Y. Li, M. J. Yang, and Y. She, Humidity sensitive properties of crosslinked and quaternized poly(4-vinylpyridine-co-butyl methacrylate), Sensors and Actuators B-Chemical, 107, 252-257 (2005).
[12]B. C. Cheng, B. X. Tian, C. C. Xie, Y. H. Xiao, and S. J. Lei, Highly sensitive humidity sensor based on amorphous Al2O3 nanotubes, Journal of Materials Chemistry, 21, 1907-1912 (2011).
[13]Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, and J. Zhao, Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning, Sensors and Actuators B: Chemical, 146, 98-102 (2010).
[14]Q. Qi, T. Zhang, S. Wang, and X. Zheng, Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery, Sensors and Actuators B: Chemical, 137, 649-655 (2009).
[15]M. Parthibavarman, V. Hariharan, and C. Sekar, High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method, Materials Science and Engineering: C, 31, 840-844 (2011).
[16]M.-S. Gong, J.-U. Kim, and J.-G. Kim, Preparation of water-durable humidity sensor by attachment of polyelectrolyte membrane to electrode substrate by photochemical crosslinking reaction, Sensors and Actuators B: Chemical, 147, 539-547 (2010).
[17]C.-W. Lee, H.-S. Park, J.-G. Kim, B.-K. Choi, S.-W. Joo, and M.-S. Gong, Polymeric humidity sensor using organic/inorganic hybrid polyelectrolytes, Sensors and Actuators B: Chemical, 109, 315-322 (2005).
[18]P.-G. Su and C.-S. Wang, Novel flexible resistive-type humidity sensor, Sensors and Actuators B: Chemical, 123, 1071-1076 (2007).
[19]Z. M. Rittersma, Recent achievements in miniaturised humidity sensors—a review of transduction techniques, Sensors and Actuators A: Physical, 96, 196-210 (2002).
[20]Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, Capacitive humidity sensor design based on anodic aluminum oxide, Sensors and Actuators B: Chemical, 141, 441-446 (2009).
[21]S. W. Chen, O. K. Khor, M. W. Liao, and C. K. Chung, Sensitivity evolution and enhancement mechanism of porous anodic aluminum oxide humidity sensor using magnetic field, Sensors and Actuators B: Chemical, 199, 384-388 (2014).
[22]T. Wagner, S. Krotzky, A. Weiss, T. Sauerwald, C. D. Kohl, J. Roggenbuck, and M. Tiemann, A High Temperature Capacitive Humidity Sensor Based on Mesoporous Silica, Sensors, 11, 3135-3144 (2011).
[23]C.-H. Chen and C.-H. Lin, A novel method to fabricate ion-doped microporous polyimide structures for ultra-high sensitive humidity sensing, Sensors and Actuators B: Chemical, 135, 276-282 (2008).
[24]W. Yao, X. Chen, and J. Zhang, A capacitive humidity sensor based on gold–PVA core–shell nanocomposites, Sensors and Actuators B: Chemical, 145, 327-333 (2010).
[25]D. Zhang, D. Wang, P. Li, X. Zhou, X. Zong, and G. Dong, Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film, Sensors and Actuators B: Chemical, 255, 1869-1877 (2018).
[26]A. I. Buvailo, Y. J. Xing, J. Hines, N. Dollahon, and E. Borguet, TiO2/LiCl-Based Nanostructured Thin Film for Humidity Sensor Applications, ACS Applied Materials & Interfaces, 3, 528-533 (2011).
[27]S. Lei, D. J. Chen, and Y. Q. Chen, A surface acoustic wave humidity sensor with high sensitivity based on electrospun MWCNT/Nafion nanofiber films, Nanotechnology, 22, 7-14 (2011).
[28]M. Bedoya, G. Orellana, and M. C. Moreno-Bondi, Fluorescent optosensor for humidity measurements in air, Helvetica Chimica Acta, 84, 2628-2639 (2001).
[29]C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, Quantum-Dot-Doped Polymer Nanofibers for Optical Sensing, Advanced Materials, 23, 3770-3774 (2011).
[30]Z. Chen and C. Lu, Humidity sensors: A review of materials and mechanisms, Sensor Letters, 3, 274-295 (2005).
[31]彭永福, 以溶膠凝膠法製備SiO2薄膜作TFT閘極絕緣層材料, 國立中山大學光電工程學系碩士論文, 12-20 (2009).[32]L. Ye, Y. Zhang, X. Zhang, T. Hu, R. Ji, B. Ding, and B. Jiang, Sol–gel preparation of SiO2/TiO2/SiO2–TiO2 broadband antireflective coating for solar cell cover glass, Solar Energy Materials and Solar Cells, 111, 160-164 (2013).
[33]C. Kapridaki and P. Maravelaki-Kalaitzaki, TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection, Progress in Organic Coatings, 76, 400-410 (2013).
[34]S. Son, S. H. Hwang, C. Kim, J. Y. Yun, and J. Jang, Designed Synthesis of SiO2/TiO2 Core/Shell Structure As Light Scattering Material for Highly Efficient Dye-Sensitized Solar Cells, ACS Applied Materials & Interfaces, 5, 4815-4820 (2013).
[35]F. Yang, J. Zhu, X. Zou, X. Pang, R. Yang, S. Chen, Y. Fang, T. Shao, X. Luo, and L. Zhang, Three-dimensional TiO2/SiO2 composite aerogel films via atomic layer deposition with enhanced H2S gas sensing performance, Ceramics International, 44, 1078-1085 (2018).
[36]Y. Tang, D. Ao, W. Li, X. Zu, S. Li, and Y. Q. Fu, NH3 sensing property and mechanisms of quartz surface acoustic wave sensors deposited with SiO2, TiO2, and SiO2-TiO2 composite films, Sensors and Actuators B: Chemical, 254, 165-1173 (2018).
[37]P.-G. Su and W.-Y. Tsai, Humidity sensing and electrical properties of a composite material of nano-sized SiO2 and poly(2-acrylamido-2-methylpropane sulfonate), Sensors and Actuators B: Chemical, 100, 417-422 (2004).
[38]P.-G. Su and S.-C. Huang, Electrical and humidity sensing properties of carbon nanotubes-SiO2-poly(2-acrylamido-2-methylpropane sulfonate) composite material, Sensors and Actuators B: Chemical, 113, 142-149 (2006).
[39]Q. Qi, T. Zhang, X. Zheng, and L. Wan, Preparation and humidity sensing properties of Fe-doped mesoporous silica SBA-15, Sensors and Actuators B: Chemical, 135, 255-261 (2008).
[40]Q. Yuan, N. Li, J. Tu, X. Li, R. Wang, T. Zhang, and C. Shao, Preparation and humidity sensitive property of mesoporous ZnO–SiO2 composite, Sensors and Actuators B: Chemical, 149, 413-419 (2010).
[41]R. Wang, X. Liu, Y. He, Q. Yuan, X. Li, G. Lu, and T. Zhang, The humidity-sensitive property of MgO-SBA-15 composites in one-pot synthesis, Sensors and Actuators B: Chemical, 145, 386-393 (2010).
[42]J. Tu, N. Li, W. Geng, R. Wang, X. Lai, Y. Cao, T. Zhang, X. Li, and S. Qiu, Study on a type of mesoporous silica humidity sensing material, Sensors and Actuators B: Chemical, 166-167, 658-664 (2012).
[43]V. K. Tomer, P. V. Adhyapak, S. Duhan, and I. S. Mulla, Humidity sensing properties of Ag-loaded mesoporous silica SBA-15 nanocomposites prepared via hydrothermal process, Microporous and Mesoporous Materials, 197, 140-147 (2014).
[44]V. K. Tomer and S. Duhan, Nano titania loaded mesoporous silica: Preparation and application as high performance humidity sensor, Sensors and Actuators B: Chemical, 220, 192-200 (2015).
[45]V. K. Tomer, S. Devi, R. Malik, S. P. Nehra, and S. Duhan, Fast response with high performance humidity sensing of Ag–SnO2/SBA-15 nanohybrid sensors, Microporous and Mesoporous Materials, 219, 240-248 (2016).
[46]W.-P. Tai and J.-H. Oh, Fabrication and humidity sensing properties of nanostructured TiO2–SnO2 thin films, Sensors and Actuators B: Chemical, 85, 154-157 (2002).
[47]P.-G. Su and L.-N. Huang, Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films, Sensors and Actuators B: Chemical, 123, 501-507 (2007).
[48]A. Sun, L. Huang, and Y. Li, Study on humidity sensing property based on TiO2 porous film and polystyrene sulfonic sodium, Sensors and Actuators B: Chemical, 139, 543-547 (2009).
[49]X. J. Yue, T. S. Hong, X. Xu, and Z. Li, High-Performance Humidity Sensors Based on Double-Layer ZnO-TiO2 Nanofibers via Electrospinning, Chinese Physics Letters, 28, 1-4 (2011).
[50]Z. Y. Wang, L. Y. Shi, F. Q. Wu, S. A. Yuan, Y. Zhao, and M. H. Zhang, The sol-gel template synthesis of porous TiO2 for a high performance humidity sensor, Nanotechnology, 22, 9-17 (2011).
[51]W.-D. Lin, C.-T. Liao, T.-C. Chang, S.-H. Chen, and R.-J. Wu, Humidity sensing properties of novel graphene/TiO2 composites by sol–gel process, Sensors and Actuators B: Chemical, 209, 555-561 (2015).
[52]M. Gong, Y. Li, Y. Guo, X. Lv, and X. Dou, 2D TiO2 nanosheets for ultrasensitive humidity sensing application benefited by abundant surface oxygen vacancy defects, Sensors and Actuators B: Chemical, 262, 350-358 (2018).
[53]E. Poonia, P. K. Mishra, V. Kiran, J. Sangwan, R. Kumar, P. K. Rai, and V. K. Tomer, Aero-gel assisted synthesis of anatase TiO2 nanoparticles for humidity sensing application, Dalton Transactions, 47, 6293-6298 (2018).
[54]Z. Li, A. A. Haidry, B. Dong, L. Sun, Q. Fatima, L. Xie, and Z. Yao, Facile synthesis of nitrogen doped ordered mesoporous TiO2 with improved humidity sensing properties, Journal of Alloys and Compounds, 742, 814-821 (2018).
[55]L. Sun, A. A. Haidry, Q. Fatima, Z. Li, and Z. Yao, Improving the humidity sensing below 30% RH of TiO2 with GO modification, Materials Research Bulletin, 99, 124-131 (2018).
[56]W. Geng, R. Wang, X. Li, Y. Zou, T. Zhang, J. Tu, Y. He, and N. Li, Humidity sensitive property of Li-doped mesoporous silica SBA-15, Sensors and Actuators B: Chemical, 127, 323-329 (2007).
[57]Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. MacDiarmid, and Y. Wei, Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers, Journal of the American Chemical Society, 130, 5036-5037 (2008).
[58]L. Wang, D. Li, R. Wang, Y. He, Q. Qi, Y. Wang, and T. Zhang, Study on humidity sensing property based on Li-doped mesoporous silica MCM-41, Sensors and Actuators B: Chemical, 133, 622-627 (2008).
[59]J. Tu, R. Wang, W. Geng, X. Lai, T. Zhang, N. Li, N. Yue, and X. Li, Humidity sensitive property of Li-doped 3D periodic mesoporous silica SBA-16, Sensors and Actuators B: Chemical, 136, 392-398 (2009).
[60]H. Zhao, S. Liu, R. Wang, and T. Zhang, Humidity-sensing properties of LiCl-loaded 3D cubic mesoporous silica KIT-6 composites, Materials Letters, 147, 54-57 (2015).
[61]H. Zhang, Z. Li, L. Liu, C. Wang, Y. Wei, and A. G. MacDiarmid, Mg2+/Na+-doped rutile TiO2 nanofiber mats for high-speed and anti-fogged humidity sensors, Talanta, 79, 953-958 (2009).
[62]X. W. He, W. C. Geng, B. L. Zhang, L. M. Jia, L. B. Duan, and Q. Y. Zhang, Ultrahigh humidity sensitivity of NaCl-added 3D mesoporous silica KIT-6 and its sensing mechanism, RSC Advances, 6, 38391-38398 (2016).
[63]S. B. Ge, X. W. He, L. M. Jia, L. B. Duan, S. Zhang, Q. Y. Zhang, W. C. Geng, Facile fabrication of NaCl-added mesoporous silica HMS composite and its humidity responsing performance, Journal of Sol-Gel Science and Technology, 82, 635-642 (2017).
[64]Q. Qi, Y. Feng, T. Zhang, X. Zheng, and G. Lu, Influence of crystallographic structure on the humidity sensing properties of KCl-doped TiO2 nanofibers, Sensors and Actuators B: Chemical, 139, 611-617 (2009).
[65]M. Anbia and S. E. M. Fard, Improving humidity sensing properties of nanoporous TiO2–10mol% SnO2 thin film by co-doping with La3+ and K+, Sensors and Actuators B: Chemical, 160, 215-221 (2011).
[66]W. Geng, Q. Yuan, X. Jiang, J. Tu, L. Duan, J. Gu, and Q. Zhang, Humidity sensing mechanism of mesoporous MgO/KCl–SiO2 composites analyzed by complex impedance spectra and bode diagrams, Sensors and Actuators B: Chemical, 174, 513-520 (2012).
[67]W. Zhang, R. Wang, Q. Zhang, and J. Li, Humidity sensitive properties of K-doped mesoporous silica SBA-15, Journal of Physics and Chemistry of Solids, 73, 517-522 (2012).
[68]R. Al-Oweini and H. El-Rassy, Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors, Journal of Molecular Structure, 919, 140-145 (2009).
[69]I. A. Mudunkotuwa and V. H. Grassian, Citric Acid Adsorption on TiO2 Nanoparticles in Aqueous Suspensions at Acidic and Circumneutral pH: Surface Coverage, Surface Speciation, and Its Impact on Nanoparticle-Nanoparticle Interactions, Journal of the American Chemical Society, 132, 14986-14994 (2010).
[70]S. Agarwal and G. L. Sharma, Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal-electrochemical method, Sensors and Actuators B-Chemical, 85, 205-211 (2002).
[71] Z. G. Zhao, X. W. Liu, W. P. Chen, and T. Li, Carbon nanotubes humidity sensor based on high testing frequencies, Sensors and Actuators A: Physical, 168, 10-13 (2011).