Reference
1.Winter, M., et al., Lithium Batteries: Science and Technology. Nazri, G.-A, 2004. 148.
2.Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243-3262.
3.Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 171-179.
4.郑如定, 锂离子电池和锂聚合物电池概述. 通信电源技术, 2002. 5: p. 18-21.
5.Qian, J., et al., High rate and stable cycling of lithium metal anode. Nature communications, 2015. 6: p. 6362.
6.Lu, Y., Z. Tu, and L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature Materials, 2014. 13: p. 961.
7.Li, N.-W., et al., An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Advanced Materials, 2016. 28(9): p. 1853-1858.
8.Stramare, S., V. Thangadurai, and W. Weppner, Lithium Lanthanum Titanates: A Review. Chemistry of Materials, 2003. 15(21): p. 3974-3990.
9.Bates, J.B., et al., Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics, 1992. 53-56: p. 647-654.
10.Thangadurai, V., S. Narayanan, and D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews, 2014. 43(13): p. 4714-4727.
11.Thompson, T., et al., A Tale of Two Sites: On Defining the Carrier Concentration in Garnet-Based Ionic Conductors for Advanced Li Batteries. Advanced Energy Materials, 2015. 5(11): p. 1500096.
12.Fu, K., et al., Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances, 2017. 3(4): p. e1601659.
13.Luo, W., et al., Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer. Advanced Materials, 2017. 29(22): p. 1606042.
14.Fu, K., et al., Transient Behavior of the Metal Interface in Lithium Metal–Garnet Batteries. Angewandte Chemie International Edition, 2017. 56(47): p. 14942-14947.
15.Tsai, C.-L., et al., Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS applied materials & interfaces, 2016. 8(16): p. 10617-10626.
16.Huang, M., et al., Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2−xMx)O12 (M = Ta, Nb) solid electrolytes. Journal of Power Sources, 2014. 261: p. 206-211.
17.Inada, R., et al., Synthesis and properties of Al-free Li7−xLa3Zr2−xTaxO12 garnet related oxides. Solid State Ionics, 2014. 262: p. 568-572.
18.Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for Sustainable Energy. 2010, Co-Published with Macmillan Publishers Ltd, UK. p. 171-179.
19.Doughty, D.H. Materials issues in lithium ion rechargeable battery technology. 1995. United States.
20.Kurzweil, P. and J. Garche, 2 - Overview of batteries for future automobiles, in Lead-Acid Batteries for Future Automobiles, J. Garche, et al., Editors. 2017, Elsevier: Amsterdam. p. 27-96.
21.Feng, X.M., X.P. Ai, and H.X. Yang, A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries. Electrochemistry Communications, 2004. 6(10): p. 1021-1024.
22.Armand, M., Polymer solid electrolytes - an overview. Solid State Ionics, 1983. 9-10: p. 745-754.
23.Papke, B.L., et al., Ion-pairing in polyether solid electrolytes and its influence on ion transport. Solid State Ionics, 1981. 5: p. 685-688.
24.Zhang, M., et al., Preparation and properties of gel membrane containing porous PVDF-HFP matrix and cross-linked PEG for lithium ion conduction. Frontiers of Chemical Engineering in China, 2008. 2(1): p. 89-94.
25.Yang, C.R., et al., Conductive behaviour of lithium ions in polyacrylonitrile. Journal of Power Sources, 1996. 62(1): p. 89-93.
26.Bates, J.B., et al., Thin-film lithium and lithium-ion batteries. Solid State Ionics, 2000. 135(1): p. 33-45.
27.Inaguma, Y., et al., High ionic conductivity in lithium lanthanum titanate. Solid State Communications, 1993. 86(10): p. 689-693.
28.Aono, H., N. Imanaka, and G.-y. Adachi, High Li+ conducting ceramics. Accounts of chemical research, 1994. 27(9): p. 265-270.
29.Thangadurai, V., H. Kaack, and W.J. Weppner, Novel fast lithium ion conduction in garnet‐type Li5La3M2O12 (M= Nb, Ta). Journal of the American Ceramic Society, 2003. 86(3): p. 437-440.
30.Eichinger, G., Conductivity of Modified Lithium Iodide Samples, in Solid State Batteries, C.A.C. Sequeira and A. Hooper, Editors. 1985, Springer Netherlands: Dordrecht. p. 449-453.
31.Braun, A., et al., Lithium K (1s) synchrotron NEXAFS spectra of lithium-ion battery cathode, anode and electrolyte materials. Journal of power sources, 2007. 170(1): p. 173-178.
32.Kawai, H. and J. Kuwano, Lithium Ion Conductivity of A‐Site Deficient Perovskite Solid Solution La0. 67− x Li3x TiO3. Journal of the Electrochemical Society, 1994. 141(7): p. L78-L79.
33.Narváez-Semanate, J.L. and A.C.M. Rodrigues, Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics. Solid State Ionics, 2010. 181(25): p. 1197-1204.
34.Wang, B., et al., Synthesis, Crystal Structure, and Ionic Conductivity of a Polycrystalline Lithium Phosphorus Oxynitride with the γ-Li3PO4 Structure. Journal of Solid State Chemistry, 1995. 115(2): p. 313-323.
35.Allen, J.L., et al., Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. Journal of Power Sources, 2012. 206: p. 315-319.
36.Hladik, J., Physics of electrolytes. 1972.
37.Barsoum, M.W., Fundamentals of Ceramics. 2002.
38.West, A.R., Solid State Chemistry and its Applications. 2014.
39.West, A.R., Basic solid state chemistry. 1999.
40.Izumi, F., Recent Research Developments in Physics. Transworld Research Network, Trivandrum, 2002. 3: p. 699.
41.Cussen, E.J., Structure and ionic conductivity in lithium garnets. Journal of Materials Chemistry, 2010. 20(25): p. 5167-5173.
42.Awaka, J., et al., Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12. Chemistry Letters, 2011. 40(1): p. 60-62.
43.Awaka, J., et al., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry, 2009. 182(8): p. 2046-2052.
44.Geiger, C.A., et al., Crystal Chemistry and Stability of “Li7La3Zr2O12 Garnet: A Fast Lithium-Ion Conductor. Inorganic Chemistry, 2011. 50(3): p. 1089-1097.
45.Xie, H., et al., Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12. Chemistry of Materials, 2011. 23(16): p. 3587-3589.
46.Awaka, J., et al., Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chemistry letters, 2010. 40(1): p. 60-62.
47.Geiger, C.A., et al., Crystal chemistry and stability of “Li7La3Zr2O12 garnet: a fast lithium-ion conductor. Inorganic chemistry, 2010. 50(3): p. 1089-1097.
48.Adams, S. and R.P. Rao, Ion transport and phase transition in Li 7− x La 3 (Zr 2− x M x) O 12 (M= Ta 5+, Nb 5+, x= 0, 0.25). Journal of Materials Chemistry, 2012. 22(4): p. 1426-1434.
49.Kumar, P.P. and S. Yashonath, Ionic conduction in the solid state. Journal of Chemical Sciences, 2006. 118(1): p. 135-154.
50.Gao, Z., et al., Promises, challenges, and recent progress of inorganic solid‐state electrolytes for all‐solid‐state lithium batteries. Advanced materials, 2018. 30(17): p. 1705702.
51.Zhou, W., et al., Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. Journal of the American Chemical Society, 2016. 138(30): p. 9385-9388.
52.楊開雲, 鈣鈦礦鈦酸鑭鋰與鋰金屬反應機制及反應抑制研究, in 材料科學及工程學系碩博士班. 2007, 成功大學. p. 1-129.