跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/08 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇東葆
研究生(外文):Dong-BaoSu
論文名稱:金薄膜鍍層作為無機固態鋰電池介面修飾之研究
論文名稱(外文):Interface Modification in Solid State Battery using Gold Interlayer
指導教授:方冠榮
指導教授(外文):Kuan-Zong Fung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:70
中文關鍵詞:固態電解質石榴石結構Au薄膜中介層
外文關鍵詞:Solid ElectrolyteGarnet-structureAu Thin Film Interlayer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在1990年代早期,已經提出使用無機離子導體作為固態電解質的鋰離子二次電池。由於固態電池可以改善電池的安全性,所以引起了極大的關注。在幾種無機離子導體中,石榴石結構的Li7La3Zr2O12(LLZO)在用作鋰電池應用的固態電解質時,顯示出足夠的離子傳導性和結構穩定性。此外,鋰金屬具有極高的克電容量,使用鋰金屬作為負極一直是長期的目標,LLZO對金屬鋰具有優異的還原穩定性。然而,Li和LLZO之間的固體-固體接觸導致LLZO和鋰金屬之間的界面極化很大。目前許多團隊已經使用多種不同金屬或氧化物作為LLZO和鋰金屬之間的中介層,透過熔化態之鋰金屬與中介層形成鋰化合金,進而改善鋰於固態電解質上的潤濕效果,結果顯示出低極化的現象並改善了界面行為,但在化學及電化學穩定性上的測試,例如合金含量在充放電過程中的變化等,仍鮮少被探索。濺鍍是用於獲得金屬和氧化物薄膜的優異薄膜沉積技術之一。因此,本研究的主要目的是(i)濺鍍金薄膜作為鋰與無機固態電解質的中介層的可行性,(ii)評估具有和不具中介層的界面極化; (iii)分析鋰插入金屬薄膜層的過程和行為,(v)證明金中介層在鋰對電極電池和全電池測試對界面極化減小方面的有效性。
本研究中,先已固相反應法合成具有較高離子導電率的Ta摻雜的LLZO奈米粉末並將塊材燒結緻密化至95%相對密度以上。使用射頻磁控濺射將金薄膜沉積在LLZO的拋光表面上。其次,加熱鋰金屬至鋰的熔點附近時,將鋰金屬置於Au膜上,將對可能的合金成形加工進行SEM觀察。在恆定電流下進行鋰對電極電池,並監回饋的電壓。透過電化學阻抗譜(EIS)測量界面產生的阻抗約為455Ω,比沒有Au夾層的阻抗低約20倍。最後,將測試Li / Au(中間層)/ LLZO / LCO的電池,並與沒有Au中介層的電池進行比較,以顯示金屬中介層的有效果。
In early 1990s, rechargeable batteries using inorganic ionic conductors as solid electrolytes have been proposed. Because of their improved safety features, solid state batteries have received great attention recently. Among several inorganic ionic conductors, Garnet-structured Li7La3Zr2O12 (LLZO) show adequate ionic conduction and excellent structural stability when used as the solid electrolyte for Li battery applications. Using Li metal as anode has been a long-term target. Moreover, LLZO exhibits superior reduction stability against metallic Li. However, the poor contact between Li and LLZO has caused large interface polarization between LLZO and Li metal. Several metals and oxides have been used as the interlayer between LLZO and Li metal, and shown improved interface behaviour with lower polarization. Through molten Li, metal interlayer is lithiated and form Li alloy to improve the poor wetting behavior. The effect of Li alloy between garnet and Li interface was demonstrated and evaluated by electrochemical impedance spectroscopy (EIS), but the phenomenon between the chemical and electrochemical stability of garnet against alloy compositions is not to be explored. Sputtering has been one of excellent thin-film deposition techniques for obtaining metallic and oxide thin film. Thus, the main objective of this study is to (i) to investigate the feasibility of sputtering metallic thin film as an interlayer for inorganic solid state battery using Li as anode, (ii) to evaluate the interface polarization with and without interlayer; (iii) to analyze and understand the process and behaviour of Li insertion into metal thin film layer, (v) to demonstrate the effectiveness of metallic interlayer on reduction of interface polarization based on Li stripping/plating and full cell tests.
In this study, Ta doped LLZO with higher ionic conductivity will be densified to 〉95% dense using nanosized powder by solid state reaction. Gold thin film will be first deposited on the polished surface of LLZO using rf magnetron sputtering. Secondly, Li metal will be placed on top of Au film under heating near melting point of Li. Li stripping and plating will be conducted under constant current with monitoring of applied voltage. Impedance resulted from interface is around 455Ω which is around twenty times lower than the one without Au interlayer measured by Electrochemical impedance spectroscopy (EIS). SEM observation will be performed for possible alloy forming processing. Finally, a full cell based on Li/Au (interlayer)/LLZO/LCO will be tested and compared with the one without Au interlayer to show the effectiveness of metallic interlayer.
Contents
中文摘要 III
ABSTRACT V
LIST OF FIGURES IX
LIST OF TABLES XI
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Research Motivation 2
1.3 Research Objectives 4
Chapter 2 Theoretical Background 5
2.1 Lithium ion Battery 5
2.2 Types of Electrolyte 8
2.2.1 Organic liquid electrolyte 8
2.2.2 Polymer electrolyte 12
2.2.3 Inorganic solid electrolyte 15
2.3 Basic Characteristics of Crystalline Oxide Solid Electrolyte [38, 39] 21
2.4 Garnet Type Oxide 23
2.5 Challenges and Solutions for SSE 27
2.5.1 Soft interlayer 28
2.5.2 Surface engineering 29
Chapter 3 Experimental Procedure 31
3.1 Material 31
3.2 Sample Preparation 31
3.2.1 Preparation of Li7-xLa3Zr2-xTaxO12 (x=0.5) pellets 31
3.2.2 Preparation of cathode 32
3.3 Battery Assembling 33
3.3.1 Preparation of stripping and plating cell 33
3.3.2 Preparation of LCO/SSE/Au/Li 34
3.4 Characterization and Measurement 35
3.4.1 X-Ray Diffraction (XRD) 35
3.4.2 Inductively coupled plasma mass spectrometer (ICP-MS) 35
3.4.3 Particle size analyzer 35
3.4.4 Scanning electron microscope (SEM) 36
3.4.5 Porosity measurement 36
3.4.6 AC Impedance analysis 36
3.4.7 Battery testing 37
Chapter 4 Result and Discussion 38
4.1 Characterization of Solid State Electrolyte 38
4.1.1 Characterization of calcined powders 38
4.1.2 Characterization of sintered pellets 40
4.2 Li Wetting Behavior of Li-Au / Li6.5La3Zr1.5Ta0.5O12 44
4.3 Electrochemical Test 47
4.3.1 Stability test 47
4.3.2 Electrochemical evaluation of interfacial resistance 49
4.3.2.1 Evaluation from EIS data 49
4.3.2.2 Evaluation from Lithium stripping and plating test 51
4.3.3 Phase transformation of gold 54
4.3.4 Maximum atomic percentage of Lithium in Au interlayer 57
4.4 Performance of solid state battery 61
Chapter 5 Conclusion 65
Reference 67



LIST OF FIGURES
Figure 2.1 Schematic illustration of the discharge and charge processes in a rechargeable lithium ion battery. 6
Figure 2.2 Framework of polymer lithium battery 13
Figure 2.3 (a) Schematic cross-section illustrating the layout of a thin-film battery. [26]; (b) Schematic representation of the stacked cells. 19
Figure 2.4 Unit cell of garnet-type structure C3A2D3O12 with space group Ia3-d (No. 230). The crystal structures were drawn with a computer program VICS. [40] 24
Figure 2.5 Loop arrangement of different Li sites: tetrahedral Li1 site (yellow), octahedral Li2 (pink), and Li3 (green) sites: (a) tetragonal LLZO, (b) cubic LLZO. 26
Figure 2.6 Schematic diagram of main restrictions in ASSLBs by using SSEs as electrolyte. Chemical electrochemical compatibility, interfacial stability, small resistance between SSE and electrodes are the most important factors[50] 27
Figure 2.7. (a)Voltage profiles of Li/LiFePO4 cell without interlayer, which results in short-circuit less than 20 hours. (b) Cycling performance was obtained when the cell with CPMEA polymer interlayer 29
Figure 2.8 Schematic diagram of engineered garnet SSE/Li interface by using Li-Al alloy 30
Figure 3.1 Preparation Method of Li6.5La3Zr1.5Ta0.5O12 32
Figure 3.2 Preparation Method of cathode 33
Figure 3.3 Schematic Representation of heating the symmetric cell 34
Figure 3.4 Schematic Representation of solid state assembling 34
Figure 4.1 XRD pattern of Li6.5La3Zr1.5Ta0.5O12 38
Figure 4.2 Particle size analysis of Li6.5La3Zr1.5Ta0.5O12 39
Figure 4.3 Cross section of Li6.5La3Zr1.5Ta0.5O12 pellet sinter at 1250oC with different magnification 42
Figure 4.4 Nyquist plot of the impedance spectrum for Li6.5La3Zr1.5Ta0.5O12 sintered pellet 43
Figure 4.5 Phase diagram of lithium and gold 44
Figure 4.6 Wetting behavior of pure Li6.5La3Zr1.5Ta0.5O12 pellet after heating with Li metal at 180oC 45
Figure 4.7 Wetting behavior of Au sputtered Li6.5La3Zr1.5Ta0.5O12 pellet after heating with Li metal at 180oC 46
Figure 4.8 Open circuit voltage (OCV) change of Li / Li6.5La3Zr1.5Ta0.5O12 / air with time 48
Figure 4.9 Stripping and plating test with the Li/Au/SSE/Au/Li cell at 0.005mA 49
Figure 4.10 Comparison of Nyquist plots of Li / Au / Li6.5La3Zr1.5Ta0.5O12 / Au / Li and Li / Li6.5La3Zr1.5Ta0.5O12 / Li in the frequency of 1MHz to 0.1Hz 50
Figure 4.11 Stripping and plating test with different current (0.005, 0.01, 0.02, 0.05, 0.08, 0.1mA) 52
Figure 4.12 Calculation of interfacial impedance with different current (0.005, 0.01, 0.02, 0.05, 0.08, 0.1mA) 53
Figure 4.13 Discharge pattern of Au//Li cell with 0.005mA 55
Figure 4.14 XRD pattern of gold with substrate before and after discharge until 5mV 56
Figure 4.15 Charge and discharge curve with (a) 2 hours charging, (b) 4 hours charging, and (c) 6 hours charging, and then discharge to 0 V 58
Figure 4.16 Sample of Au / Li6.5La3Zr1.5Ta0.5O12 after charging 6 hours, and then discharge to 0 V 59
Figure 4.17 XRD pattern of Au / Li6.5La3Zr1.5Ta0.5O12 59
Figure 4.18 Thickness of Au layer 60
Figure 4.19 Charge and discharge test of LCO/ Ta-LLZO/Li cell 62
Figure 4.20 Charge and discharge test of LCO/Ta-LLZO/Au/Li cell 62
Figure 4.21 Cycle performance of Li/Au/Ta-LLZO/LCO 64


LIST OF TABLES
Table 2-1 Performances, and properties of secondary batteries [19]. 7
Table 2-2 Property of solvent used for liquid electrolyte 9
Table 2-3 Decomposition voltage of liquid electrolytes 10
Table 2-4 Comparison of electrolytes used in lithium ion battery 16
Table 2-5 Common solid-state lithium battery systems 18
Table 2-6 Typical values of electrical conductivity. [38] 21
Table 3-1 Physical Properties of Materials for Li7-xLa3Zr2-xTaxO12 (x=0.5) 31
Table 4-1 Calculation of lattice constant with the dopant of Ta 39
Table 4-2 Calculation of chemical ratio from ICP-MS result after calcination 40
Table 4-3 Calculation of chemical ratio from ICP-MS result after sinter desification 41
Table 4-4 Au-Li Lattice Parameter Data at 25oC 56
Reference
1.Winter, M., et al., Lithium Batteries: Science and Technology. Nazri, G.-A, 2004. 148.
2.Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243-3262.
3.Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 171-179.
4.郑如定, 锂离子电池和锂聚合物电池概述. 通信电源技术, 2002. 5: p. 18-21.
5.Qian, J., et al., High rate and stable cycling of lithium metal anode. Nature communications, 2015. 6: p. 6362.
6.Lu, Y., Z. Tu, and L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature Materials, 2014. 13: p. 961.
7.Li, N.-W., et al., An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Advanced Materials, 2016. 28(9): p. 1853-1858.
8.Stramare, S., V. Thangadurai, and W. Weppner, Lithium Lanthanum Titanates:  A Review. Chemistry of Materials, 2003. 15(21): p. 3974-3990.
9.Bates, J.B., et al., Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics, 1992. 53-56: p. 647-654.
10.Thangadurai, V., S. Narayanan, and D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews, 2014. 43(13): p. 4714-4727.
11.Thompson, T., et al., A Tale of Two Sites: On Defining the Carrier Concentration in Garnet-Based Ionic Conductors for Advanced Li Batteries. Advanced Energy Materials, 2015. 5(11): p. 1500096.
12.Fu, K., et al., Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances, 2017. 3(4): p. e1601659.
13.Luo, W., et al., Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer. Advanced Materials, 2017. 29(22): p. 1606042.
14.Fu, K., et al., Transient Behavior of the Metal Interface in Lithium Metal–Garnet Batteries. Angewandte Chemie International Edition, 2017. 56(47): p. 14942-14947.
15.Tsai, C.-L., et al., Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS applied materials & interfaces, 2016. 8(16): p. 10617-10626.
16.Huang, M., et al., Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2−xMx)O12 (M = Ta, Nb) solid electrolytes. Journal of Power Sources, 2014. 261: p. 206-211.
17.Inada, R., et al., Synthesis and properties of Al-free Li7−xLa3Zr2−xTaxO12 garnet related oxides. Solid State Ionics, 2014. 262: p. 568-572.
18.Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for Sustainable Energy. 2010, Co-Published with Macmillan Publishers Ltd, UK. p. 171-179.
19.Doughty, D.H. Materials issues in lithium ion rechargeable battery technology. 1995. United States.
20.Kurzweil, P. and J. Garche, 2 - Overview of batteries for future automobiles, in Lead-Acid Batteries for Future Automobiles, J. Garche, et al., Editors. 2017, Elsevier: Amsterdam. p. 27-96.
21.Feng, X.M., X.P. Ai, and H.X. Yang, A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries. Electrochemistry Communications, 2004. 6(10): p. 1021-1024.
22.Armand, M., Polymer solid electrolytes - an overview. Solid State Ionics, 1983. 9-10: p. 745-754.
23.Papke, B.L., et al., Ion-pairing in polyether solid electrolytes and its influence on ion transport. Solid State Ionics, 1981. 5: p. 685-688.
24.Zhang, M., et al., Preparation and properties of gel membrane containing porous PVDF-HFP matrix and cross-linked PEG for lithium ion conduction. Frontiers of Chemical Engineering in China, 2008. 2(1): p. 89-94.
25.Yang, C.R., et al., Conductive behaviour of lithium ions in polyacrylonitrile. Journal of Power Sources, 1996. 62(1): p. 89-93.
26.Bates, J.B., et al., Thin-film lithium and lithium-ion batteries. Solid State Ionics, 2000. 135(1): p. 33-45.
27.Inaguma, Y., et al., High ionic conductivity in lithium lanthanum titanate. Solid State Communications, 1993. 86(10): p. 689-693.
28.Aono, H., N. Imanaka, and G.-y. Adachi, High Li+ conducting ceramics. Accounts of chemical research, 1994. 27(9): p. 265-270.
29.Thangadurai, V., H. Kaack, and W.J. Weppner, Novel fast lithium ion conduction in garnet‐type Li5La3M2O12 (M= Nb, Ta). Journal of the American Ceramic Society, 2003. 86(3): p. 437-440.
30.Eichinger, G., Conductivity of Modified Lithium Iodide Samples, in Solid State Batteries, C.A.C. Sequeira and A. Hooper, Editors. 1985, Springer Netherlands: Dordrecht. p. 449-453.
31.Braun, A., et al., Lithium K (1s) synchrotron NEXAFS spectra of lithium-ion battery cathode, anode and electrolyte materials. Journal of power sources, 2007. 170(1): p. 173-178.
32.Kawai, H. and J. Kuwano, Lithium Ion Conductivity of A‐Site Deficient Perovskite Solid Solution La0. 67− x Li3x TiO3. Journal of the Electrochemical Society, 1994. 141(7): p. L78-L79.
33.Narváez-Semanate, J.L. and A.C.M. Rodrigues, Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics. Solid State Ionics, 2010. 181(25): p. 1197-1204.
34.Wang, B., et al., Synthesis, Crystal Structure, and Ionic Conductivity of a Polycrystalline Lithium Phosphorus Oxynitride with the γ-Li3PO4 Structure. Journal of Solid State Chemistry, 1995. 115(2): p. 313-323.
35.Allen, J.L., et al., Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. Journal of Power Sources, 2012. 206: p. 315-319.
36.Hladik, J., Physics of electrolytes. 1972.
37.Barsoum, M.W., Fundamentals of Ceramics. 2002.
38.West, A.R., Solid State Chemistry and its Applications. 2014.
39.West, A.R., Basic solid state chemistry. 1999.
40.Izumi, F., Recent Research Developments in Physics. Transworld Research Network, Trivandrum, 2002. 3: p. 699.
41.Cussen, E.J., Structure and ionic conductivity in lithium garnets. Journal of Materials Chemistry, 2010. 20(25): p. 5167-5173.
42.Awaka, J., et al., Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12. Chemistry Letters, 2011. 40(1): p. 60-62.
43.Awaka, J., et al., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry, 2009. 182(8): p. 2046-2052.
44.Geiger, C.A., et al., Crystal Chemistry and Stability of “Li7La3Zr2O12 Garnet: A Fast Lithium-Ion Conductor. Inorganic Chemistry, 2011. 50(3): p. 1089-1097.
45.Xie, H., et al., Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12. Chemistry of Materials, 2011. 23(16): p. 3587-3589.
46.Awaka, J., et al., Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chemistry letters, 2010. 40(1): p. 60-62.
47.Geiger, C.A., et al., Crystal chemistry and stability of “Li7La3Zr2O12 garnet: a fast lithium-ion conductor. Inorganic chemistry, 2010. 50(3): p. 1089-1097.
48.Adams, S. and R.P. Rao, Ion transport and phase transition in Li 7− x La 3 (Zr 2− x M x) O 12 (M= Ta 5+, Nb 5+, x= 0, 0.25). Journal of Materials Chemistry, 2012. 22(4): p. 1426-1434.
49.Kumar, P.P. and S. Yashonath, Ionic conduction in the solid state. Journal of Chemical Sciences, 2006. 118(1): p. 135-154.
50.Gao, Z., et al., Promises, challenges, and recent progress of inorganic solid‐state electrolytes for all‐solid‐state lithium batteries. Advanced materials, 2018. 30(17): p. 1705702.
51.Zhou, W., et al., Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. Journal of the American Chemical Society, 2016. 138(30): p. 9385-9388.
52.楊開雲, 鈣鈦礦鈦酸鑭鋰與鋰金屬反應機制及反應抑制研究, in 材料科學及工程學系碩博士班. 2007, 成功大學. p. 1-129.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top