|
[1]A. Gellé and A. Moores, Water splitting catalyzed by titanium dioxide decorated with plasmonic nanoparticles, Pure Appl. Chem. 89, 1 (2017). [2]W. M. SooHoo, C. Wang, and H. Li, Geospatial assessment of bioenergy land use and its impacts on soil erosion in the U.S. Midwest, J. Environ. Manage. 190, 188 (2017). [3]M. Thiébaut and A. Sentchev, Asymmetry of tidal currents off the W.Brittany coast and assessment of tidal energy resource around the Ushant Island, Renew. Energ. 105, 735 (2017). [4]J. A. Rivera, P. Blum, and P. Bayer, Increased ground temperatures in urban areas: Estimation of the technical geothermal potential, Renew. Energ. 103, 388 (2017). [5]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells, Nat Mater 4, 455 (2005). [6]C. Zhang and Y. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts, Chem. Mat. 17, 3537 (2005). [7]D. Chatterjee and S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol. C 6, 186 (2005). [8]C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, Photoelectrochemical devices for solar water splitting - materials and challenges, Chem Soc Rev 46, 4645 (2017). [9]H. Yang, J. Yan, Z. Lu, X. Cheng, and Y. Tang, Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation, J. Alloy. Compd. 476, 715 (2009). [10]X. Wang, H. Huang, G. Li, Y. Liu, J. Huang, and D. P. Yang, Hydrothermal synthesis of 3D hollow porous Fe3O4 microspheres towards catalytic removal of organic pollutants, Nanoscale Res. Lett. 9, 1 (2014). [11]A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238, 37 (1972). [12]S. Chu, W. Li, Y. F. Yan, T. Hamann, I. Shih, D. W. Wang, and Z. T. Mi, Roadmap on solar water splitting: current status and future prospects, Nano Futures 1, 1 (2017). [13]Z. Kang, X. Q. Yan, Y. F. Wang, Z. M. Bai, Y. C. Liu, Z. Zhang, P. Lin, X. H. Zhang, H. G. Yuan, X. J. Zhang, and Y. Zhang, Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered biosensing application, SCIENTIFIC REPORTS 5, 1 (2015). [14]Y. Q. Gai, J. B. Li, S. S. Li, J. B. Xia, and S. H. Wei, Design of narrow-gap TiO2 a passivated codoping approach for enhanced photoelectrochemical activity., Phys. Rev. Lett. 102, 1 (2009). [15]K. Tolod, S. Hernández, and N. Russo, Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges, Catalysts 7, 1 (2017). [16]S. S. Patil, M. G. Mali, M. A. Hassan, D. R. Patil, S. S. Kolekar, and S.-W. Ryu, One-Pot in Situ Hydrothermal Growth of BiVO4/Ag/rGO Hybrid Architectures for Solar Water Splitting and Environmental Remediation, Sci. Rep. 7, 1 (2017). [17]M. Singh, D. Jampaiah, A. E. Kandjani, Y. M. Sabri, E. Della Gasprera, P. Reineck, M. Judd, J. Langley, N. Cox, J. van Embden, E. L. H. Mayes, B. C. Gibson, S. K. Bhargaba, R. Ramanathan, and V. Bansal,Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity, Nanoscale 10, 6039 (2018). [18]S. Wang, H. M. Ang, and M. O. Tade, Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art, Environ Int 33, 694 (2007). [19]D. Ma, J. Zhong, J. Li, C. Burda, and R. Duan, Preparation and photocatalytic performance of MWCNTs/BiOCl: Evidence for the superoxide radical participation in the degradation mechanism of phenol, Appl. Surf. Sci. 480, 395 (2019). [20]P. Gao, A. Li, D. D. Sun, and W. J. Ng, Effects of various TiO2 nanostructures and graphene oxide on photocatalytic activity of TiO2, J Hazard Mater 279, 96 (2014). [21]T. Senasu, K. Hemavibool, and S. Nanan, Hydrothermally grown CdS nanoparticles for photodegradation of anionic azo dyes under UV-visible light irradiation, RSC Advances 8, 22592 (2018). [22]L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D. K. Dutta, and P. Sengupta, Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light, Appl. Catal. A: Gen. 490, 42 (2015). [23]Z. Chen, S. Liu, M. Q. Yang, and Y. J. Xu, Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water, ACS Appl Mater Interfaces 5, 4309 (2013). [24]J. B. You, L. Meng, T. B. Song, T. F. Guo, Y. Yang, W. H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. De Marco, and Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat Nanotechnol 11, 75 (2016). [25]D. W. Hwang, J. Kim, T. J. Park, and J. S. Lee, Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting, Catal. Lett. 80, 53 (2002). [26]J. Wang, T. Zhang, D. Wang, R. Pan, Q. Wang, and H. Xia, Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer, J. Alloy. Compd. 551, 82 (2013). [27]F. Niu, D. Chen, L. S. Qin, N. Zhang, J. Y. Wang, Z. Chen, and Y. X. Huang, Facile Synthesis of Highly Efficient p-n Heterojunction CuO/BiFeO3 Composite Photocatalysts with Enhanced Visible-Light Photocatalytic Activity, ChemCatChem 7, 3279 (2015). [28]Y. H. Tseng, I. G. Chang, Y. Tai, and K. W. Wu, Effect of Surface Plasmon Resonance on the Photocatalytic Activity of Au/TiO2 Under UV/Visible Illumination, J. Nanosci. Nanotechnol. 12, 416 (2012). [29]J. Luan, M. Chen, and W. Hu, Synthesis, characterization and photocatalytic activity of new photocatalyst ZnBiSbO4 under visible light irradiation, Int J Mol Sci 15, 9459 (2014). [30]S. A. Ansari, M. M. Khan, M. O. Ansari, and M. H. Cho, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis, New J. Chem. 40, 3000 (2016). [31]Y. Ishida, L. Chabanne, M. Antonietti, and M. Shalom, Morphology control and photocatalysis enhancement by the one-pot synthesis of carbon nitride from preorganized hydrogen-bonded supramolecular precursors, Langmuir 30 447 (2014). [32]L. Zhang, T. Xu, X. Zhao, and Y. Zhu, Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities, Appl. Catal. B 98, 138 (2010). [33]Y. Hou, F. Zuo, A. Dagg, and P. Feng, Visible light-driven alpha-Fe2O3 nanorod/graphene/BiV1-xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting, Nano Lett 12, 6464 (2012). [34]S. Bhargava, H. R. Blank, E. Hall, M. A. Chin, H. Kroemer, and V. Narayanamurti, Staggered to straddling band lineups in InAs/Al(As, Sb), Appl. Phys. Lett. 74, 1135 (1999). [35]Z. He, Y. Shi, C. Gao, L. Wen, J. Chen, and S. Song, BiOCl/BiVO4 p–n Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation, J. Phys. Chem. C 118, 389 (2013). [36]R. S. Yan, S. Fathipour, Y. M. Han, B. Song, S. D. Xiao, M. D. Li, N. Ma, V. Protasenko, D. A. Muller, D. Jena, and H. G. Xing, Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment, Nano Lett 15, 5791 (2015). [37]A. Opitz, Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation, J Phys. Condens. Matter. 29, 133001 (2017). [38]J. Liu, R. Wei, J. Hu, L. Li, and J. Li, Novel Bi2O3/NaBi(MoO4)2 heterojunction with enhanced photocatalytic activity under visible light irradiation, J. Alloy. Compd. 580, 475 (2013). [39]H. M. El-Bery, Y. Matsushita, and A. Abdel-moneim, Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites, Appl. Surf. Sci. 423, 185 (2017). [40]W. Zhao, Y. Jin, C. H. Gao, W. Gu, Z. M. Jin, Y. L. Lei, and L. S. Liao, A simple method for fabricating p–n junction photocatalyst CuFe2O4/Bi4Ti3O12 and its photocatalytic activity, Mater. Chem. Phys. 143, 952 (2014). [41]S. Link and M. A. El-Sayed, Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods, J. Phys. Chem. B 103, 8410 (1999). [42]W. Hou and S. B. Cronin, A Review of Surface Plasmon Resonance-Enhanced Photocatalysis, Adv. Funct. Mater. 23, 1612 (2013). [43]P. Zhang, Y. F. Shi, M. F. Chi, J. N. Park, G. D. Stucky, E. W. McFarland , and L. Gao, Mesoporous delafossite CuCrO2 and spinel CuCr2O4: synthesis and catalysis, Nanotechnology 24, 345704 (2013). [44]P. Taneja, S. Sharma, A. Umar, S. K. Mehta, A. O. Ibhadon, and S. K. Kansal, Visible-light driven photocatalytic degradation of brilliant green dye based on cobalt tungstate (CoWO4) nanoparticles, Mater. Chem. Phys. 211, 335 (2018). [45]Y. He, L. Li, W. Fan, C. Zhang, and M. K. H. Leung, A novel and facile solvothermal-and-hydrothermal method for synthesis of uniform BiVO4 film with high photoelectrochemical performance, J. Alloy. Compd 732, 593 (2018). [46]Y. Zhang, J. Rosen, G. S. Hutchings, and F. Jiao, Enhancing photocatalytic oxygen evolution activity of cobalt-based spinel nanoparticles, Catalysis Today 225, 171 (2014). [47]C. Friedel, Sur une combinaison naturelle des oxydes de fer et de cuivre, et sur la reproduction de l’atacamite, Sciences Academy 77, 211 (1873). [48]A. Pabst, Note on the structure of delafossite, AM. MINERAL 31, 539 (1946). [49]X. Meng and Z. Zhang, Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches, J. Mol. Catal. A-Chem. 423, 533 (2016). [50]M. Roble, S. D. Rojas, R. Wheatley, S. Wallentowitz, A. L. Cabrera, and D. E. Diaz-Droguett, Hydrothermal improvement for 3R-CuFeO2 delafossite growth by control of mineralizer and reaction atmosphere, Solid State Sci 271, 314 (2019). [51]M. A. Marquardt, N. A. Ashmore, and D. P. Cann, Crystal chemistry and electrical properties of the delafossite structure, Thin Solid Films 496, 146 (2006). [52]R. Daou, R. Fresard, V. Eyert, S. Hebert, and A. Maignan, Unconventional aspects of electronic transport in delafossite oxides, Sci Technol Adv Mater, 18, 919 (2017). [53]C. Tablero Crespo, Potentiality of CuFeO2-delafossite as a solar energy converter, Solar Energy 163, 162 (2018). [54]Y. Jin and G. Chumanov, Solution synthesis of pure 2H CuFeO2 at low temperatures, RSC Advances 6, 26392 (2016). [55]A. Bera, K. Deb, T. Bera, S. Sinthika, R. Thapa, and B. Saha, Effect of Mg substitution in delafossite structured CuFeO2 thin film deposited on FTO coated glass substrate and its diode characteristics, Thin Solid Films 642, 316 (2017). [56]M. S. Prevot, N. Guijarro, and K. Sivula, Enhancing the Performance of a robust sol-gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction, ChemSusChem 8, 1359 (2015). [57]A. Forslund, “Synthesis and characterisation of delafossite CuFeO2 for solar energy applications, 2016. [58]S. Bassaid, M. Chaib, S. Omeiri, A. Bouguelia, and M. Trari, Photocatalytic reduction of cadmium over CuFeO2 synthesized by sol-gel, J. Photochem. Photobiol. A-Chem. 201, 62 (2009). [59]T. Zhu, Z. H. Deng, X. D. Fang, W. W. Dong, J. Z. Shao, R. H. Tao, and S. M. Wang, Room temperature deposition of amorphous p-type CuFeO2 and fabrication of CuFeO2/n-Si heterojunction by RF sputtering method, B MATER SCI 39, 883 (2016). [60]C. M. Jiang, S. E. Reyes-Lillo, Y. F. Liang, Y. S. Liu, G. J. Liu, F. M. Toma, D. Prendergast, I. D. Sharp, and J. K. Cooper, Electronic Structure and Performance Bottlenecks of CuFeO2 Photocathodes, Chem. Mat. 31, 2524 (2019). [61]X. Xie, H. Dai, T. Li, G. Gong, and Z. Chen, Effect of calcining temperature on the microstructure and magnetic properties of CuFeO2 multiferroic ceramic, Adv. Appl. Ceram. 117, 66 (2017). [62]L. Zhang, X. Tan, D. Xiong, Z. Chen, S. Xu, and W. Deng, Study of the effect of synthetic procedure on microstructure, defects and magnetism of multiferroic CuFeO2 ceramics, Applied Physics A 124, 1 (2018). [63]L. Zhang, P. Li, K. Huang, Z. Tang, G. H. Liu, and Y. B. Li, Chemical solution deposition and transport properties of epitaxial CuFeO2 thin films, Mater. Lett., Article 65, 3289 (2011). [64]W. C. Sheets, E. Mugnier, A. Barnabe, T. J. Marks, and K. R. Poeppelmeier, Hydrothermal synthesis of delafossite-type oxides, Chem. Mater. 18, 7 (2006). [65]H. N. Abdelhamid, S. Kumaran, and H.-F. Wu, One-pot synthesis of CuFeO2 nanoparticles capped with glycerol and proteomic analysis of their nanocytotoxicity against fungi, RSC Advances 6, 97629 (2016).
[66]M. M. Moharam, M. M. Rashad, E. M. Elsayed, and R. M. Abou-Shahba, A facile novel synthesis of delafossite CuFeO2 powders, J. Mater. Sci. Mater. Electron. 25, 1798 (2014). [67]X. Qiu, M. Liu, K. Sunada, M. Miyauchi, and K. Hashimoto, A facile one-step hydrothermal synthesis of rhombohedral CuFeO2 crystals with antivirus property, Chem Commun (Camb) 48, 7365 (2012). [68]D. H. Youn, Y. H. Choi, J.-H. Kim, S. Han, A. Heller, and C. B. Mullins, Simple Microwave-Assisted Synthesis of Delafossite CuFeO2 as an Anode Material for Sodium-Ion Batteries, ChemElectroChem 5, 2419 (2018). [69]C. Xu, T. F. Jiang, Z. L. Wu, W. F. Zhou, X. Zhang, T. Guo, L.S. Wu, and H. G. Xue, p-Type CuFeO2 nanoflakes prepared by sodium alginate-assisted hydrothermal method for photoelectrochemical water reduction, J. Mater. Sci. 53, 12407 (2018). [70]M. Ito, C. Izawa, and T. Watanabe, Direct fabrication of a CuFeO2/Fe photocathode for solar hydrogen production by hydrothermal method, Chemistry Letters 46, 814 (2017). [71]J. Y. Wang, Q. L. Deng, M. J. Li, K. Jiang, J. Z. Zhang, Z. G. Hu, and J. H. Chu, Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications, Scientific Reports 7, 1 (2017).
|