跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 03:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:塗良瑋
研究生(外文):Liang-WeiTu
論文名稱:摻氟氧化錫基板上利用水熱法製備銅鐵礦 (CuFeO2) 薄膜之研究
論文名稱(外文):Hydrothermal fabrication and study of delafossite (CuFeO2) thin films on fluorine doped tin oxide substrates
指導教授:張高碩
指導教授(外文):Kao-Shuo Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:75
中文關鍵詞:CuFeO2薄膜水熱法種子層光降解光催化裂解水
外文關鍵詞:CuFeO2 thin filmshydrothermal synthesisseed layerphotodegradationphotoelectrochemical water splitting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因為擁有落在可見光區域的狹窄能隙,CuFeO2被認為是適合當作光催化劑的材料。同時,因為合適的能帶位置,CuFeO2也被認為是水裂解中有競爭力的光電陰極候選。
然而,只有少數的研究在探討藉由水熱法製備CuFeO2薄膜,其相關的物理及化學性質仍未明瞭。根據文獻,CuFeO2粉末可以在極高鹼性的環境下以的形式藉由水熱法被合成出來,然而,由於對基板的腐蝕,這種環境不適合用來在透明導電基板上製備CuFeO2薄膜。在我們最近的研究裡改變不同的沉積參數,藉由晶種層的輔助成功在摻氟氧化錫基板(FTO)上製備CuFeO2薄膜。XRD跟SEM的結果顯示CuFeO2 薄膜能夠成功藉由晶種層而生長在FTO上。而SEM則更進一步確認CuFeO2的表面形貌及均勻度。XPS用來分析CuFeO2薄膜中的成份及其氧化態數。UPS及UV-vis用來研究CuFeO2薄膜的光學性質及價帶結構。
此外,CuFeO2的光觸媒性質,包括亞甲基藍的光降解和光催化裂解水也被探討。生長在由滴落塗佈法製備的種子層上的CuFeO2薄膜的光降解速率大約為6.7*10-3/min。相關的光電流在光源的照射下有明顯的增強,其中施加電壓的光子對電流的轉換效率大約為0.501%,在-0.75伏特的位置。
CuFeO2 is a suitable photocatalytic material owing to its narrow band gap in the visible light region. Moreover, CuFeO2 also has a suitable band positions as a photocathode for photoelectrochemical (PEC) water splitting.
However, few studies have focused on fabricating CuFeO2 thin films by a hydrothermal method, and the associated physical and chemical properties are still yet to be extensively studied. From the literature, CuFeO2 powders were synthesized in highly basic conditions by hydrothermal methods, however, the condition was not suitable for fabricating CuFeO2 thin films on transparent conducting substrates. In the current study, CuFeO2 thin films were successfully fabricated on the fluorine doped tin oxide (FTO) substrates with the assistance of a seed layer, which was tailored by tuning various deposition parameters. The XRD and SEM results showed the growth of CuFeO2 films. on FTO substrates. The SEM images also ascertained the morphology and uniformity of CuFeO2 films. The XPS was used to determine the constituent elements and chemical states of CuFeO2. The UPS and UV-vis were used to investigate the optical property and band structure of CuFeO2 films.
In addition, the photocatalytic activities of CuFeO2 films were studied, including photodegradation of methylene blue dye and PEC water splitting. The CuFeO2 films based on drop casting seed layers exhibited the photodegradation rate constant k of approximately 6.7*10-3/min. The associated photocurrent density was enhanced under illumination, and the measured applied bias photon-to-current conversion efficiency (ABPE) was approximately 0.501 % at applied bias at -0.75 V.
CONTENT I
FIGURE CONTENT III
CHAPTER 1 INTRODUCTION 1
1.1 ENERGY SUSTAINABILITY 1
1.2 PHOTOCATALYSIS 2
1.2.1 PHOTOELECTROCHEMICAL (PEC) WATER SPLITTING 2
1.2.2 PHOTODEGRADATION 8
1.2.3 STRATEGIES OF ENHANCING PHOTOCATALYTIC PROPERTY 9
1.2.3.1 BAND GAP ADJUSTMENT (DOPING) 9
1.2.3.2 MORPHOLOGY CONTROL 10
1.2.3.3 NANOCOMPOSITES (HETEROJUNCTIONS) 11
1.2.3.4 SURFACE PLASMA RESONANCE (SPR) 14
1.2.3.5 COMPLEX METAL OXIDES 16
1.3 CUFEO2 (CUPROUS FERRITE) 17
1.3.1 STRUCTURE 17
1.3.2 CHARACTERISTICS 19
1.3.3 SYNTHESIS METHODS 21
1.3.3.1 SPUTTERING METHOD 21
1.3.3.2 SOLID STATE REACTION 24
1.3.3.3 SOL-GEL METHOD 27
1.3.3.4 HYDROTHERMAL METHOD 28
1.4 MOTIVATION AND OBJECTIVE 31
CHAPTER 2 EXPERIMENTAL 32
2.1 MATERIALS 32
2.2 EXPERIMENTAL PROCEDURE 32
2.2.1 SUBSTRATE CLEANING 32
2.2.2 PREPARATION OF SEED LAYER 33
2.2.3 HYDROTHERMAL SYNTHESIS 36
2.3 CHARACTERIZATIONS 38
2.3.1 X-RAY DIFFRACTION (XRD) 38
2.3.2 SCANNING ELECTRON MICROSCOPY (SEM) 39
2.3.3 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 41
2.3.4 PHOTODEGRADATION 42
2.3.5 PEC REACTION MEASUREMENT 43
2.3.6 UV-VIS MEASUREMENT 43
CHAPTER 3 RESULTS AND DISCUSSION 45
3.1 FABRICATION AND CHARACTERIZATION OF CUFEO2 THIN FILM 46
3.1.1 EFFECT OF SEED LAYERS 47
3.1.2 VARIOUS THICKNESSES OF SEED LAYERS 48
3.1.3 DEPOSITION METHOD OF SEED LAYERS 49
3.1.4 HIGHLY TEXTURED CUFEO2 POWDERS AS SEED LAYERS 51
3.1.5 SEM ANALYSIS 52
3.1.6 XPS ANALYSIS 55
3.1.7 UPS ANALYSIS 57
3.1.8 UV-VIS SPECTRA 58
3.1.9 BAND STRUCTURE OF CUFEO2 THIN FILMS 60
3.2 APPLICATION OF CUFEO2 THIN FILMS 61
3.2.1 PHOTODEGRADATION 61
3.2.2 PEC WATER SPLITTING 65
CHAPTER 4 CONCLUSIONS 68
4.1 FABRICATION OF CUFEO2 THIN FLIMS 68
4.2 SEM ANALYSIS 68
4.3 BAND STRUCTURE 68
4.4 PHOTODEGRADATION MEASUREMENT 69
4.5 PEC ANALYSIS 69
REFERENCES 70
[1]A. Gellé and A. Moores, Water splitting catalyzed by titanium dioxide decorated with plasmonic nanoparticles, Pure Appl. Chem. 89, 1 (2017).
[2]W. M. SooHoo, C. Wang, and H. Li, Geospatial assessment of bioenergy land use and its impacts on soil erosion in the U.S. Midwest, J. Environ. Manage. 190, 188 (2017).
[3]M. Thiébaut and A. Sentchev, Asymmetry of tidal currents off the W.Brittany coast and assessment of tidal energy resource around the Ushant Island, Renew. Energ. 105, 735 (2017).
[4]J. A. Rivera, P. Blum, and P. Bayer, Increased ground temperatures in urban areas: Estimation of the technical geothermal potential, Renew. Energ. 103, 388 (2017).
[5]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells, Nat Mater 4, 455 (2005).
[6]C. Zhang and Y. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts, Chem. Mat. 17, 3537 (2005).
[7]D. Chatterjee and S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol. C 6, 186 (2005).
[8]C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, Photoelectrochemical devices for solar water splitting - materials and challenges, Chem Soc Rev 46, 4645 (2017).
[9]H. Yang, J. Yan, Z. Lu, X. Cheng, and Y. Tang, Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation, J. Alloy. Compd. 476, 715 (2009).
[10]X. Wang, H. Huang, G. Li, Y. Liu, J. Huang, and D. P. Yang, Hydrothermal synthesis of 3D hollow porous Fe3O4 microspheres towards catalytic removal of organic pollutants, Nanoscale Res. Lett. 9, 1 (2014).
[11]A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238, 37 (1972).
[12]S. Chu, W. Li, Y. F. Yan, T. Hamann, I. Shih, D. W. Wang, and Z. T. Mi, Roadmap on solar water splitting: current status and future prospects, Nano Futures 1, 1 (2017).
[13]Z. Kang, X. Q. Yan, Y. F. Wang, Z. M. Bai, Y. C. Liu, Z. Zhang, P. Lin, X. H. Zhang, H. G. Yuan, X. J. Zhang, and Y. Zhang, Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered biosensing application, SCIENTIFIC REPORTS 5, 1 (2015).
[14]Y. Q. Gai, J. B. Li, S. S. Li, J. B. Xia, and S. H. Wei, Design of narrow-gap TiO2 a passivated codoping approach for enhanced photoelectrochemical activity., Phys. Rev. Lett. 102, 1 (2009).
[15]K. Tolod, S. Hernández, and N. Russo, Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges, Catalysts 7, 1 (2017).
[16]S. S. Patil, M. G. Mali, M. A. Hassan, D. R. Patil, S. S. Kolekar, and S.-W. Ryu, One-Pot in Situ Hydrothermal Growth of BiVO4/Ag/rGO Hybrid Architectures for Solar Water Splitting and Environmental Remediation, Sci. Rep. 7, 1 (2017).
[17]M. Singh, D. Jampaiah, A. E. Kandjani, Y. M. Sabri, E. Della Gasprera, P. Reineck, M. Judd, J. Langley, N. Cox, J. van Embden, E. L. H. Mayes, B. C. Gibson, S. K. Bhargaba, R. Ramanathan, and V. Bansal,Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity, Nanoscale 10, 6039 (2018).
[18]S. Wang, H. M. Ang, and M. O. Tade, Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art, Environ Int 33, 694 (2007).
[19]D. Ma, J. Zhong, J. Li, C. Burda, and R. Duan, Preparation and photocatalytic performance of MWCNTs/BiOCl: Evidence for the superoxide radical participation in the degradation mechanism of phenol, Appl. Surf. Sci. 480, 395 (2019).
[20]P. Gao, A. Li, D. D. Sun, and W. J. Ng, Effects of various TiO2 nanostructures and graphene oxide on photocatalytic activity of TiO2, J Hazard Mater 279, 96 (2014).
[21]T. Senasu, K. Hemavibool, and S. Nanan, Hydrothermally grown CdS nanoparticles for photodegradation of anionic azo dyes under UV-visible light irradiation, RSC Advances 8, 22592 (2018).
[22]L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D. K. Dutta, and P. Sengupta, Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light, Appl. Catal. A: Gen. 490, 42 (2015).
[23]Z. Chen, S. Liu, M. Q. Yang, and Y. J. Xu, Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water, ACS Appl Mater Interfaces 5, 4309 (2013).
[24]J. B. You, L. Meng, T. B. Song, T. F. Guo, Y. Yang, W. H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. De Marco, and Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat Nanotechnol 11, 75 (2016).
[25]D. W. Hwang, J. Kim, T. J. Park, and J. S. Lee, Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting, Catal. Lett. 80, 53 (2002).
[26]J. Wang, T. Zhang, D. Wang, R. Pan, Q. Wang, and H. Xia, Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer, J. Alloy. Compd. 551, 82 (2013).
[27]F. Niu, D. Chen, L. S. Qin, N. Zhang, J. Y. Wang, Z. Chen, and Y. X. Huang, Facile Synthesis of Highly Efficient p-n Heterojunction CuO/BiFeO3 Composite Photocatalysts with Enhanced Visible-Light Photocatalytic Activity, ChemCatChem 7, 3279 (2015).
[28]Y. H. Tseng, I. G. Chang, Y. Tai, and K. W. Wu, Effect of Surface Plasmon Resonance on the Photocatalytic Activity of Au/TiO2 Under UV/Visible Illumination, J. Nanosci. Nanotechnol. 12, 416 (2012).
[29]J. Luan, M. Chen, and W. Hu, Synthesis, characterization and photocatalytic activity of new photocatalyst ZnBiSbO4 under visible light irradiation, Int J Mol Sci 15, 9459 (2014).
[30]S. A. Ansari, M. M. Khan, M. O. Ansari, and M. H. Cho, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis, New J. Chem. 40, 3000 (2016).
[31]Y. Ishida, L. Chabanne, M. Antonietti, and M. Shalom, Morphology control and photocatalysis enhancement by the one-pot synthesis of carbon nitride from preorganized hydrogen-bonded supramolecular precursors, Langmuir 30 447 (2014).
[32]L. Zhang, T. Xu, X. Zhao, and Y. Zhu, Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities, Appl. Catal. B 98, 138 (2010).
[33]Y. Hou, F. Zuo, A. Dagg, and P. Feng, Visible light-driven alpha-Fe2O3 nanorod/graphene/BiV1-xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting, Nano Lett 12, 6464 (2012).
[34]S. Bhargava, H. R. Blank, E. Hall, M. A. Chin, H. Kroemer, and V. Narayanamurti, Staggered to straddling band lineups in InAs/Al(As, Sb), Appl. Phys. Lett. 74, 1135 (1999).
[35]Z. He, Y. Shi, C. Gao, L. Wen, J. Chen, and S. Song, BiOCl/BiVO4 p–n Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation, J. Phys. Chem. C 118, 389 (2013).
[36]R. S. Yan, S. Fathipour, Y. M. Han, B. Song, S. D. Xiao, M. D. Li, N. Ma, V. Protasenko, D. A. Muller, D. Jena, and H. G. Xing, Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment, Nano Lett 15, 5791 (2015).
[37]A. Opitz, Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation, J Phys. Condens. Matter. 29, 133001 (2017).
[38]J. Liu, R. Wei, J. Hu, L. Li, and J. Li, Novel Bi2O3/NaBi(MoO4)2 heterojunction with enhanced photocatalytic activity under visible light irradiation, J. Alloy. Compd. 580, 475 (2013).
[39]H. M. El-Bery, Y. Matsushita, and A. Abdel-moneim, Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites, Appl. Surf. Sci. 423, 185 (2017).
[40]W. Zhao, Y. Jin, C. H. Gao, W. Gu, Z. M. Jin, Y. L. Lei, and L. S. Liao, A simple method for fabricating p–n junction photocatalyst CuFe2O4/Bi4Ti3O12 and its photocatalytic activity, Mater. Chem. Phys. 143, 952 (2014).
[41]S. Link and M. A. El-Sayed, Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods, J. Phys. Chem. B 103, 8410 (1999).
[42]W. Hou and S. B. Cronin, A Review of Surface Plasmon Resonance-Enhanced Photocatalysis, Adv. Funct. Mater. 23, 1612 (2013).
[43]P. Zhang, Y. F. Shi, M. F. Chi, J. N. Park, G. D. Stucky, E. W. McFarland , and L. Gao, Mesoporous delafossite CuCrO2 and spinel CuCr2O4: synthesis and catalysis, Nanotechnology 24, 345704 (2013).
[44]P. Taneja, S. Sharma, A. Umar, S. K. Mehta, A. O. Ibhadon, and S. K. Kansal, Visible-light driven photocatalytic degradation of brilliant green dye based on cobalt tungstate (CoWO4) nanoparticles, Mater. Chem. Phys. 211, 335 (2018).
[45]Y. He, L. Li, W. Fan, C. Zhang, and M. K. H. Leung, A novel and facile solvothermal-and-hydrothermal method for synthesis of uniform BiVO4 film with high photoelectrochemical performance, J. Alloy. Compd 732, 593 (2018).
[46]Y. Zhang, J. Rosen, G. S. Hutchings, and F. Jiao, Enhancing photocatalytic oxygen evolution activity of cobalt-based spinel nanoparticles, Catalysis Today 225, 171 (2014).
[47]C. Friedel, Sur une combinaison naturelle des oxydes de fer et de cuivre, et sur la reproduction de l’atacamite, Sciences Academy 77, 211 (1873).
[48]A. Pabst, Note on the structure of delafossite, AM. MINERAL 31, 539 (1946).
[49]X. Meng and Z. Zhang, Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches, J. Mol. Catal. A-Chem. 423, 533 (2016).
[50]M. Roble, S. D. Rojas, R. Wheatley, S. Wallentowitz, A. L. Cabrera, and D. E. Diaz-Droguett, Hydrothermal improvement for 3R-CuFeO2 delafossite growth by control of mineralizer and reaction atmosphere, Solid State Sci 271, 314 (2019).
[51]M. A. Marquardt, N. A. Ashmore, and D. P. Cann, Crystal chemistry and electrical properties of the delafossite structure, Thin Solid Films 496, 146 (2006).
[52]R. Daou, R. Fresard, V. Eyert, S. Hebert, and A. Maignan, Unconventional aspects of electronic transport in delafossite oxides, Sci Technol Adv Mater, 18, 919 (2017).
[53]C. Tablero Crespo, Potentiality of CuFeO2-delafossite as a solar energy converter, Solar Energy 163, 162 (2018).
[54]Y. Jin and G. Chumanov, Solution synthesis of pure 2H CuFeO2 at low temperatures, RSC Advances 6, 26392 (2016).
[55]A. Bera, K. Deb, T. Bera, S. Sinthika, R. Thapa, and B. Saha, Effect of Mg substitution in delafossite structured CuFeO2 thin film deposited on FTO coated glass substrate and its diode characteristics, Thin Solid Films 642, 316 (2017).
[56]M. S. Prevot, N. Guijarro, and K. Sivula, Enhancing the Performance of a robust sol-gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction, ChemSusChem 8, 1359 (2015).
[57]A. Forslund, “Synthesis and characterisation of delafossite CuFeO2 for solar energy applications, 2016.
[58]S. Bassaid, M. Chaib, S. Omeiri, A. Bouguelia, and M. Trari, Photocatalytic reduction of cadmium over CuFeO2 synthesized by sol-gel, J. Photochem. Photobiol. A-Chem. 201, 62 (2009).
[59]T. Zhu, Z. H. Deng, X. D. Fang, W. W. Dong, J. Z. Shao, R. H. Tao, and S. M. Wang, Room temperature deposition of amorphous p-type CuFeO2 and fabrication of CuFeO2/n-Si heterojunction by RF sputtering method, B MATER SCI 39, 883 (2016).
[60]C. M. Jiang, S. E. Reyes-Lillo, Y. F. Liang, Y. S. Liu, G. J. Liu, F. M. Toma, D. Prendergast, I. D. Sharp, and J. K. Cooper, Electronic Structure and Performance Bottlenecks of CuFeO2 Photocathodes, Chem. Mat. 31, 2524 (2019).
[61]X. Xie, H. Dai, T. Li, G. Gong, and Z. Chen, Effect of calcining temperature on the microstructure and magnetic properties of CuFeO2 multiferroic ceramic, Adv. Appl. Ceram. 117, 66 (2017).
[62]L. Zhang, X. Tan, D. Xiong, Z. Chen, S. Xu, and W. Deng, Study of the effect of synthetic procedure on microstructure, defects and magnetism of multiferroic CuFeO2 ceramics, Applied Physics A 124, 1 (2018).
[63]L. Zhang, P. Li, K. Huang, Z. Tang, G. H. Liu, and Y. B. Li, Chemical solution deposition and transport properties of epitaxial CuFeO2 thin films, Mater. Lett., Article 65, 3289 (2011).
[64]W. C. Sheets, E. Mugnier, A. Barnabe, T. J. Marks, and K. R. Poeppelmeier, Hydrothermal synthesis of delafossite-type oxides, Chem. Mater. 18, 7 (2006).
[65]H. N. Abdelhamid, S. Kumaran, and H.-F. Wu, One-pot synthesis of CuFeO2 nanoparticles capped with glycerol and proteomic analysis of their nanocytotoxicity against fungi, RSC Advances 6, 97629 (2016).

[66]M. M. Moharam, M. M. Rashad, E. M. Elsayed, and R. M. Abou-Shahba, A facile novel synthesis of delafossite CuFeO2 powders, J. Mater. Sci. Mater. Electron. 25, 1798 (2014).
[67]X. Qiu, M. Liu, K. Sunada, M. Miyauchi, and K. Hashimoto, A facile one-step hydrothermal synthesis of rhombohedral CuFeO2 crystals with antivirus property, Chem Commun (Camb) 48, 7365 (2012).
[68]D. H. Youn, Y. H. Choi, J.-H. Kim, S. Han, A. Heller, and C. B. Mullins, Simple Microwave-Assisted Synthesis of Delafossite CuFeO2 as an Anode Material for Sodium-Ion Batteries, ChemElectroChem 5, 2419 (2018).
[69]C. Xu, T. F. Jiang, Z. L. Wu, W. F. Zhou, X. Zhang, T. Guo, L.S. Wu, and H. G. Xue, p-Type CuFeO2 nanoflakes prepared by sodium alginate-assisted hydrothermal method for photoelectrochemical water reduction, J. Mater. Sci. 53, 12407 (2018).
[70]M. Ito, C. Izawa, and T. Watanabe, Direct fabrication of a CuFeO2/Fe photocathode for solar hydrogen production by hydrothermal method, Chemistry Letters 46, 814 (2017).
[71]J. Y. Wang, Q. L. Deng, M. J. Li, K. Jiang, J. Z. Zhang, Z. G. Hu, and J. H. Chu, Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications, Scientific Reports 7, 1 (2017).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊