跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張意璇
研究生(外文):Yi-HsuanChang
論文名稱:單雙層交替石墨烯異質結構之量子傳輸研究
論文名稱(外文):Quantum transport in alternating monolayer-bilayer graphene heterostructures
指導教授:陳則銘陳則銘引用關係
指導教授(外文):Tse-Ming Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:44
中文關鍵詞:石墨烯朗道能階封裝技術
外文關鍵詞:grapheneLandau levelsencapsulated technology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自2004年成功地在實驗中從石墨分離出石墨烯後,石墨烯開始廣泛的在各領域中被研究。然而,據我們所知只有少數研究關注單層石墨烯和雙層石墨烯交界面的量子傳輸變化。在這理,我們研究了交替之單雙層石墨烯的電子能帶結構和傳輸特性,在實驗中,我們觀察到額外的狄拉克點(Dirac point)和額外的朗道能階(Landau levels),並且發現兩組朗道能階在磁場B=3.8T時產生交點。為了更加清楚地量測量子霍爾效應的演化情況,我們成功地開發了封裝技術,使封裝的雙層石墨烯裝置(Devices)之遷移率(mobility)可以提高到100,000 cm2 V-1 s-1。這項技術不僅提供了樣品新的設計可能性,亦使量子現象能夠被更深入的研究。除此之外,交替之單雙層石墨烯在磁場B=8T時觀察到不等差的填充因子v=2, 6, 10, 12, 16, 18...,但是由於遷移率(mobility)不夠理想,無法觀察到後續的填充因子變化,亦無法確切對兩組朗道能階(Landau levels)發生交叉點處進行分析,因此如何將交替的單雙層石墨烯異質結構與封裝技術結合起來以達到提升遷移率(mobility)的目的,將是我們未來的主要工作。
Few-layer graphene has been extensively studied since 2004 when it was experimentally demonstrated for the first time[1]. The mono- and bilayer graphene and lead to exhibit distinct electronic properties such as massless and massive Dirac fermion, and lead to different applications and research directions. However, the quantum transport in monolayer and bilayer graphene heterojunctions had only been investigated in few researches[2, 14, 18]. Here, we investigate the transport behaviors of alternating monolayer-bilayer graphene devices. In the experiment, we may observe an additional Dirac point and additional Landau levels. Furthermore, in order to clearly observe the evolution of quantum Hall effect, we have successfully developed the encapsulated technology. Based on this technology, the mobility of encapsulated bilayer graphene devices can be raised to 100,000 cm2 V-1 s-1. Indeed, such encapsulated processes provide new design possibilities for the devices, which allows us to deeply study of quantum phenomena. Additionally, the filling factor v=2, 6, 10, 12, 16, 18... are detected in the alternating monolayer-bilayer graphene at applied magnetic field B=8T, but the evolution of Landau levels near the applied magnetic field B=3.8T can’t be analyzed. At the applied magnetic field B=3.8T, two groups of Landau levels generate a crossing point. Therefore, how to combine the alternating monolayer-bilayer graphene heterostructures and encapsulated technology to improve the mobility is our future work.
Abstrate  i

1 Introduction  1

2 Theoretical background .......... 3
2.1 Graphene properties .......... 3
2.1.1 The crystal structure of graphene .......... 3
2.1.2 Electronic properties of graphene .......... 4
2.2 Quantum Hall effect .......... 8
2.2.1 Landau levels .......... 8
2.2.2 Density of states in a Landau levels .......... 10
2.2.3 Quantum Hall effect .......... 10
2.2.4 Quantum Hall effect in graphene .......... 11

3 Fabrication  16
3.1 Mechanical exfoliation .......... 16
3.2 Hot pick-up transfer technique .......... 19
3.2.1 Actual process of pick-up, transfer and Meltdown .......... 19
3.3 E-beam lithography and contact evaporation .......... 21

4 Experimental result and discussion  22
4.1 Quantum transport in the monolayer-bilayer graphene heterostructure ... 22
4.1.1 Introduction .......... 22
4.1.2 The alternating monolayer-bilayer graphene heterostructure .......... 24
4.1.3 Measurement result .......... 28
4.2 High mobility encapsulated graphene device .......... 33
4.2.1 Encapsulated bilayer graphene heterostructure device .......... 33
4.2.2 Measurement result .......... 36

5 Conclusion  40
5.1 Future work .......... 41
[1]S. Morozov et al., Electric field effect in atomically thin carbon films, Science (New York, NY), 2004.
[2]X. Fan, W. Huang, T. Ma, L.-G. Wang, and H.-Q. Lin, Electronic band gaps and transport properties in periodically alternating mono-and bi-layer graphene superlattices, EPL (Europhysics Letters), vol. 112, no. 5, p. 58003, 2015.
[3]A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Reviews of modern physics, vol. 81, no. 1, p. 109, 2009.
[4]C. Bena and G. Montambaux, Remarks on the tight-binding model of graphene, New Journal of Physics, vol. 11, no. 9, p. 095003, 2009.
[5]E. McCann and M. Koshino, The electronic properties of bilayer graphene, Reports on Progress in Physics, vol. 76, no. 5, p. 056503, 2013.
[6]S. Datta, Electronic transport in mesoscopic systems. Cambridge university press, 1997.
[7]Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, nature, vol. 438, no. 7065, p. 201, 2005.
[8]I. E. Abbott’s, Graphene: exploring carbon flatland, Phys. Today, vol. 60, no. 8, p. 35, 2007.
[9]Y. Barlas, K. Yang, and A. H. MacDonald, Quantum Hall effects in graphene-based two-dimensional electron systems, Nanotechnology, vol. 23, no. 5, p. 052001, 2012.
[10]K. Novoselov, A. Mishchenko, A. Carvalho, and A. C. Neto, 2D materials and van der Waals heterostructures, Science, vol. 353, no. 6298, p. aac9439, 2016.
[11]H. Li et al., Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy, ACS nano, vol. 7, no. 11, pp. 10344-10353, 2013.
[12]F. Pizzocchero et al., The hot pick-up technique for batch assembly of van der Waals heterostructures, Nature communications, vol. 7, p. 11894, 2016.
[13]K. S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene, nature, vol. 438, no. 7065, p. 197, 2005.
[14]J. Tian, Y. Jiang, I. Childres, H. Cao, J. Hu, and Y. P. Chen, Quantum Hall effect in monolayer-bilayer graphene planar junctions, Physical Review B, vol. 88, no. 12, p. 125410, 2013.
[15]M. Ezawa, Supersymmetry and unconventional quantum Hall effect in monolayer, bilayer and trilayer graphene, Physica E: Low-dimensional Systems and Nanostructures, vol. 40, no. 2, pp. 269-272, 2007.
[16]L. Wang et al., One-dimensional electrical contact to a two-dimensional material, Science, vol. 342, no. 6158, pp. 614-617, 2013.
[17]Y. Huang et al., Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials, ACS nano, vol. 9, no. 11, pp. 10612-10620, 2015.
[18]M. Koshino, T. Nakanishi, and T. Ando, Interface Landau levels in graphene monolayer-bilayer junctions, Physical Review B, vol. 82, no. 20, p. 205436, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top