跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/16 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃敬恆
研究生(外文):Jing-HengHuang
論文名稱:氧化鋅奈米柱經由氫及氧退火後的表面變遷
論文名稱(外文):The surface variation of ZnO nanorods via annealing with hydrogen gas and Oxygen gas
指導教授:羅光耀
指導教授(外文):Kuang-Yao Lo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:70
中文關鍵詞:孔洞氧化鋅奈米柱氬氫退火氫氣退火氧退火
外文關鍵詞:Porous ZnO nanorodAr/H2 annealO2 anneal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以往氧化鋅奈米柱被限制應用在紫外光波段的光電偵測器,但是在最近幾年,在太陽能電池領域上,開始研究利用一維結構或孔洞材料來降低光電材料系統的光反射率。最近的工作,提到用氫氣氬氣退火氧化鋅奈米柱,可以形成孔洞樣貌的氧化鋅奈米柱,其光電偵測波長範圍可以拓寬到可見光波段。而造成孔洞氧化鋅奈米柱的低反射率的原因,及光電偵測範圍被拓寬的機制,是否與氫氣退火後表面成份有關。這一個工作,我們將先進行氫氣退火,觀察形貌,螢光光譜及光電子能譜,探討氫氣退火後氧化鋅奈米柱表面外觀及表面化學狀態和奈米柱內部的缺陷狀態。之後嘗試在進行氧氣退火來觀察是否氧可以修護表面並呈現對應的化學組態。在實驗的進行中,觀察出氫氣通入的溫度與流通與否的退火腔,對於表面的狀態有很大的差異,以及影響到是否形成孔洞樣貌。特定的退火過程較易製成出孔洞氧化鋅奈米柱及對應的光電特性。此外,我們使用(1)SEM來觀察奈米柱表面樣貌的改變,(2)PL來觀察奈米柱表面及內部的缺陷種類和含量(3)XPS來觀察奈米柱表面約10nm厚度的表面元素狀態(4)CL嘗試觀察奈米柱表面螢光訊號,分析表面缺陷狀態。之後再進行氧退火時,改變不同的退火溫度來觀察經由氫氬退火造成表面氧空缺,是否通氧氣被修補起來,使得表面缺陷減少,結構變好。這個工作將解釋氫氣、氬氣、氧氣如何改變氧化鋅表面元素狀態,以及表面樣貌、表面元素狀態、表面吸附量三者之間的關連,並提供目前製成出最接近的孔洞奈米柱條件為何。
In the past technology, the wavelength used for ZnO nanorod photodetector was restricted to ultraviolet. But in recent years, people start to study how to use one-dimensional structures or porous materials to reduce the light reflectivity of the photoelectric system in solar cell field. In a recent research, it mentioned that ZnO nanorod can turn into porous ZnO nanorod through the process of argon/hydrogen annealing. And the wavelength range of porous ZnO nanorod for photodetector can broaden to visible light. We want to research whether the surface element of material changed by the Ar/H2 annealing is the reasons why the light reflectivity of porous ZnO nanorod can be reduced and the wavelength range of ZnO nanorod for photodetector can be broaden. In this work, we make these ZnO nanorod samples finishing the Ar/H2 annealing process, and then we use scanning electron microscopy to observe the morphology of these samples. We use photoluminescence spectroscopy to analyze what is the defect state in bulk of ZnO nanorod and use photoelectron spectroscopy to analyze what is the chemical state in surface of ZnO nanorod. We will discuss how the argon gas and hydrogen gas change the morphology of ZnO nanorod, the surface chemical state of ZnO nanorod and the defect state in the bulk of ZnO nanorod. Then, we try to let these samples annealed by Ar/H2 gases before do oxygen annealing to observe if oxygen can help repair the surface morphology and change the chemical state into the corresponding chemical state. In the experiment, we observe the anneal temperature and whether the anneal tube is a open system can have a great influence on the surface state of ZnO nanorod and the formation of porous morphology. This work will explain how hydrogen, argon, oxygen change the surface element state of ZnO nanorod, and the relation between the surface morphology, the surface element state, the surface adsorption. And, we also show which kind of Ar/H2 anneal condition the best porous ZnO nanorod produced in.
目錄
摘要……………………………………………………………………………………...…3
目錄………………………………………………………………………………………..14
圖目錄……………………………………………………………………………………..16
表目錄……………………………………………………………………………………..19
第一章、 介紹……………………………………………………………………………20
第二章、 理論……………………………………………………………………………22
I氧化鋅材料的介紹………………………………………………………….22
II材料在奈米尺度下的一些特性……………………………………………23
III氧化鋅的本質缺陷(Intrinsic defect)……………………………………..23
IV氧化鋅的螢光特性………………………………………………………..24
V氧化鋅的活化能(Activation Energy)……………………………………..30
VI孔洞氧化鋅奈米柱的結構特性…………………………………………..31
VII氬氫退火後的孔洞氧化鋅奈米柱之螢光特性………………………….34
VIII製成氧化鋅奈米柱的方法……………………………...………………34
第三章、 實驗………………………………………………………………………...….38
3.1氧化鋅晶種層製備…………………………………………………………38
3.2氧化鋅奈米柱製備…………………………………………………………39
3.3氬氫退火……………………………………………………………………39
3.4氧退火………………………………………………………………………41
3.5光學分析工具………………………………………………………………41
第四章、 結果與討論……………………………………………………………………43
4.1改變晶種層表面粗糙度來改善奈米柱的垂直性………………………..43
A.對晶種層進行退火……………………………………………………..43
B.在晶種層成長過程中加偏壓…………………………………………..44
4.1.1樣本邊界奈米柱垂直性較佳……………………………………….45
4.2氧化鋅奈米柱……………………………………………………………..46
1.晶種層…………………………………………………………………...46
2.氧化鋅奈米柱…………………………………………………………...47
4.3在爐管中進行氫退火的方法差異………………………………………..47
A.爐管退火系統長期處於封閉狀態……………………………………..48
B.爐管退火系統全程處於開放狀態……………………………………..49
4.4混合氣體(氬氣+氫氣)退火……………………………………………….50
A.改變氬氣退火時間……………………………………………………..50
 氬氫退火 500oC, H:Ar= 2:8, 1hr, 2hr, 3hr………………………...50
 氬氫退火 550oC, H:Ar= 2:8, 1hr, 2hr, 3hr………………………...55
4.5先氫氣退火,後氧氣退火………………………………………………..60
4.6氫氣退火和氧氣退火造成的表面變遷…………………………………..63
1.表面缺陷………………………………………………………………...63
2.表面形貌………………………………………………………………...65
第五章、 結論……………………………………………………………...…………….66
參考文獻…………………………………………………………………………………..67
[1] M. Ossiander, J. Riemensberger, S. Neppl, M. Mittermair , M. Schäffer, A. Duensing , M. S. Wagner , R. Heider , M. Wurzer , M. Gerl, M. Schnitzenbaumer , J. V. Barth , F. Libisch, C. Lemell, J. Burgdörfer, P. Feulner & R. Kienberger, Absolute timing of the photoelectric effect,Nature volume 561, pages374–377 (2018)
[2] Chin BoonOng ,Law YongNg, Abdul WahabMohammad, A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications ,renewable and sustainable review 81 (2018) 536-551
[3] LingZhu, WenZeng, YanqiongLi, New insight into gas sensing property of ZnO nanorods and nanosheets,material letters 228 (2018) 331-333
[4]J. R. Mejía-Salazar, Osvaldo N. Oliveira, Jr, Plasmonic Biosensing, Chem. Rev. 2018, 118, 10617−10625
[5]masosung mo, jimmy C. Yu, Lizhi Zhang,Siu-Kong A. Li, Self‐Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres Volume17, Issue6 (2005) 756-760
[6] Sin-Liang Ou , Fei-Peng Yu,Dong-Sing Wuu, Transformation from Film to Nanorod via a Sacrifcal Layer: Pulsed Laser Deposition of ZnO for Enhancing Photodetector Performance, Scientific Reportsvolume 7, Article number: 14251 (2017)
[7] Feng-Ming Chang, Zhong-Zhe Wu, Jing-Heng Huang, Wei-Ting Chen, Sanjaya Brahma and Kuang Yao Lo, Migration Energy Barriers for the Surface and Bulk of
Self-Assembly ZnO Nanorods, Nanomaterials 2018, 8(10), 811
[8] Kapil Gupta, Jr-Ting Lin, Ruey-Chi Wang and Chuan-Pu Liu, Porosity-induced full-range visible-light photodetection via ultrahigh broadband antireflection in ZnO nanowires , NPG Asia Materials volume8, pagee314 (2016)
[9]J.Phys.: Condens.Matter 16 (2004) R829-R858
[10] Gregory W. Tomlinsa, Jules L. Routbort, Thomas O. Mason, Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide, JOURNAL OF APPLIED PHYSICS, VOLUME 87, NUMBER 1,(2000)
[11] A. F. Kohan, G. Ceder, and D. Morgan, Chris G. Van de Walle, First-principles study of native point defects in ZnO, PHYSICAL REVIEW B, VOLUME 61, NUMBER 22,(2000)
[12] K. Vanheusden,a) W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt, B. E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders ,Journal of Applied Physics 79, 7983 (1996)
[13] Bixia Lin and Zhuxi Fu, Yunbo Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates APPLIED PHYSICS LETTERS, VOLUME 79, NUMBER 7 (2001)
[14] S .M . Lukas and J. L. MacManus-Driscoll, “ZnO-nanostructure, defects, and devices. Maeterials Today,10[5] 40-48(2007)
[15] Hong Seong Kang, Jeong Seok Kang, Jae Won Kim, and Sang Yeol Lee, Annealing effect on the property of ultraviolet and green emissions of ZnO thin films, JOURNAL OF APPLIED PHYSICS, VOLUME 95, NUMBER 3 (2004)
[16] C. V. Manzano, D. Alegre, O. Caballero-Calero, B. Ale´n, and M. S. Martı´n-Gonza´leza, Synthesis and luminescence properties of electrodeposited ZnO films, JOURNAL OF APPLIED PHYSICS 110, 043538 (2011)
[17] Ravi K. Biroju, and P. K. Giri, Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation, JOURNAL OF APPLIED PHYSICS 122, 044302 (2017)
[18] M.Liu,A.H. Kitai,P.Mascher,J. Lumin.54(1992) 35.
[19] Rongguo Xie, Takashi Sekiguchi,Takamasa Ishigaki, Naoki Ohashi, Dongsheng Li ,Deren Yang, Baodan Liu,Yoshio Bando, Enhancement and patterning of ultraviolet emission in ZnO with an electron beam, APPLIED PHYSICS LETTERS 88, 134103 (2006)
[20] A. B. Djurišić, Y. H. Leung, and K. H. Tam, L. Ding and W. K. Ge, H. Y. Chen and S. Gwo, Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength, APPLIED PHYSICS LETTERS 88, 103107 (2006)
[21] W. M. Kwok, Aleksandra B. Djurišića, Yu Hang Leung, D. Li and K. H. Tam, D. L. Phillips and W. K. Chan, Influence of annealing on stimulated emission in ZnO nanorods, APPLIED PHYSICS LETTERS 89, 183112 (2006)
[22] Anderson Janotti and Chris G. Van de Walle, Native point defects in ZnO, PHYSICAL REVIEW B 76, 165202 (2007)
[23] Shih-Wei Chen, Jenn-Ming Wu “Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method Acta Materialia 59 (2011) 841–847
[24] Matti Hellstr¨om,Igor Beinik, Peter Broqvist, Jeppe V. Lauritsen, and Kersti Hermansson Subsurface hydrogen bonds at the polar Zn-terminated ZnO(0001) surface PHYSICAL REVIEW B 94, 245433 (2016)
[25] L.L. Yang a,b, *, Q.X. Zhao a , M. Willander a , X.J. Liu c , M. Fahlman c , J.H. Yang b, Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy, Applied Surface Science 256 (2010) 3592–3597
[26] Ravi K. Biroju ,and P. K. Giri, Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation, JOURNAL OF APPLIED PHYSICS 122, 044302 (2017)
[27] C. V. Manzano, D. Alegre, O. Caballero-Calero, B. Ale´n, and M. S. Martı´n-Gonza´ lez, Synthesis and luminescence properties of electrodeposited ZnO films, JOURNAL OF APPLIED PHYSICS 110, 043538 (2011)
[28] Chris G. Van de Walle, Hydrogen as a Cause of Doping in Zinc Oxide, P H Y S I C A L R E V I E W L E T T E R S, VOLUME 85, NUMBER 5, 31 JULY 2000
[29] Anderson Janotti and Chris G. Van de Walle, Native point defects in ZnO, PHYSICAL REVIEW B 76, 165202 (2007)
[30] Prashun Gorai, Elif Ertekin,2and Edmund G. Seebauer, Surface-assisted defect engineering of point defects in ZnO, APPLIED PHYSICS LETTERS 108, 241603 (2016)
[31] C. Soci,† A. Zhang,† B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao,
Y. H. Lo, and D. Wang*, ZnO Nanowire UV Photodetectors with High Internal Gain, nanoletters,vol.7,no.4 1003-1009
[32] W. H. Lowdermilk and D. Milam, Gradedindex antireflection surfaces for highpower laser applications, Appl. Phys. Lett. 36, 891 (1980)
[33] Pantea Aurang,Olgu Demircioglu, Firat Es, Rasit Turan,and Husnu Emrah Unalan, ZnO Nanorods as Antireflective Coatings for Industrial-Scal Single-Crystalline Silicon Solar Cells , J. Am. Ceram. Soc., 96 [4] 1253–1257 (2013)
[34] Zhiwu Han, Zhibin Jiao, Shichao Niu⁎, Luquan Ren, Ascendant bioinspired antireflective materials: Opportunities and challenges coexist, Progress in Materials Science 103 (2019) 1–68
[35] Scott R. Kennedy and Michael J. Brett, Porous broadband antireflection coating by glancing angle deposition, Applied Optics, 42(22), 4573.
[36] Xiang Liu, Xiaohua Wu, Hui Cao, and R. P. H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition, Applied Physics, 95(6), 3141–3147.
[37] Yu Hang Leung , Aleksandra B. Djurisˇic,, Zheng Tong Liu , Dan Li , Mao Hai Xie , Wai Kin Chan, Defect photoluminescence of ZnO nanorods synthesized by chemical methods, Journal of Physics and Chemistry of Solids 69 (2008) 353–357
[38] R. S. Wagner and W. C. Ellis, VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters 4, 89 (1964)
[39] Yiying Wu and Peidong Yang, Direct Observation of Vapor-Liquid-Solid Nanowire Growth, J. Am. Chem. Soc. 2001, 123, 3165-3166
[40]Zu Rong Dai,Zheng Wei Pan,Zhong L.Wang,Novel Nanostructures of Functional Oxides Synthsized by Thermal Evaporation, Advanced Functional Materials,13(1),9-24.
[41] D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan,
G. Chai, H. Khallaf, S. Park, A. Schulte, Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method, Physica B 403 (2008) 3713– 3717
[42] Guannan He , Bo Huang , Zhenxuan Lin, Weifeng Yang , Qinyu He, Lunxiong Li, Morphology Transition of ZnO Nanorod Arrays Synthesized by a Two-Step Aqueous Solution Method, Crystals 2018, 8, 152
[43] Y.H. Yang, C.X. Wang, B. Wang, N.S. Xu, G.W. Yang, ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement, Chemical Physics Letters 403 (2005) 248–251
[44] Wen-Jun Li, Er-Wei Shi, Wei-Zhuo Zhong, Zhi-Wen Yin, Growth mechanism and growth habit of oxide crystals, Journal of Crystal Growth 203 (1999) 186-196
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top