|
[1]Cornea Research Foundation of America. Artificial cornea [Online]. Available: http://www.cornea.org/Learning-Center/Cornea-Transplants/Artificial-Cornea.aspx. [2]University of IOWA Health Care. (2015). Penetrating keratoplasty (PK) [Online]. Available: https://webeye.ophth.uiowa.edu/eyeforum/tutorials/cornea-transplant-intro/2-PK.htm. [3]University of IOWA Health Care. (2016). Deep anterior lamellar keratoplasty (DALK) [Online]. Available: https://webeye.ophth.uiowa.edu/eyeforum/tutorials/Cornea-Transplant-Intro/3-DALK.htm. [4]University of IOWA Health Care. (2016). Descemet stripping automated endothelial keratoplasty (DSAEK) [Online]. Available: https://webeye.ophth.uiowa.edu/eyeforum/tutorials/Cornea-Transplant-Intro/4-DSAEK.htm. [5]University of IOWA Health Care. (2016). Descemet membrane endothelial keratoplasty (DMEK) [Online]. Available: https://webeye.ophth.uiowa.edu/eyeforum/tutorials/Cornea-Transplant-Intro/5-DMEK.htm. [6]S. W. S. Chan, Y. Yucel, and N. Gupta, New trends in corneal transplants at the University of Toronto, Canadian Journal of Ophthalmology, vol. 53, no. 6, pp. 580-587, 2018. [7]G. E. Boynton and M. A. Woodward, Evolving techniques in corneal transplantation, Current surgery reports, vol. 3, no. 2, p. 2, 2015. [8]G. S. Peh, R. W. Beuerman, A. Colman, D. T. Tan, and J. S. Mehta, Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview, Transplantation, vol. 91, no. 8, pp. 811-819, 2011. [9]B. Yue, J. Sugar, J. Gilboy, and J. Elvart, Growth of human corneal endothelial cells in culture, Investigative ophthalmology & visual science, vol. 30, no. 2, pp. 248-253, 1989. [10]S. Chen et al., Advances in culture, expansion and mechanistic studies of corneal endothelial cells: a systematic review, Journal of biomedical science, vol. 26, no. 1, p. 2, 2019. [11]S. Ari, I. Çaça, K. Ünlü, Y. Nergiz, and I. Aksit, Effects of trypan blue on corneal endothelium and anterior lens capsule in albino wistar rats: An investigator-masked, controlled, two-period, experimental study, Current therapeutic research, vol. 67, no. 6, pp. 366-377, 2006. [12]Y. Liu et al., Detecting cancer metastases on gigapixel pathology images, arXiv preprint arXiv:1703.02442, 2017. [13]X. Gao, S. Lin, and T. Y. Wong, Automatic feature learning to grade nuclear cataracts based on deep learning, IEEE Transactions on Biomedical Engineering, vol. 62, no. 11, pp. 2693-2701, 2015. [14]M. J. van Grinsven, B. van Ginneken, C. B. Hoyng, T. Theelen, and C. I. Sánchez, Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images, IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1273-1284, 2016. [15]G. Litjens et al., A survey on deep learning in medical image analysis, Medical image analysis, vol. 42, pp. 60-88, 2017. [16]Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. [17]A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in neural information processing systems, 2012, pp. 1097-1105. [18]M. Lin, Q. Chen, and S. Yan, Network in network, arXiv preprint arXiv:1312.4400, 2013. [19]C. Szegedy et al., Going deeper with convolutions, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9. [20]S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167, 2015. [21]C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the inception architecture for computer vision, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818-2826. [22]K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778. [23]A. Fabijańska, Segmentation of corneal endothelium images using a U-Net-based convolutional neural network, Artificial intelligence in medicine, vol. 88, pp. 1-13, 2018. [24]S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated residual transformations for deep neural networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1492-1500. [25]T. G. Rowsey and D. Karamichos, The role of lipids in corneal diseases and dystrophies: a systematic review, Clinical and translational medicine, vol. 6, no. 1, p. 30, 2017. [26]S. Sperling, Evaluation of the endothelium of human donor corneas by induced dilation of intercellular spaces and trypan blue, Graefe's archive for clinical and experimental ophthalmology, vol. 224, no. 5, pp. 428-434, 1986. [27]B. T. van Dooren, W. H. Beekhuis, and E. Pels, Biocompatibility of trypan blue with human corneal cells, Archives of ophthalmology, vol. 122, no. 5, pp. 736-742, 2004. [28]C. Cassata and S. Sinha. (2016). What is an ophthalmologist? [Online]. Available: https://www.everydayhealth.com/ophthalmologist/guide/. [29]I. P. Weber, M. Rana, P. B. Thomas, I. B. Dimov, K. Franze, and M. S. Rajan, Effect of vital dyes on human corneal endothelium and elasticity of Descemet’s membrane, PloS one, vol. 12, no. 9, p. e0184375, 2017. [30]P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, CVPR (1), vol. 1, no. 511-518, p. 3, 2001. [31]J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779-788. [32]J. Shi and J. Malik, Normalized cuts and image segmentation, Departmental Papers (CIS), p. 107, 2000. [33]J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431-3440. [34]J. Jordan. (2018). Evaluating image segmentation models [Online]. Available: https://www.jeremyjordan.me/evaluating-image-segmentation-models/. [35]K. He, G. Gkioxari, P. Dollár, and R. Girshick, Mask r-cnn, in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2961-2969. [36]W. Zhang, C. Witharana, A. Liljedahl, and M. Kanevskiy, Deep convolutional neural networks for automated characterization of arctic ice-wedge polygons in very high spatial resolution aerial imagery, Remote Sensing, vol. 10, no. 9, p. 1487, 2018. [37]Y. Su, Object detection and segmentation for a surgery robot using Mask-RCNN, 2018. [38]H.-F. Tsai, J. Gajda, T. F. Sloan, A. Rares, and A. Q. Shen, Usiigaci: Instance-aware cell tracking in stain-free phase contrast microscopy enabled by machine learning, SoftwareX, vol. 9, pp. 230-237, 2019. [39]C. Lim. (2017). Mask R-CNN [Online]. Available: https://www.slideshare.net/windmdk/mask-rcnn. [40]T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, Feature pyramid networks for object detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117-2125. [41]MIT. Computer Science and Artificial Intelligence Laboratory. (2012). LabelMe, the open annotation tool [Online]. Available: http://labelme2.csail.mit.edu/Release3.0/index.php. [42]Matterport. (2017). Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow [Online]. Available: https://github.com/matterport/Mask_RCNN. [43]Google. (2015). TensorFlow [Online]. Available: https://www.tensorflow.org/. [44]F. Chollet, Keras, 2015. [45]D. Shen, G. Wu, and H.-I. Suk, Deep learning in medical image analysis, Annual review of biomedical engineering, vol. 19, pp. 221-248, 2017. [46]R. Alencar. (2019). Dealing with very small datasets [Online]. Available: https://www.kaggle.com/rafjaa/dealing-with-very-small-datasets. [47]P. Yakubovskiy. (2018). Classification models trained on ImageNet, Keras [Online]. Available: https://github.com/qubvel/classification_models. [48]Y. Ioannou. (2017). A Tutorial on Filter Groups (Grouped Convolution) [Online]. Available: https://blog.yani.io/filter-group-tutorial/.
|